EVALUATION OF THE OHIO VALLEY REGION BASAL SANDSTONE AS A WASTEWATER INJECTION INTERVAL

Prepared by the Geological Surveys of Illinois, Indiana, Kentucky, New York, Ohio, Pennsylvania and West Virginia, and the Department of Geological Engineering, University of Missouri – Rolla.

under sponsorship of the OHIO RIVER VALLEY WATER SANITATION COMMISSION

with the assistance of a grant from the WATER RESOURCES DIVISION, U. S. GEOLOGICAL SURVEY

JULY 1976

ILLINOIS Richard H. Briceland, Ph. D., Director, Environmental Protection Agency (Vacancy) (Vacancy) INDIANA William T. Paynter, M.D., State Health Commissioner Ralph C. Pickard, Assistant Commissioner, State Board of Health (Vacancy) KENTUCKY Robert D. Bell, Secretary, Department of Natural Resources Kenneth O. Gibson, Sr., Senator, Commonwealth of Kentucky Arnold L. Mitchell, Commissioner, Dept. of Fish and Wildlife Resources NEW YORK Peter A. Berle, Commissioner, Department of Environmental Conservation (Vacancy) Joseph R. Shaw OHIO Christine M. Carlson, League of Women Voters Lloyd N. Clausing, Director, Portsmouth Water Department Ned E. Williams, Director, Ohio Environmental Protection Agency PENNSYLVANIA Wesley E. Gilbertson, Deputy Secretary, Dept. of Environmental Resources Maurice K. Goddard, Ph. D., Secretary, Department of Environmental Resources Marion K. McKay, Ph. D., Professor Emeritus, University of Pittsburgh VIRGINIA Denis J. Brion, State Water Control Board (Vacancy) (Vacancy) WEST VIRGINIA Luther N. Dickinson N. H. Dyer, M.D., State Health Commissioner Edgar N. Henry, Director, West Virginia Water Development Authority UNITED STATES GOVERNMENT Norman H. Beamer, District Chief, U. S. Geological Survey Francis T. Mayo, Regional Administrator, Region V., Environmental Protection Agency Donald L. Williams, Chief, Planning, Ohio River Division, Corps of Engineers OFFICERS Ralph C. Pickard, Chairman Arnold L. Mitchell, Vice Chairman Ned E. Williams, Secretary Albert J. Brooks, Treasurer Leo Weaver, Executive Director LEGAL COUNSEL Leonard A. Weakley, Taft, Stettinius & Hollister

*As of July 1, 1976

MEMBERS OF THE COMMISSION*

EVALUATION OF THE OHIO VALLEY REGION BASAL SANDSTONE

AS A WASTEWATER INJECTION INTERVAL

Prepared by the Geological Surveys of Illinois, Indiana, Kentucky, New York, Ohio, Pennsylvania and West Virginia, and the Department of Geological Engineering, University of Missouri -- Rolla, under sponsorship of

Ohio River Valley Water Sanitation Commission with the assistance of a grant from the Water Resources Division, U. S. Geological Survey

Copies are available at \$3.00 each. Single copies free to tax supported institutions.

SUMMARY

ORSANCO involvement in the study of underground wastewater injection began in 1967 and, during 1967-1973 resulted in the publication of two reports documenting the findings of that period. They were "Perspective on the Regulation of Underground Injection of Wastewater" and "Underground Injection of Wastewaters in the Ohio Valley Region." Whereas the previous efforts were directed toward policy and administrative procedures, the present study describes regional characteristics and utilization potentials. These efforts are directed to form a basis for location, design and engineering of wastewater wells in the basal Cambrian age sandstone units.

The present project produced a series of geologic and physical characteristic maps and geologic cross sections that have been formulated from a large number of observations and measurements made in wells throughout the Ohio Valley. Data used in preparation of the maps and cross sections are included in tables.

The mapping revealed that basal sandstone is present throughout the Ohio Valley region, with the exception of small areas where it was never deposited. It lies at the base of the stratigraphic sequence and is not exposed at the surface anywhere within the region. This vertical location in combination with the lack of usable resources contained in the basal sandstone cause it to be favorable for wastewater injection. Only in northern Illinois, where it contains fresh water, and in the few localities where gas is stored or hydrocarbons have been found, is the basal sandstone precluded for wastewater injection because of its value for other uses.

In addition to the restrictions mentioned above, the basal sandstone is too deep for practical consideration in southern Illinois and Indiana, in most of Pennsylvania and West Virginia, and in southern New York. Zones of major faulting in southern Illinois and Indiana and across Kentucky considerably restrict the potential for injection in those areas. Occasional major faults that require consideration are also present at a few other locations in the region.

-i-

The reservoir properties of thickness, porosity and permeability, and areal extent determine the quality of a rock unit for wastewater injection. The wide areal extent of the basal sandstone has been mentioned. Generally, the other properties are present in the most favorable combination in northeast Illinois and northwest Indiana and become less favorable eastward and southward from that area. This does not eliminate locations other than northern Illinois and Indiana from consideration, but it does suggest caution in selecting the basal sandstone as a potential injection interval throughout the rest of the region.

Vertical confinement of injected wastewater is necessary to prevent its escape from the injection interval and entering fresh-water aquifers or strata containing valuable mineral deposits of stored gas. Because the basal sandstone is underlain by Pre-Cambrian age crystalline rock, downward migration is not possible. The basal sandstone is overlain by several hundred feet of shale and siltstone with varying percentages of sandstone and carbonate throughout most of Illinois and Indiana and in western Ohio. Although local confirmation is always necessary, for preliminary purposes, the basal sandstone would be considered suitably confined in these areas. Elsewhere, the degree of confinement, though possibly adequate, is less certain before drilling and testing have been accomplished.

Earthquake history in an area must be considered because an earthquake might potentially damage injection well facilities or alter geohydrologic conditions. In addition, it is now believed possible to stimulate seismic activity by fluid injection and the susceptibility of an area to such induced seismic events should be examined. Within and near the Ohio Valley region, two localities stand out as having been affected by significant earthquakes during recorded time. These areas include extreme southern Illinois, adjacent western Kentucky and western New York.

Evaluation of the possible effect of earthquakes on wastewater injection operations and the relation between wastewater injection and earthquake stimulation is less certain than reservoir evaluation because of the limited experiences in this technology. However, the generalization can be made that extra precautions should be taken in system construction and operation in areas of high seismic risk and that care should be exercised in injection operations sited near faults which could be the source of earthquake generation.

-ii-

CONTENTS

Summary	•	Ι
Introduction		1
Definition of the basal sandstone		3
Map presentations		
Well locations		4
Elevation of the top of the Precambrian basement surface .		5
Elevation of the top of the basal sandstone		7
Thickness of the basal sandstone		8
Porosity and permeability of the basal sandstone		9
Pore volume and flow capacity fo the basal sandstone		12
Salinity of water in the basal sandstone		14
Thickness of the confining unit		16
Ratio of lithologies in the confining unit		18
Zones of seismic risk and earthquake generation		19
Discussion of cross sections		
Illinois		22
Indiana		23
Ohio		24
Pennsvlvania		24
West Virginia.		24
Summary of the adequacy of the basal sandstone for wastewate	er	
injection		25
References		27
Abbreviations used in well data tables		28
Acknowledgments		29

ILLUSTRATIONS

Figure 1	-	Cor adj	reac	lation ent ar	chart of eas	Cambria	n rocks in 1	ndiana an	ıd
Map 1	-	Wel	1	locati	ons				
Map 2	-	Ele	va	tion o	of the top	of the	Precambrian	basement	surface
Map 3	-	Ele	va	tion o	of the top	of the	basal sandst	one	
Map 4	-	Thi	ck	ness o	of the basa	al sands	stone		
Map 5	-	Por	05	ity of	the basal	L sandst	tone		
Map 6	-	Por	e	volume	e of the ba	asal san	ndstone		
Map 7	-	Sal bas	in	ity of sands	water in stone	the upp	per 100 feet	of the	
Map 8	-	Thi	ck	mess c	of the conf	fining u	unit		
Map 9	-	Rat	ic	of li	thologies	in the	confining un	nit	
Map 10	-	Zon	les	of se	eismic risk	c			
Cross se	ect	ion	1	Basal	Sandstone	Norther	rn Illinois		
Cross se	ect	ion	2	Basal	Sandstone	Eastern	n Illinois		
Cross se	ect	ion	3	Basal	Sandstone	Norther	rn Indiana		
Cross se	ect	ion	4	Basal	Sandstone	Centra	l Indiana		
Cross se	ect	ion	5	Basal	Sandstone	Eastern	n Indiana		
Cross se	ect	ion	6	Basal	Sandstone	Norther	rn Ohio		
Cross se	ect	ion	7	Basal	Sandstone	Pennsy	lvania		
Cross se	ect	ion	8	Basal	Sandstone	Western	n West Virgin	nia	

Table	1	Well Data Illinois
Table	2	Well Data Indiana
Table	3	Well Data Kentucky
Table	4	Well Data - New York
Table	5	Well Data - Ohio
Table	6	Well Data Pennsylvania
Table	7	Well Data - West Virginia
Table	8	Salinity and Density of Water in the Basal Sandstone Illinois
Table	9	Salinity and Density of Water in the Basal Sandstone Indiana
Table	10	Salinity and Density of Water in the Basal Sandstone Kentucky
Table	11	Salinity and Density of Water in the Basal Sandstone Ohio
Table	12	Salinity and Density of Water in the Basal Sandstone New York

.

INTRODUCTION

ORSANCO involvement in underground wastewater injection began in 1967 at the initiation of Dr. Edward J. Cleary, then Executive Director and Chief Engineer at ORSANCO. This first effort culminated in 1969 with the publication of the report "Perspective on the Regulation of Underground Injection of Wastewaters" (Cleary and Warner, 1969). A recommendation of this report was that an ORSANCO committee be formed to develop policy guidelines, regulatory procedures and technical criteria pertaining to underground injection of wastewaters in the Ohio Valley. The Commission adopted this recommendation and the Advisory Committee on Underground Injection of Wastewaters was organized. The report of that committee was submitted to the Commission in late 1972 and the committee's policy recommendations were adopted by the Commission in January, 1973. This policy statement and the regulatory guidelines and technical criteria to support it are contained in the publication "Underground Injection of Wastewaters in the Ohio Valley Region" (ORSANCO, 1973).

Upon completion of its original assignment, the Advisory Committee on Underground Injection of Wastewaters considered how it might further contribute to the advancement of the technology in the area of its responsibility. A possible project, the detailed delineation of the geologic and engineering potential of the basal Cambrian age sandstone unit for wastewater injection, was selected and a proposal for this project developed. All state geological agencies of the ORSANCO states expressed their willingness to participate in the study, with technical corrdination to be provided by Dr. D. L. Warner of the University of Missouri, Rolla. Under ORSANCO's sponsorship, a proposal for the project was submitted to the U. S. Geological Survey in order to obtain the funds necessary to defray expenses for travel, meetings, and report preparation and publication. The project was funded by the U.S.G.S., and work began early in 1974. The broad objective of the project was the determination, in as much detail as possible, of the geological and utilization characteristics of the basal sandstone for wastewater injection in the Ohio Valley area. This interval was selected for study because it was generally known to have many of the characteristics favorable for use as an injection in a number of locations, and because it could be anticipated that there would be an interest in using it more extensively for this pupose in the future. A further reason for selecting the basal sandstone for study was the fact that it is present throughout most of the Ohio Valley area and would, therefore, present maximum opportunity for cooperative study among the ORSANCO states.

At a meeting of the Committee on Underground Injection of Wastewater, the detailed objectives of the present study were established and the procedures for their accomplishment agreed on. During the study, some minor adjustments in the original plan were made. The actual scope of the study as it has been completed is reflected by the list of maps, cross sections and tables.

The data for maps 1-4, 8, and 9 were obtained by the Geological Surveys of each of the participating states and, where enough points were available, state maps were drawn by the respective agencies. The data and maps were supplied to the University of Missouri, where they were compiled to form the regional maps presented here. Maps 5-7 were prepared at the University of Missouri, using data supplied by the states and well logs obtained from commercial suppliers. Map 10 is the same map that was used in previous ORSANCO (1973) report. The cross sections were prepared by the respective state agencies.

Each of the maps and the cross sections will be discussed individually and their significance for underground wastewater injection planning and regulation analyzed.

-2-

DEFINITION OF THE

THE BASAL SANDSTONE

For this study, an unusual geologic procedure was followed in that the rock unit being mapped is not a conventional geologic formation. Rather, it is a hydrogeologic or engineering unit equivalent in character to an aquifer or petroleum reservoir.

The relationships of the geologic formations that comprise the basal sandstone unit in four of the Ohio Valley states and in three other adjacent states are shown in Figure 1. In Figure 1, the basal sandstone includes the Mt. Simon Sandstone and sandstones in the lower Eau Claire Formation in Illinois, Indiana, Kentucky and Ohio.

The Mt. Simon Sandstone consists principally of fine- to coarse-grained sandstone. It is commonly poorly sorted and contains conglomeritic zones. Cross bedding is often visible in cores. It ranges in color from clear in quartzose portions to pink in the arkosic intervals. It may be only slightly cemented and friable or silica cemented and very hard. Although the formation is primarily sandstone, shale beds are often present, particularly near the top or the base. These beds are from a few inches to more than 50 feet thick. Generally, the Mt. Simon Sandstone rests unconformably on Precambrian age igneous or metamorphic rocks, but some geologists have recognized a so-called "granite wash" unit below the Mt. Simon; and, it has been interpreted that the Mt. Simon lies on older Cambrian or Precambrian age sandstones in some localities.

For the purpose of this report, all sandstones that rest upon the Precambrian basement are included with the basal sandstone. Its upward extent is determined by the point at which it becomes overlain by more than about 100 feet of rocks that are dominantly (>50%) siltstone, shale, or carbonate, as determined by examination of cores, cuttings, and geophysical logs. Formations comprising the basal sandstone in western Ohio are the same as in eastern Indiana, but toward central Ohio a sandstone facies of the Rome Formation in combination with the Mt. Simon Formation forms the basal sandstone. In Pennsylvania, the basal sandstone is known as the Gatesburg Formation. In New York, the Potsdam and lower Galway (or Theresa) Formations comprise the basal sandstone as the Mt. Simon in this study, but other terminology has been used previously.

MAP PRESENTATIONS

Well Locations

The locations of wells penetrating the basal sandstone in the Ohio Valley region and used in this study are shown in Map 1, and data for these wells are given in Tables 1-7. Information in the tables includes: the well operator and well name; year completed; location; reference elevation (at or near ground surface); total depth; well status; available logs; availability of water and core analyses; depth, thickness, and characteristics of the confining unit and basal sandstone; and depth of the Precambrian basement. The wells in each state are numbered consecutively and the well number appears in Map 1. Locations of the cross sections are also shown.

In addition to the locations, the purpose for which each well was constructed is shown by symbol. From this information, it is possible to infer the extent of potential conflicts between wastewater injection and other uses, including oil and gas production, natural gas storage, and water supply.

One of the outstanding characteristics of the basal sandstone for waste disposal is the relatively little use it receives for other purposes in the Ohio River Basin region. In northern Illinois, the basal sandstone is used for water supply. This is reflected by the numerous water supply wells shown in that area. Storage of natural gas is also practiced in northern and central Illinois and northwestern Indiana. More such storage areas will be developed, but they are limited to anticlinal structures and no appreciable quantity of the total subsurface volume will be consigned to this use. Exploration for oil and gas in the basal sandstone has proven to be disappointing and only six exploratory wells in the entire Ohio Valley area are known to have encountered significant amounts of hydrocarbons. Three wells in Illinois and two in Kentucky have encountered gas. One oil discovery has been drilled in Kentucky. These six wells are shown in Map 1.

-4-

Elevation of the Top of

the Precambrian Basement Surface

Map 2 depicts the relief on the Precambrian basement surface. The reference datum is sea level. The contour interval is generally 1,000 feet. Some 500 foot contours appear in Illinois.

The map is used to estimate the total thickness of sedimentary rocks and unconsolidated deposits that are present at a location. This is done by determining the approximate ground surface elevation at the location, then adding this elevation to the subsea elevation of the Precambrian basement surface. In this case, the basal sandstone is the objective for injection purposes; therefore, this computation will yield the approximate total well depth if the entire formation is penetrated. Because of the large contour interval used, the estimate is obviously not a precise one, but it is sufficiently accurate for feasibility studies. It should be noted that the map is not equally reliable everywhere, because its reliability depends on the density of data. The relative reliability at any particular location, however, is easily determined by combined reference to the well location map and the data tables.

The map shows that the depth to the Precambrian surface is well within a reasonable drilling range of about 5,000 to 6,000 feet for a disposal well in much of Illinois, Indiana, Ohio, and Kentucky, but only in northern New York, Pennsylvania, and extreme western West Virginia is this true. In the central Illinois basin portion of Illinois and Indiana, the Precambrian surface is at depths of 12,000 to 15,000 feet and in the central Appalachian basin of Pennsylvania and West Virginia, depths rapidly reach beyond 12,000 feet and may ultimately reach more than 30,000 feet.

Faults that are known and are judged to be significant are also shown. Only representative faults are shown in southern Illinois, extreme southwestern Indiana, and central Kentucky, because there are too many to depict at the map scale used. A highly faulted mineralized area is shown in southeastern Illinois and western Kentucky, where geologic conditions are particularly complex. Faults affect the potential of a site for injection by complicating geologic conditions, by acting as possible flow barriers or conduits, and by creating planes of weakness along which tectonic stresses may be relieved, thus causing earthquakes. The latter topic will be discussed in greater detail later in this report.

-5-

Not all faults are of equal significance in evaluating the quality of a site and each case must be evaluated individually. However, the generalization can be made that the more extensive the faulting at a site, the less desirable the site is for an injection well because of the difficulty of predicting the fate of the injected waste.

Elevation of the Top of

the Basal Sandstone

Elevation of the top of the basal sandstone is shown in Map 3. The reference datum is sea level. The contour interval is 1,000 feet.

When the ground surface elevation is known, the map can be used to estimate the depth to the top of the basal sandstone and thus the potential disposal interval. Depth to the basal sandstone ranges from less than 1,000 feet in northern Illinois to more than 13,000 feet in the center of the Illinois basin. Depth to the basal sandstone rapidly increases to beyond 12,000 feet in the Appalachian basin of Pennsylvania and West Virginia. Generally, potential of the basal sandstone for injection becomes very limited at a depth greater than about 5,000 to 6,000 feet because of well construction costs. Its potential is also limited where it is very near the surface, because it may contain fresh water and is less well confined than where it is more deeply buried.

Several areas are shown where the basal sandstone is absent. This probably occurred because such areas were topographically high, perhaps islands, during the deposition of the sandstone. As it is necessary for a well to strike these areas before they are known to exist, only a few of these have been identified. It is, therefore, reasonable to expect that the basal sandstone is absent from more portions of the Ohio Valley area than are indicated in Map 3.

-7---

Thickness of the Basal

Sandstone

The thickness of the basal sandstone and throughout the Ohio River Valley is shown (in May 4) by contours of equal sandstone thickness (Map 4) (isopach map). The contour interval ranges from 50 to 500 feet, depending on the total sandstone thickness in the area. The basal sandstone reaches a maximum thickness of more than 2,500 feet in northeastern Illinois, but it thins in all directions from there. Thinning results both from lack of deposition of sediment and from lateral change from sandstone to shale or dolomite. The basal sandstone is completely absent north of the zero isopach line in extreme northern New York. It is also known to be absent in several local areas as previously mentioned and as is shown in Map 4.

The thickness of the basal sandstone is an important factor in determining its adequacy as an injection interval. If other characteristics are equal, the thicker it is, the greater the volume of wastewater it can accept without the development of excess pressure. Also, the rate of lateral spread of waste away from the injection well is inversely related to the thickness of the reservoir.

Porosity and Permeability of

the Basal Sandstone

Porosity is the volume of pores in a rock divided by the total rock volume. It is expressed either as a ratio or a percent. Porosities of over 35 percent are found in newly deposited sands, while porosities of less than 5 percent occur in lithified, well-cemented sandstones. Dense limestones and dolomites may have almost no porosity. Porosity is not a measure of the fluid transporting capability of a rock, but a sandstone with high porosity is a better reservoir than one with low porosity, because the greater the amount of pore space the smaller the radius to which the injected waste will spread.

Porosity can be determined by laboratory analysis of core samples obtained during drilling and by examination of borehole geophysical logs run in drilled wells. Where core analysis data were available, as indicated in Tables 1 to 7, they were used, checked, and supplemented by log examination. In wells where core samples were not taken, log examination was performed and, if the logs were believed to be reliable, average porosity values were determined. Map 5 was constructed by contouring the average porosities (in percent) obtained from laboratory and log data. Average porosities ranged from slightly over 20 percent to less than 5 percent. Whereas a porosity of over 20 percent is very good for a lithified sandstone, a porosity of less than 5 percent is very poor. Although Map 5 should not be relied upon too heavily, it does show trends in porosity useful for judging the probable quality of the basal sandstone as a disposal reservoir. These trends will be interpreted in combination with other reservoir properties.

It should be mentioned that average porosity values were used for some Illinois wells which only partially penetrate the basal sandstone. Before using figures from these, a comparison was made between average values for the upper part of the basal sandstone and vaules for the entire unit in fully penetrating, nearby wells. It was found, in the cases examined, that sampling of the upper several hundred feet would yield values representative of the entire unit. An additional important consideration is that, where the basal sandstone is more than several hundred feet thick, significant zones with good porosity may occur even where the average porosity of the total unit is fair or poor.

-9_

Permeability is the capacity of a porous medium to transmit a fluid. The unit of permeability used in evaluating deep aquifers is the darcy. Because most deep aquifers have permeabilities of much less than a darcy, the millidarcy (0.001 darcy) is most frequently reported. Permeability can be evaluated by core analysis and formation testing. Log analysis can sometimes be used also, but was not attempted in this study because of its relative unreliability. Most of the available permeability values were from gas storage fields in Illinois. A few values were also obtained from wastewater disposal wells in Illinois and other states, but too few were available for preparation of a contour map. Therefore, the individual values are listed in the tables, but not shown on a map. For wastewater injection, permeabilities of more than 100 millidarcys are very good, those of 10 to 100 millidarcys fair to good, those of less than 10 millidarcys indicate a relatively poor reservoir, and of less than 0.1 millidarcy, an aquiclude. A thick sandstone, like a porous one, can have poor average permeability, but may still be an adequate reservoir, if it has a few good permeability zones.

Most of the available permeability values are for the upper 100 to 300 feet of the basal sandstone. As with porosity, it is believed that an average for the upper part of the basal sandstone is representative of the entire unit, but this assumption may not always be valid. Examination of Table 1 shows that the average permeabilities of the basal sandstone in Illinois are quite variable, ranging from a low of 15 millidarcys to a high of 185 millidarcys, values which would be categorized as fair to good. As indicated in the table, some of these values are average for an entire gas storage field, which causes them to be unusually reliable.

The basal sandstone in two waste disposal wells in northwestern Indiana has exceptional permeability (300 to 420 millidarcys), but the basal sandstone in a third disposal will in the same area has only fair permeability (45 millidarcys).

Values were obtained for only three other wells in Indiana and these wells are located along the eastern border. The values are 48, 13, and 11 millidarcys (Table 2).

Permeability values were obtained for the basal sandstone in five Ohio disposal wells that penetrate the basal sandstone and for one oil and gas exploration well (Table 5). The high value was 80 millidarcys in one of the Vistron Company wells and the low value was 11.6 millidarcys in the Calhio Chemical Company well.

-10-

Only three additional permeability values were obtained for the basal sandstone in the Ohio Valley area. These were 230 millidarcys for the Hammermill Paper Company well in Pennsylvania (Table 6) and 113 and 7 millidarcys respectively for the Bethlehem Steel Company and Hooker Chemical Company wells in New York (Table 4).

In summary, average permeabilities for 37 wells or gas storage fields were obtained. These ranged from a high of 420 millidarcys to a low of 7. No obvious pattern of permeability distribution could be deduced from this small number of values.

Pore Volume and Flow Capacity

of the Basal Sandstone

1.5.5 . 1

The average porosity multiplied by the total thickness of sandstone yields the pore volume. This number provides a means of readily comparing the storage capacity of a formation at various locations. In Map 6, an isoval map, equal values of sandstone pore volume have been contoured. No criteria have been developed, however, for classification of the quality of a reservoir based on its pore volume. Such a classification may not be possible, because a thick sandstone with a low porosity can have the same pore volume as a thinner sandstone with a high pore volume yet the reservoirs will not be of equal quality for injection purposes. Nevertheless, a reservoir with a high pore volume will generally be of better quality than a reservoir with a low pore volume.

The pattern in Map 6 shows that the greatest reservoir volumes are present in northeastern Illinois, where the basal sandstone is thickest (Map 4) and where it also has the highest average porosity (Map 5). In areas of westcentral Ohio and everywhere east of central Ohio, pore volumes of less than 10 prevail. These have only one-thirtieth the volume available to a well in northeastern Illinois. As discussed above, these values do not provide an absolute measure of reservoir quality, but they do indicate that the basal sandstone of northern Illinois and Indiana and western Ohio is much more promising than it is elsewhere in the Ohio Valley area. The values shown in Map 6 can be directly entered into equations that require a porosity-foot term, e.g., equations for distance of waste travel and pressure buildup during injection.

Perhaps the most significant measure of the quality of the basal sandstone as a disposal reservoir is its flow capacity¹, which is its average permeability multiplied by the effective thickness of sandstone. Although flow capacity values are not given, they can easily be obtained by multiplying the average permeabilities in the data tables by the total thickness of basal sandstone and the sandstone percent, which are also in the tables. Although the

¹Flow capacity (permeability x thickness) is similar to, but not exactly the same as transmissivity (hydraulic conductivity x thickness). Flow capacity is a property of the aquifer only, whereas transmissivity considers the density and viscosity of the aquifer water as well.

average permeability of the basal sandstone in northern Illinois and Indiana is clearly not always higher than in other areas, the thickness of the unit is so much greater there than elsewhere that its flow capacity will be many times greater than elsewhere in the region. The highest value for the region can be calculated to be about 92 darcy-feet for the U.S. Steel well in northern Indiana, and the lowest, 0.65 darcy-feet for the Hooker Chemical Company well in New York.

Salinity of Water in

the Basal Sandstone

Evaluation of injection feasibility includes consideration of the 1) salinity, 2) density, 3) chemistry of the formation water. This may also be a factor in designing a waste pretreatment plan and in predicting the extent and direction of travel of injected wastes.

Tables 8-12 contain values of total dissolved solids content and density that were collected or determined during the study. Water for analysis was collected by well operators during well construction by means of drill stem testing or swabbing (a form of pumping). The values from water analyses were obtained through laboratory determinations of both total dissolved solids and density. The results from logs are based almost entirely on resistivities from induction logs. No other electric log was found to be usable in the Ohio Valley area. Accurate conversion from resistivity to dissolved solids requires a knowledge of the ionic composition of a water. During this study, it was assumed that the waters were sodium chloride solutions, an assumption that was considered sufficiently accurate in view of other inherent limitations in well log analysis. Data obtained by water analysis are not always reliable either, given the difficulty of obtaining representative and uncontaiminated samples. Whenever possible, comparisons made of the results of the two methods were consistent enough to give confidence in the general reliability of the data in Tables 8-12. However, it should be realized that any particular value may be subject to considerable error. Confidence in a particular value is greatest where several consistent values are given for the same well, where several wells that are in the same vicinity yielded approximately the same values, and where both laboratory and log analyses are given. Confidence is least where log analysis alone was possible, where values in a particular well differ considerably, and where only one well is present or values in nearby wells differ considerably.

Map 7 is a contour map of equal total dissolved solids content (isocon map) for water in the upper 100 feet of the basal sandstone. This was used for comparison because it normally has the lowest salinity of water at any level in the formation, thus making it controlling for injection purposes, and because more analyses and logs were available for this interval than for any other.

-14+

Map 7 shows that in the Ohio Valley states the basal sandstone contains very saline water except in northern Illinois and possibly near fault zones in southern Kentucky. It was known that water in the basal sandstone is generally saline, but the areal variation in salinity had previously been determined only in Illinois, and even in that state, the data given are now more extensive than previously reported. Within the region, values range from fresh potable water in northern Illinois to water with a total dissolved solids content of 300,000 mg/l which is about 30 percent. No state or Federal agency has suggested that waters with dissolved solids contents greater than 10,000 mg/l need be protected for water supply purposes; injection is therefore not precluded by that factor except in the limited areas mentioned.

During injection, if the injected water is less dense than the formation water, the injected water will tend to flow updip as a wedge. If the opposite is true, flow will be downdip. While this is not significant in most cases, it would have to be taken into account where the extent of spread of an injected waste is considered important. In such a case, adjustment of waste density to that of the formation fluid might be contemplated, or, as has been suggested, the waste might be made more dense than the formation fluid and injected into a synclinal area where it would tend to be trapped.

In addition to lateral variation in formation water salinity, there is considerable vertical variation, as can be seen by examination of the data in Tables 8-12. In general, salinities increase with increasing depth, but reversals in this pattern can be found. The apparent reversals that are shown are all the result of log interpretation; none that are shown are confirmed by water analysis. The fact that water of varying salinity occurs within the basal sandstone is evidence that vertical flow is restricted even within that unit. This is favorable for disposal because it suggests that wastewater flow may be restricted in the same way.

Thickness of the Confining Unit

The characteristics of the confining units are also important to the suitability of a potential disposal interval. It is essential that injected waste be prevented from escaping from the basal sandstone and entering fresh-water aquifers or strata containing minerals or stored gas. Because the basal sandstone is underlain by Precambrian age crystalline rock, downward migration is not possible. In various portions of the Ohio Valley area, the basal sandstone is immediately overlain by shale, by siltstone, or by carbonates (dolomite or limestone). Map 8 shows, by contours of equal thickness, the amount of shale and siltstone that directly overlies the basal sandstone.

Where a sufficient thickness of unfractured shale or siltstone is present, it is probable that injected waste would be completely confined to the basal sandstone. While it is not possible to state exactly what constitutes a sufficient thickness of shale or siltstone without performing an engineering analysis of the particular injection program, it can be calculated that, under typical circumstances, approximately 50 years would be required for any waste to migrate through a 100 foot shale or siltstone confining bed. In most cases an injection well will have been shut down and all driving pressure will have been dissipated before 50 years have passed, so that the waste would never have reached the top of the confining bed. This calculation indicates that 100 feet of shale or siltstone should provide adequate confinement in most cases. A lesser amount may be sufficient in some instances and a greater amount required in others. It should be noted that, by virtue of its position at the base of the stratigraphic sequence, several thousand feet of beds containing no usable resources will often overlie the basal sandstone and that absolute confinement to the immediate basal sandstone may not be necessary.

Where dolomite or limestone immediately overlie the basal sandstone, no confining unit is shown to be present for two reasons. First, where carbonates are present over the basal sandstone in the Ohio Valley, there is commonly a very substantial thickness, perhaps interbedded with minor sandstone and shale. This makes definition of the boundaries of the confining unit difficult. Second, it it not possible to assume that all limestones or dolomites will act as aquicludes. In many cases they will, but in others they are porous and permeable, thus acting as aquifers. Therefore, when limestones or dolomites immediately overlie the basal sandstone, their confining properties must be locally determined by examination of geologic and engineering information obtained during drilling and testing of any proposed disposal well. This should also be done when shales or siltstones are present, but considerable confidence in these lithologies has already been established because a number of gas storage fields have been developed and operated in Illinois and Indiana, demonstrating the capability of the shale and siltstone units overlying the basal sandstone to provide confinement for injected fluids.

Ratio of Lithologies in the Confining Unit

As previously discussed, a characteristic which may influence the effectiveness of a waste confining unit is its lithology. It has already been established that only within the limits shown in Map 8 is a confining unit accepted as being present. It is within these limits that the basal sandstone is directly overlain by shale and siltstone. However, even within the area where a shale and siltstone unit is present, the lithology is variable. By definition, geologists consider a rock that contains more than 50 percent clay- and silt-sized clastic grains to be shale and siltstone. A shale or siltstone may be composed entirely of such grains or may consist of only fifty-one percent. Without specific testing, a confining unit would be thought to be of better quality the greater the percent of shale and siltstone. Therefore, an estimate was made of the relative percents of shale and siltstone, sandstone, and carbonate that compose the confining unit.

Map 9 depicts the results of these estimates by use of a numerical rating scheme. In the areas assigned the number 1, the confining unit is greater than 79 percent shale and siltstone. In the areas designated 2 and 3, the confining unit is greater than 66 percent shale and siltstone. In area 2 the remaining 34 percent is predominantly sand and in area 3, predominantly carbonate. The same rationale applies to areas 4 and 5. Outside of the numbered areas, the rocks overlying the basal sandstone are predominantly carbonate or sandstone. Although these assigned numbers do not constitute a quantitative ranking, the confining unit in area 1 would be thought to be qualitatively superior to that unit in areas 2 and 3, and so forth. Furthermore, gradation into sandstone would be thought to be more detrimental to the quality of the confining unit than would gradation into carbonate.

It is apparent that the confining units in Northern Illinois and Indiana grade into sandstone and in southern Illinois and Indiana into carbonate. At the eastern boundary, in Ohio, there is a very rapid change from shale and siltstone to carbonate.

Zones of Seismic Risk and Earthquake Generation

The past history of earthquake activity in an area must be considered because an earthquake might potentially damage injection well facilities or alter geohydrologic conditions. In addition, it is now believed possible to stimulate seismic activity by fluid injection; thus, the susceptibility of an area to such induced seismic events should be examined.

Within and near the Ohio Valley region, two localities stand out as having been affected by significant earthquakes during recorded time. Three of the most intense earthquakes recorded in this country were centered near New Madrid, Missouri, and occurred in December 1811, and January and February 1812. All three of these earthquakes were of greater intensity than any that have occurred in California, the 1906 San Francisco earthquake included. A total area of at least 2,000,000 square miles was shaken and significant topographic changes occurred, including the formation of Reelfoot Lake, Tennessee. Because the epicenter area was largely a wilderness, few lives were lost. The area of southeast Missouri and portions of adjoining states are still active and more than one hundred earthquakes have been reported there since 1812.

An earthquake occurred November 9, 1968, near Broughton, Hamilton County, Illinois, about 100 miles northeast of the epicenter of the New Madrid earthquakes. The intensity was about 7 (modified Mercalli scale) as compared to an estimated intensity of 12 for the New Madrid earthquakes. These values are equivalent to 5.5 and 8.1 on the Richter scale. Reports from the oil and gas industry (Heigold, 1968) reveal that subsurface hydrologic changes and minor damage to well facilities occurred.

A second area in the Ohio Valley where relatively intense earthquakes have been recorded is in western New York. Here earthquakes with intensities of 8 were recorded in 1929 and 1944. These two earthquakes were centered near Attica and Massena, New York, respectively, and related changes in groundwater conditions reportedly occurred in 1929. A less intense 1966 earthquake was also centered near Attica, New York.

Data from the most recently published seismic risk map of the United States are reproduced in Map 10. These data agree with the above discussion and indicate a possibility of major earthquake damage in the extreme southeast and northeast portions of the Ohio Valley and of moderate to minor damage elsewhere in the area.

-19-

The first observation of an apparent relationship between fluid injection and seismic activity was made at the Rocky Mountain Arsenal injection well near Denver, Colorado in the early 1960's. Since that time, similar relationships have been documented at Rangely, Colorado, and Dale, New York. The former related to water injection for secondary recovery of oil and the latter to disposal of brine from solution mining of salt.

It has been erroneously stated by many that these seismic events have been stimulated by "lubrication" of a fault zone by injected fluids. What has happened, if injection has been involved, is that the water pressure on a fault plane has been increased, thus decreasing the friction on that plane and allowing movement and consequent release of stored seismic energy.

Based on this interpretation of the mechanism of earthquake triggering by fluid injection, the following conditions would necessarily be present for the earthquake to occur:

- A fault with forces acting to cause movement of the blocks on either side of the fault plane, but which are being successfully resisted by frictional forces.
- An injection well constructed close enough, vertically and horizonally, to the fault so that the fluid pressure changes caused by injection will be transmitted to the fault plane.
- 3. Injection at a sufficiently great rate and for a sufficiently long time to increase fluid pressure on the fault plane to the point that frictional forces resisting movement become less than the forces tending to cause movement. At this time movement will occur and stored seismic energy will be released. That is, an earthquake will occur.

There is no known precedent for regulatory policy and requirements that will take seismic risk and earthquake generation into account. Tentative suggestions are:

- If possible, sites should be avoided where risk of major earthquake damage is possible, as suggested by Map 10;
- Where a well is constructed in a zone of major or moderate seismic risk, special attention should be given to standby facilities;
- 3. In areas of major or moderate seismic risk, wells should not be constructed so that they pass through fault planes because of the danger of shifting along the fault plane during an earthquake and consequent possible damage to well casing;

-20-

4. When wells are constructed in the vicinity of a major fault or faults that could be a source of earthquake occurrence, injection pressures should be kept to a minimum and a seismic monitoring network should be considered to provide early warning by detection of initial minor movements.

DISCUSSION OF CROSS SECTIONS

Eight cross sections were prepared. The locations of the lines of cross section are given in Map 1. The purposes of the cross sections are to show lateral variations in the thickness and lithology of the basal sandstone and the immediately overlying strata and characteristic responses of these units in the various types of geophysical logs that are used. For convenience in showing these relations, the sections are drawn with the top of the Mt. Simon Sandstone as a horizontal datum. This is conventional practice with such illustrations, but it is misleading to those not familiar with construction of cross sections. Actually, the top of the Mt. Simon occurs at widely varying depths from well to well, as can be determined by observing the depth markings in the log of each well or by consulting the appropriate table among Tables 1-7. Each of the cross sections is briefly discussed below.

Illinois

Two cross sections were prepared for Illinois. In the east-west cross section across northern Illinois (Cross Section 1), the basal sandstone ranges in thickness from about 900 feet in Well No. 17 on the west side to about 2300 feet on the east side in Well No. 23. The 2300 feet of basal sandstone represents nearly the maximum thickness at any location in the Ohio Valley.

In this cross section, the basal sandstone is almost entirely sandstone, with a few scattered shale beds, mostly thin ones. The log of Well No. 21 clearly shows the difference between the Mt. Simon Sandstone, and the basal sandstone in northern Illinois. The Mt. Simon Sandstone includes the sandstones below 3110 feet, and the basal sandstone includes the sandstones and shales below 2900 feet. The confining unit is also very well displayed in the log of this well and, as the legend indicates, is principally shale and siltstone, with a few beds of sandstone and dolomite.

Cross Section 2 ranges from northeastern to southeastern Illinois. The northermost well, Well No. 3, was drilled for use as an injection well and would probably have been satisfactory for that purpose, except that the water in the upper part of the sandstone is fresh enough to be used for water supply. The sandstone in that well is thick, porous, and relatively free of shale. The basal sandstone thins progressively as it is traced southward from Well 35 to Well 22. This thinning is partly a result of the passage of sandstone to carbonate. It can be seen that carbonate is present in and above the confining unit in these wells.

Indiana

Cross Section 3 proceeds from west to east across northern Indiana from Well No. 9 to Well No. 60 in Mercer County, Ohio. The basal sandstone can be seen to grade upward into silstone and sandy dolomitic silstone in the logs of several of the wells. The contact between the basal sandstone and the confining unit is not clearly defined in these wells and was established by use of all available evidence as to the permeability of the beds. The lithology of the confining unit is also variable. In some wells, it is nearly all shale and silstone whereas in others it becomes dolomitic. As the cross section proceeds from the northern Illinois-Indiana area, where the basal sandstone reaches its maximum thickness, toward the east, it becomes progressively thinner and therefore has less reservoir capacity. Wells No. 9 and 15 are both being used successfully for injection into the basal sandstone.

The basal sandstone shows no major variation in thickness or lithologic character in the four wells in Cross Section 4, which progresses from north-central Indiana to northeast Kentucky. The confining unit also retains about the same thickness in these wells. It does exhibit some variation in dolomite and sandstone content, but this is probably not sufficient to be significant in determining its adequacy to provide waste confinement. The cross section terminates on the south with the E.I. DuPont disposal well in Jefferson County, Kentucky. It was originally intended to inject into the basal sandstone in this well, but it was found to be inadequate for accepting the waste volume produced by the plant; thus, a shallower zone was used.

The basal sandstone shows little variation in thickness or lithology as it is traced from northern Indiana to southern Indiana in Cross Section 5. The Cross Section proceeds along the eastern border of Indiana and terminates in western Kentucky with the DuPont well, which is also the southermost well in Cross Section 4. The basal sandstone is almost entirely sandstone and ranges from about 350 to 500 feet in thickness in the Indiana wells. It is about 800 feet thick in the DuPont well. The confining unit has, however, changed in character as it has been traced eastward and, while it is still shale and silstone, it has become dolomitic, as is shown in the logs of the Indiana wells in this cross section.

-23-

Cross Section 6 begins on the west with Well No. 60, the extreme eastern well in Cross Section 3. From there it proceeds eastward across northern Ohio to Well No. 8, in extreme northeastern Ohio. Throughout this cross section, the basal sandstone and the Mt. Simon Sandstone are the same. The only variation in the basal sandstone in this figure is the progressive thinning from about 350 feet in the west to just over 100 in the east. However, the confining unit can be seen to pass by facies change from shale and silstone in the west to dolomite in the east. As previously discussed, dolomite may provide adequate confinement, but this must be verified locally.

Pennsylvania

Conditions shown by Cross Section 7, which is comprised by wells in northwest Pennsylvania, are little different from those in northeastern Ohio. The basal sandstone is thin and is overlain by dolomite and sandy dolomite. Well No. 3 is the now-abandoned disposal well of the Hammermill Paper Company. The basal sandstone (Mt. Simon Sandstone) was used in this well, in addition to other intervals, for waste injection.

West Virginia

Cross Section 8 proceeds northeastward through extreme western West Virginia and into southeastern Ohio. The basal sandstone in Cross Section 8 is thin, as it is in Cross Sections 6 and 7, but it becomes an even poorer reservoir because it is interbedded sandstone and carbonate with resultant probably low porosity and permeability. The basal sandstone is also overlain by carbonate strata in this cross section as in the previous two. It is noteworthy that the depths shown in the well logs suggest the unlikelyhood that the basal sandstone would be used for injection in this immediate area.

SUMMARY OF THE ADEQUACY OF THE

BASAL SANDSTONE FOR WASTEWATER INJECTION

The data tables, maps, and cross sections, and the discussion of them provide a basis for the evaluation of the basal sandstone as an injection interval in the Ohio Valley region.

The basal sandstone is present throughout the Ohio Valley region, with the exception of areas where it was never deposited, some of which are shown in Map 3. It lies at the base of the stratigraphic sequence, on the Precambrian basement surface. This vertical location, in combination with the lack of usable resources found in the basal sandstone, cause it to be favorable for wastewater injection. Only in northern Illinois, where it contains fresh water, and in the few localities where gas is stored or hydrocarbons have been found is the basal sandstone precluded for wastewater injection because of its value for other uses. Such locations are indicated by the well symbols in Map 1.

Another restriction on the use of the basal sandstone for waste injection is indicated in Maps 2 and 3, which show that in southern Illinois and Indiana, in most of Pennsylvania and West Virginia, and in southern New York, the unit is too deep to be practical for wastewater injection. These maps also show the presence of zones of major faulting in southern Illinois and Indiana and across Kentucky, which considerably restrict the potential for injection in those areas. Occasional major faults that require consideration are also shown in other parts of the region.

The reservoir properties of thickness, porosity, and pore volume are shown in Maps 4, 5, and 6, and data on permeability are provided in Tables 1-7. Generally, the maps and tables show that the basal sandstone is most favorable for wastewater injection in northeast Illinois, and northwest Indiana, and that it becomes less favorable eastward and southward from those areas.

Experience supports this conclusion, because wastewater injection and gas storage have been extensively and successfully practiced in northeast Illinois and northwest Indiana, while attempts in other areas have met with mixed results. This by no means eliminates from consideration locations other than northern Illinois and Indiana, but it does suggest caution in projecting the potential of wells throughout the rest of the region. Map 7 shows that, except for the areas north

-25-

of the 10,000 mg/l isocon line in northern Illinois and perhaps near fault zones in other locations, there need be no concern with contamination of usable water in the basal sandstone.

Maps 8 and 9 show that the basal sandstone is directly overlain by several hundred feet of shale and siltstone with varying percentages of sandstone and carbonate throughout most of Illinois, Indiana, and in western Ohio. Although local confirmation is always necessary, for preliminary purposes, the basal sandstone would be considered suitably confined in these areas. Elsewhere, dolomite or limestone overlie the basal sandstone and the degree of confinement, though very possibly adequate, is less certain before drilling and testing has been accomplished.

Areas of relative seismic risk are shown in Map 10. Evaluation of the possible effect of earthquakes on wastewater injection operations and the relationship between wastewater injection and earthquake stimulation is less certain than reservoir evaluation because of limited experience in this technology. However, the generalization can be made that extra precautions should be taken in system construction and operation in areas of high seismic risk and that care should be exercised in injection operations that are sited near faults which could be the source of earthquake generation.

The cross sections provide a more graphic portrayal of the data presented in Maps 4, 8, and 9 and show the lithic variations occurring in the basal sandstone. They supplement the maps and data tables. In addition, the cross sections show the response of the units under study in the geophysical borehole logs typically used in the region.

REFERENCES

- Algermissen, S.T., 1969, Seismic risk studies in the United States; Presented at Fourth World Conference on Earthquake Engineering, January 14, 1969, Santiago, Chile. Reprints available from U.S. Department of Commerce, Environmental Science Services Administration, Washington, D.C.
- Becker, L.E., Hreha, A.J., and Dawson, T.A., 1976, Pre-Knox (Cambrian) Stratigraphy in Indiana: Indiana Geological Survey Bulletin --, in preparation
- Cleary, E.J., and Warner, D.L., 1969, Perspective on the regulation of underground injection of wastewaters: Ohio River Valley Water Sanitation Commission, Cincinnati, Ohio
- Heigold, P.C., 1968, Notes on the earthquake of November 9, 1968, in southern Illinois: Illinois Geological Survey Environmental Geology Note No. 24.
- ORSANCO, 1973, Underground injection of wastewaters in the Ohio Valley Region: Ohio River Valley Water Sanitation Commission, Cincinnati, Ohio

ABBREVIATIONS USED IN WELL DATA TABLES

КВ	kelly bushing
DF	derrick floor
GL	ground level
TM	topographic map
ETM	estimated from topographic map
THL	
O/G ABD	drilled for oil or gas - abandoned
OIL	producing oil
GAS	producing gas
GAS STG	drilled and utilized for gas storage or storage field
GAS STG ABD	abandoned gas storage well observation
SWD	salt water disposal well
DISP	industrial disposal well
DISP ABD	abandoned industrial disposal well
WTR	water supply well
WTR ABD	abandoned water supply well
NI	not identified
ND	not determined
NP	not penetrated
i	incomplete section
(?)	information unknown or questionable
MD	millidarcys

.
The following organizations and individuals have contributed materially to the preparation of the report <u>Evaluation of the Ohio</u> Valley Region Basal Sandstone as a Wastewater Injection Interval.

Illinois State Geological Survey

Jack A. Simon, Chief Robert E. Bergstrom, Principal Geologist, Geological Group Thomas C. Buschbach, Geologist, Stratigraphy and Areal Geology Section Donald C. Bond, Head, Oil and Gas Section Timothy Kemmis, Research Assistant

Indiana Geological Survey

John B.Patton, State Geologist Leroy E. Becker, Head, Petroleum Section Andrew J. Hreha, Geologist, Petroleum Section Thomas A. Dawson, Head, Petroleum Geology Section to April 1974 (deceased)

Kentucky Geological Survey

Wallace W. Hagan, State Geologist Edward N. Wilson, Head, Oil and Gas Section

New York Geological Survey

James F. Davis, State Geologist W. Lynn Kreidler, Senior Scientist (deceased)

Ohio Division of Geological Survey

Horace R. Collins, State Geologist Adriaan Janssens, Head, Subsurface Geology Section

Pennsylvania Bureau of Topographic and Geologic Survey

Arthur Socolow, State Geologist William S. Lytle, Senior Research Geologist Walter R. Wagner, Geologist, Oil and Gas Geology Division

West Virginia Geological and Economic Survey

Robert B. Erwin, State Geologist Larry D. Woodfork, Assistant State Geologist Douglas G. Patchen, Head, Oil and Gas Section ACKNOWLEDGMENTS - cont'd

ORSANCO

Russell A. Brant, Geologist and Principal Investigator

University of Missouri -- Rolla Department of Geological Engineering

Don L. Warner, Professor of Geological Engineering and Consultant to ORSANCO -- Project Technical Coordinator

A. Herbert Harvey, Professor of Petroleum Engineering Ernest Bartoli, Graduate Assistant Dennis Gleason, Graduate Assistant John Reiss, Jr., Graduate Assistant

U. S. Geological Survey, Water Resources Division

Francis A. Kohout, Project Officer Leonard A. Wood, Project Officer

SYSTEM	SERIES	OZ HO AN	MISSOURI ARK REGION WE, KURTZ, D ANDERSON 1972	NOF	ILLINOIS RTHEASTERN BUSCHBACH 1964	WISCONSIN WESTERN OSTROM 1966	MICHIGAN SOUTHWESTERN ELLS 1967	INDIAN NORTHWEST THIS REF
ORD.	CANA_ DIAN				GUNTER	ONEOTA	ONEOTA	KNOX
				E	MINENCE	JORDON	EMINENCE	
			POTOSI		POTOSI	ST. LAWRENCE	POTOSI	
		SNI	DERBY	F	RANCONIA	MAZO- LONE MANIE ROCK	FRANCONTA	FRANCON
		ELV	DAVIE		IRONTON		IRONTON	IRONTO
		_	DWALZ	G	LESVILLE	WONEWOC	GALESVILLE	GALESVIL
		8	UPPER ONNETERRE		PROVISO			
	2	R		NU CLAIRE	LOMBARD	EAU CLAIRE	EAU CLAIRE	EAU CLAI
N K	× -		BASAL	3	ELMHURST			
C A N B R	V S T. C R 0		LAMOTTE	MO	UNT SIMON	MOUNT SIMON	MOUNT SIMON	MOUNT SI
	ALBERTAN	/			ABSENT	ABSENT	ABSENT	ABSENT
		PR	ECAMBRIAN	PRE	CAMBRIAN	PRECAMBRIAN	PRECAMBRIAN	PRECAMBR

FIGURE 1. CORRELATION CHART OF CAMBRIAN ROCKS IN INDIANA AND ADJACENT "PRE-KNOX (CAMBRIAN) STRATIGRAPHY IN INDIANA," BY LEROY E. 8

N	INDIANA WEST CENTRAL THIS REPORT	INDIANA SOUTHERN THIS REPORT	OHIO WESTERN JANSSEN 1973	KENTUCKY N. OF ROUGH CREEK FAULT WEBB (IN PREPARATION)
/	KN0X	KNOX	KNOX	ROSE RUN COPPER RIDGE
_	DAVIS	DAVIS	ROME	MAYNARD- VILLE
	EAU CLAIRE	EAU CLAIRE	ROME SS FACIES	W NOLI- CHUCKY
٧	MOUNT SIMON	MOUNT SIMON	MOUNT SIMON	MOUNT SIMON
	ABSENT	ABSENT	ABSENT	BASAL
	PRECAMBRIAN	PRECAMBRIAN	PRECAMBRIAN	PRECAMBRIAN

ATES. FROM INDIANA GEOLOGICAL SURVEY BULLETIN (ER, ANDREW J. HREHA, AND T. A. DAWSON, IN PREPARATION.

1

0,000

4-

Ohio River Valley Water Sanitation Commission 1975

Prepared by the Department of Geological Engineering, University of Missouri-Rolla, with the ansistance of the Geological Surveys of Tillinols, Indiana, Kenhucky, New York, Chio, Perneytvania, and West Vieglaia

Contours of total dissolved solids concentrations in milligrams per liter as determined by water analyses and log interpretation. Contour interval variable.

1 .

- Foult

r

1

1

5

Area where basal canditione is known to be absent

MAP 10

The Ohio River basin and vicinity showing the degree of seismic risk as projected from earthquake history and geologic considerations.

from Algermissen. 1969

LEGEND

MAJOR DAMAGE FROM EARTHQUAKES MAY OCCUR

EARTHQUAKES MAY OCCUR

MINOR DAMAGE FROM EARTHQUAKES MAY OCCUR

CROSS SECTION 4 NORTH-SOUTH CROSS SECTION OF THE BASAL SANDSTOME AND ADJACENT STRATA IN CENTRAL INDIANA OHIO RIVER VALLEY WATER SANITATION COMMISSION-1975 PREPARED BY THE INDIANA SECUCIOICAL SUMPLEY

Granite Basement

CROSS SECTION 7

CROSS SECTION OF THE BASAL SANDSTONE AND ADJACENT STRATA IN PENNSYLVANIA OHIO RIVER VALLEY WATER SANITATION COMMISSION - 1975 PREPARED BY THE PENNSYLVANIA GEOLOGICAL SURVEY

				TP	BLE 1.	MELL	DATA -	Illin	ois		1			
SEC. T R 35. T R 815 TM 2998 0/G ABD 2 2 TXC.::F: Subtle Boone 28 431 25 815 TM 2998 0/G ABD 2 2 TXC.::F: Subtle Boone 28 431 25 815 TM 2998 0/G ABD 2 2 TXC.::F: Subtle 1967 Dubben 35 418 25 815 TM 2998 0/G ABD 2 2 2 X.S.:: F: Ouppy 1967 Bamiltern 166 741 RF 2698 0/G ABD 2	OPERI	ATCP & WELL NAME	YEAR COMP.	COUNTY		LOCA	TION	цц	EFERENCE LEVATION	T.D.	STATUS	GEOP	HYSICAL	LOG
Yu, T. F. Taylor Bone 28 430 3E 915 74 2998 0/G ABD - - Yu, T. F. Shulte Defail 5 410 5E 910 711 404 0/G ABD -					SE	.c	E	K				GR-N	ы	ENOS
	'	vc. T. E. Tavlor		Boone	28	4	SN	3E	815 TM	2998	O/G ABD	ì	i	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	YC. P. Shulte		DeKalb	35	4	IN	5E	910 THL	4484	O/G ABD	I	ı	I
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Amer.	Ind. Disc. Svs. No.1 W.D.	1967	DuPage	01	39	Ne	9E	741 KB	4043	DISP. ABD	Х	X	X
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Humb	Le Weaber-Horn	1960	Fayette	28	~	8N	3E	538 KB	8615	O/G ABD	1	X	X
Xc. 1 Lilliard menderson 14 9N 5K 625 RB 3180 GAS - <	Texac	00 No. 1 E. Cuppy	1965	Hamilton	9		SS	7E	392 KB	13051	O/G ABD	X	X	X
Davis for. I E.A. South 161 Henry 30 160 IE 803 3653 0.6 ABD X X arry Drdy. Co. No. 1 Mathesius 1956 LaSalle 1 360 55 655 0.6 ABD X X Orto No. 1 Swenson 1956 LaSalle 1 360 55 659 67 ABD X X X No. 1 J. B. McDiroy Lee 35 20N 10E 114 3772 0/6 ABD X <	1	No. 1 Lillard		Henderson	14	_	N6	SW	625 KB	3180	GAS	ı	I	1
ery Drdy Distribution Issaile 32 35N IE 677 3556 cts, str x	Ralp	h Davis : o. 1 E.A. South	1961	Henry	30	1(NS	lE	803 KB	3863	O/G ABD	X	X	×
	Vicke	ery Drlg. Cc. No.1 Mathesius	1958	IaSalle	32	3	NS	lE	677	3556	GAS STG	X	X	I
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	R.W.	Lawinger No.1 A. Miller	1957	LaSalle	1	3(NS	4E	MT 189	3659	O/G ABD	1	X	1
No. 1 J. B. METLOY Lee 30 20N 10E 714 3772 0/G ABD -	A.C.	Otto No. 1 Swenson	1956	IaSalle	Г	3	NS	5E	659 ETM	3725	O/G ABD	X	1	1
No. 1 Vedovell Lee 35 20N 10E 812 3652 0/G ABD - <	1	No. 1 J. B. McElroy		Lee	30) 2(I NO	OE	714	3772	O/G ABD	ı	I	I
No. 5-5 Huldah Baer 1959 Madison 27 3N 6M 516 KB 4868 0/G ABD - </td <td>1</td> <td>No. 1 Vedovell</td> <td></td> <td>Lee</td> <td>35</td> <td>5 2(</td> <td>I NO</td> <td>OE</td> <td>812</td> <td>3652</td> <td>O/G ABD</td> <td>1</td> <td>ı</td> <td>I</td>	1	No. 1 Vedovell		Lee	35	5 2(I NO	OE	812	3652	O/G ABD	1	ı	I
Assoc. No. S-1 Kircheis 1959 Madison 27 3N 6M 505 KB 5018 0/G ABD X <th< td=""><td>1</td><td>No. S-5 Huldah Baer</td><td>1959</td><td>Madison</td><td>27</td><td></td><td>3N</td><td>6W</td><td>516 KB</td><td>4868</td><td>O/G ABD</td><td>ı</td><td>1</td><td>1</td></th<>	1	No. S-5 Huldah Baer	1959	Madison	27		3N	6W	516 KB	4868	O/G ABD	ı	1	1
Riv. Trans. No.S-2 Klein 1971 Madison 33 3N 6W 513 KB 5213 0/G ABD X X Z co.No.1 R.S. Johnson 1966 Nercer 19 13N 4W 584 KB 5213 0/G ABD X X X X co.No.1 R.S. Johnson 1966 Nercer 19 13N 4K 584 KB 3716 0/G ABD X Y F S60 KB DISP DISP F F S60 KB	Ball	Assoc. No. S-1 Kircheis	1959	Madison	27		3N	6W	505 KB	5018	O/G ABD	X	×	×
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Miss	.Riv. Trans. No.S-2 Klein	1971	Madison	33	~	3N	6W	513 KB	5213	O/G ABD	X	X	1
Id Kelly No. 1 Fullerton 1958 Mercer 19 13N 4W 584 KB 3716 0/G ABD - X - . Fiv.Fuel Co.No.A-15 Theobald 1952 Monroe 35 15 10W 666 DF 2768 0/G ABD - X - <td>Texa</td> <td>co No. 1 R.S. Johnson</td> <td>1966</td> <td>Marion</td> <td>9</td> <td></td> <td>IN</td> <td>2E</td> <td>540 KB</td> <td>9210</td> <td>O/G ABD</td> <td>X</td> <td>X</td> <td>×</td>	Texa	co No. 1 R.S. Johnson	1966	Marion	9		IN	2E	540 KB	9210	O/G ABD	X	X	×
. Riv. Fuel Co. No. A-15 Theobald 1952 Monroe 35 1S 10W 666 DF 2768 0/G ABD - - - don Dr1g. Co. No. 1 Campbell 1944 Pike 15 4S 5W 716 DF 3207 0/G ABD - X - <td< td=""><td>Haro</td><td>ld Kelly No. 1 Fullerton</td><td>1958</td><td>Mercer</td><td>19</td><td>I.</td><td>N</td><td>4W</td><td>584 KB</td><td>3716</td><td>O/G ABD</td><td>ł</td><td>x</td><td>1</td></td<>	Haro	ld Kelly No. 1 Fullerton	1958	Mercer	19	I.	N	4W	584 KB	3716	O/G ABD	ł	x	1
don Drig.Co.No.1 Campbell 1944 Pike 15 48 5N 716 DF 3207 0/G ABD - X - X - X - X - X - X - X - X - X - X - X X X X X - X Z Z Z Z <thz< th=""> Z Z Z</thz<>	Miss	.Riv.Fuel Co.No.A-15 Theobald	1952	Monroe	35		LS 1	MO	666 DF	2768	O/G ABD	ı	1	I
East.P.I.No.1 Munford 1947 Pike 21 55 4W 812 DF 2226 0/G ABD - X - s & Laughlin No.1 WD 1966 Putnam 3 32N 2W 527 KB 4868 DISP. X X - - X - - X - - X - - X - - X X X X - - X X X X X X X - - X	Hern	don Drlg.Co.No.1 Campbell	1944	Pike	15		4S	SW	716 DF	3207	O/G ABD	ſ	X	i
s & Laughlin No. 1 WD 1966 Putnam 3 32N 2W 527 KB 4868 DISP. X X - n. Oil XO. 1 Cisne Comm. 1967 Wayne 3 1S 7E 504 KB 11614 0/G ABD X X X - les Peeci No. 1 McCoy 1963 Will 20 35N 9E 631 KB 4300 0/G ABD - X X - NO. 1 Seele XO. 1 McCoy 1967 Champaign 17 21N 7E 760 KB 4530 0/G ABD - X X - No. 1 Seele 1967 Champaign 17 21N 7E 760 KB 4530 GAS STG X X X - le's Gas No. 3 Webster 1964 Champaign 17 21N 7E 759 KB 4492 GAS STG X X X - matic Elec. No. 1 Wtr. Sup. 1958 Cook 31 40N 12E 655 1833 WTR X X X - ardson XO. 2 Richardson 1959 Cook 4 30N 12E 655 1833 WTR - X X X - le's Gas No. 1 Lamb 1963 DeWitt 1 20N 4E 736 KB 4929 0/G ABD X X X X - Power Co. No.4-4 DeBolt Douglas 4 16N 8E 688 KB 4920 0/G ABD X X X X - 	Pan.	East.P.L.No.1 Munford	1947	Pike	21		SS	4W	812 DF	2226	O/G ABD	ı	X	I
n. Oil X0. I Cisne Comm. 1967 Wayne 3 IS 7E 504 KB Il614 O/G ABD X X - les Peeci No. 1 McCoy 1963 Will 20 35N 9E 631 KB 4300 O/G ABD X X - - X - - X - - X - - X - - X - - X - - X - - X - - X - - X - - X - - X - - X - - X - - X -	Jone	s & Lauchlin No. 1 WD	1966	Putnam	(7)	3.	ZN	ZW	527 KB	4868	DISP.	Х	X	ſ
Ies Feed No. 1 McCoy 1963 Will 20 35N 9F 631 KB 4300 0/G ABD - X - - X - - X - - X - - X - - X - - X - - X - - X - - - X - - X - - - - - - X - - X -	Unio	n. Oil No. 1 Cisne Comm.	1967	Wayne	(*)	~	IS	7E	504 KB	11614	O/G ABD	X	X	I
No. 1 Seele Winnebago 24 44N 2E 870 ETM 3385 0/G ABD -	Char	les Peed No. 1 McCoy	1963	Will	20	39	NS	9E	631 KB	4300	O/G ABD	1	X	I
le's Gas No. 1 Flessner 1967 Champaign 17 21N 7E 760 KB 4530 GAS STG X X - le's Gas No. 3 Webster 1964 Champaign 17 21N 7E 759 KB 4492 GAS STG X X - matic Elec. No. 1 Wtr. Sup. 1958 Cook 31 40N 12E 655 1833 WTR X X - ardson No. 2 Richardson 1959 Cook 4 39N 12E 655 1833 WTR - X X X - - X X - - X X - - X X - - - X X - - X X - - X X - - X X - - X X - - X X - - X X - - X X X X X X X X X X X X X	1	No. 1 Seele		Winnebago	24	4	4N	2E	870 ETM	3385	O/G ABD	I	I	I
le's Gas No. 3 Webster 1964 Champaign 17 21N 7E 759 KB 4492 GAS STG X X X matic Elec. No. 1 Wtr. Sup. 1958 Cook 31 40N 12E 655 1833 WTR X X X Z ardson No. 2 Richardson 1959 Cook 4 39N 12E 632 TM 1960 WTR X X X Z le's Gas No. 1 Lamb 1963 Dewitt 1 20N 4E 736 KB 4929 0/G ABD X	Peop	le's Gas No. 1 Flessner	1967	Champaign	17	2:	IN	7E	760 KB	4530	GAS STG	X	×	1
matic Elec. No. 1 Wtr. Sup. 1958 Cook 31 40N 12E 655 1833 WTR X X X ardson No. 2 Richardson 1959 Cook 4 39N 12E 632 TM 1960 WTR - X X X le's Gas No. 1 Lamb 1963 Dewitt 1 20N 4E 736 KB 4929 0/G ABD X X X Power Co. No.4-4 DeBolt Douglas 4 16N 8E 688 KB 4920 GAS STG - <	Peop	le's Gas No. 3 Webster	1964	Champaign	17	2	IN	7E	759 KB	4492	GAS STG	X	X	I
ardson No. 2 Richardson 1959 Cook 4 39N 12E 632 TM 1960 WTR - X X le's Gas No. 1 Lamb 1963 DeWitt 1 20N 4E 736 KB 4929 0/G ABD X X X Power Co. No.4-4 DeBolt Douglas 4 16N 8E 688 KB 4920 GAS STG -	Auto	matic Elec. No. 1 Wtr. Sup.	1958	Cook	31	4(I NO	2E	655	1833	WTR	Х	X	I
le's Gas No. 1 Lamb 1963 DeWitt 1 20N 4E 736 KB 4929 O/G ABD X X X Power Co. No.4-4 DeBolt Douglas 4 16N 8E 688 KB 4920 GAS STG	Rich	ardson No. 2 Richardson	1959	Cook	4	30	I N6	2E	632 TM	1960	WTR	ı	X	×
Power Co. No.4-4 DeBolt Douglas 4 16N 8E 688 KB 4920 GAS STG	Peop	le's Gas No. 1 Lamb	1963	DeWitt	П	2(NO	4E	736 KB	4929	O/G ABD	X	X	×
	111.	Power Co. No.4-4 DeBolt		Douglas	4	1 1(Ng	8E	688 KB	4920	GAS STG	ı	ı	ł

BASEMENT	· SEA LEVEL ELEVATION	-2110	-2935	-3279	-7676	-12622	-2533	-3052) -2831	-2788	-3041	-3046	-2653	-4342	-4505	-4689	-8632	-2666	-2082	-2489	-1409	-4315	-11010	-3579	-1786	AP	NP	NP	AD	NP	NP
	PERMEABILITY (MD)	1	ı	1	1	1	1	1	150 (field ave	1	ī	ı	1	1	ī	1	1	I	I	1	,	32.28	1	I	1	15(field ave)	15(field ave)	1	I	1	I.
NE UNIT	POROSITY FEET	1	1	375	198	I	1	183	301	399	277	1	ł	i	5	2	68	1	ı	ı	I	202	14	293	1	53	I	I	1	41	i
IOLSONAS TA	AVERAGE POROS I TY	ı	1	.17	.15	1	1	.145	.145	.17	.12	1	ı	i	.145	.04	.10	1	ı	1	1	.125	.04	.13	1	60.	1	ı		.11	1
BASP	SAND- SHALE RATIO	i	ı	~100	~100	1	1	316	117	27	46	1	1	ı	8.75	ı	16	~100	1	45	i	14	23	52	1	97	8	8.65	1	46	ı
	THICKNESS	1885	2405	2230	1319	1	738	1305	2338	2489	2640	1965	2015	1	35	58	742	884	1	457	1	1942	357	2308	1661	634i	640i	1131	168i	405i	1026i
	SEA LEVEL ELEVATION	- 255	- 530	-1049	-6357	IN	-1795	-1747	- 493	- 299	- 401	-1081	- 638	IN	-4470	-4631	-7890	-1782	IN	-2032	IN	-2373	-10653	-1271	- 125	-3136	-3093	-1065	-1160	-3788	-3206
	FEET OF CARBONATE	0	0	102	117	ı	27	6	0	61	64	0	0	1	1	1	ı	40	1	1	1	10	72	86	0	103	103	48	41	111	06
E	FEET OF SAND- STONE	31	70	18	50	1	94	43	35	27	64	82	60	ı	ı	ı	ı	81	1	I	I	. 39	108	37	25	52	52	12	12	48	22
ONFINING UNI	FEET OF SHALE/ SILTSTONE	94	70	243	166	1	147	120	142	168	194	83	120	ı	ı	1	1	149	1	1	1	145	179	249	LL	363	361	180	189	323	336
ð	THICKNESS	125	140	363	333	1	268	172	177	306	322	165	180	1	ı	1	ı	270	ı	1	ı	194	359	372	102	518	516	240	242	482	448
	SEA LEVEL ELEVATION	- 100	- 390	- 686	- 024	IN	-1527	-1575	- 313	L +	- 79	- 916	- 458	IN	IN	IN	IN	-1510	IN	IN	IN	-2179	-10294	- 899	- 23	-2618	-2577	- 825	- 918	-3306	-2758
CORE ANALYSES		ı	1	,	1	1	1	,	1	1	ı	1	1	1	1	1	ı	1	1	1	1	1	1	1	1	X	X	ı	1	1	1
WATER		1	ı	×	: 1	X	1	X	X	1	X	1	1	j	X	1	X	1	X	ī	X	1	ł.	,	ī	1	1	1	1	X	1

TABLE 1. WELL DATA - Illinois

SOOL	SONIC	I	ı	1	1	1	1	ı	I	ı	I	I	1	ı	1	ŧ	1	1	X	L	X	1	i	1	X	i	1	I	1	1	1
(SICAL	ы	×	I	1	ı	ı	ı	I	I	ı	I	ī	1	×	×	ı	1	1	I	1	X	X	×	1	I.	ī	ı	i	1	×	1
GEOPHY	GR-N	ī	ı	1	1	1	i	1	i	1	I	ī	I	ı	i	I	i	1	×	ļ	X	×	×	×	X	i.	I	×	ı	X	ī
STATUS		WTTR	WTR	O/G ABD	GAS	GAS STG	O/G ABD	WIR	WIR	WTR	WTR	WIR	WIR	GAS STG	GAS STG	GAS STG	O/G ABD	WIR	GAS STG	GAS STG	O/G ABD	GAS STG	GAS STG	GAS STG	GAS STG	WIR	WIR	GAS STG	GAS STG	GAS STG	GAS STG
T.D.		2082	1970	4250	1001	4005	2680	1600	2251	2139	2200	2240	2000	2712	5003	2320	5050	2000	1711	1626	9261	2897	3485	3268	2764	2000	1783	4234	4062	4040	3988
REFERENCE ELEVATION		760 FTM	668	828 TM	525 GL	652 KB	750 TM	NL 078	641	655 ETM	670 TM	750 ETM	760 ETM	678	674	622 KB	622 ETM	695	679 KB	690 KB	501 KB	635 KB	730 KB	682 KB	749 KB	915 TM	870	799 KB	731 KB	716 KB	764 KB
	R	9F	11E	TE	8E	3W	13W	IW	8E	8E	8E	8E	8E	10E	10E	9E	13E	12E	IE	IE	12W	3E	6E	6E	ME	8E	SE	2E	3E	3E	3E
ATION	H	39N	39N	24N	. 34N	27N	N9	28N	38N	38W	39N	40N	41N	30N	30N	SON	31N	43N	34N	35N	4 N	30N	28N	28N	NL	43N	46N	24N	26N	26N	26N
ILOC	SEC.	10	10	19	21	31	2	13	15	34	22	34	23	32	32	3	24	2	2	32	29	27	33	32	31	5	33	1	31	31	19
7 TIMOO		Dipage	DuPade	Ford	Grundy	Iroquois	Jersey	JoDaviess	Kane	Kane	Kane	Kane	Kane	Kankakee	Kankakee	Kankakee	Kankakee	Lake	IaSalle	LaSalle	Lawrence	Livingston	Livingston	Livingston	McDonough	McHenry	McHenry	McLean	McLean	McLean	McLean
YEAR COMP.		1957												1954	1957				1968		1973	1967	1964	1969	le 1971			1969		1971	
OPERATOR & WELL NAME		Schnoller No 1 Chicago & NW BR	- No. 11 Wander	Nelson. Erp & Stroh No.1 Erp	- No. 68-1 Aux Sable	No. Ill. Gas No. 1 Harroun	- No. 1 Thomas Kerwin	- No. 5 Galena City	- No. 12 Aurora	- No. 16 Aurora	- No. 3 Batavia	- No. 6 St. Charles	- No. 2 Elgin St. Hospital	Nat. Gas Str. of Ill. No. 6 Karcher	Nat.Gas Str.of Ill.No.7 Schwark	- No. 1 Percy Cook	- No. 1 Hughes Parish	- No. 2 A. D. Lasker	No.Ill.Gas Co.No.1 Butler	No.Ill.Gas Co.No.16 Mathesius	Arco No. 77 Lewis	No. Ill. Gas Co. No. lA Fehr	No. Ill. Gas Co. No.1 Feinhold	No. Ill. Gas Co. No.16 Feinhold	Cen.Ill.Pub Ser.Co.No.5-34 Hainlir	- No. 1 Crystal Lake	- No. 1 Dean Milk Company	No. Ill. Gas Co. No.1 Grimes	No. Ill. Gas Co. No.1 Anderson	No. Ill. Gas Co. No.2 Furrow	No. Ill. Gas Co. No. 1 Houck
.11.		5	10	i m	34	35	96	27	88	68	0	TH	2	e	4	5	9	17	8	61	00	1	52	53	54	22	99	15	80	60	00

TABLE 1. WELL DATA - Illinois (con't)

WELL NO.
t)
(con
Illinois
I.
DATA
WELL
1.
ABLE

ELEVATION BASEMENT SEA 26.7 25(field ave) 39(field ave) 150 (field ave) 150 (field ave) 185 (field ave) 185 (field ave) 82 (field ave) PERMEABILITY 34.8 42 36 48 (QW) 100 POROSITY FEET 13+ 44+ 12+ 38+ 42+ 21+ 11+ BASAL SANDSTONE UNIT --61+ 1.1 I POROSITY AVERAGE .17 -.05 .112 .112 .112 ----113 .13 1.1 50 53 11 8.3 >100 SHALE RATIO -ONAS ~100 65 16 ~100 12 I I I 1 ı i ı 1 1 T 1 1 THICKNESS 277i 330i 644i 540i 530i 3651 302i 302i 107i 107i 533i 533i 444i 257i 491i 34i 15i 130i 521i 394i 529i 381i 1021 255i 218i 474i 521i 540i 364i ı ELEVATION SEA -1913 - 830 - 695 -2961 -2961 -2784 -2784 -1089 -1090
-9900
-960
-960
-960
-975
-1732
-1732
-1591
-1591
-1591
-2078
-92078
-920
-92078
-1771
-2205
-2226
-2226
-2226
-2226 -1045 -1342 -2709 -1915 - 630 AN FEET OF CARBONATE 49 73 73 73 1 FEET OF SAND-STONE 42 61 60 I. TINU DAINI TONIT SILTSTONE FEET OF SHALE/ 207 142 298 285 502 252 219 245 245 245 200 200 200 200 200 404 407 328 338 144 142 209 333 333 269 260 140 321 273 275 275 1 I 1 THICKNESS 345 236 445i 407 591 412 407 410 i 1 ELEVATION SEA -1633 NI NI -2549 -2403 -2374 -2374 - 700 -2977 - 729 - 725 - 625 - 605 - 512 -1193 -1153 -1153 - 319 - 315 -2118 -8085 -1327 -1825 -1817 IN CORE 1 $| \times | \times |$ 1 1 IXXXX 1 IXXX I ANALYSES WATER $_{1}$ × 1 1 1 IXXX i i. 1 1 1 1 1 I 1 1

TOGS	SOF	~		•	~	'	•	1	•	•	1	•	1	•	~	1	'	1	i	'	i	i	•	'	ľ
WSICAL	ы	I	X	ı	X	X	X	1	ı	ı	1	X	ī	1	X	1	1	X	ı	ı	1	ı	4	1	X
GEOPH	GR-N	Х	X	1	×	1	X	ı	ī	1	X	X	ı	ı	ı	ı	1	ı	ı	1	T	ı	ı	1	I
STATUS		GAS STG	GAS STG	GAS STG	O/G ABD	O/G ABD	O/G ABD	WTR ABD	WTR ABD	GAS	DISP ABD	O/G ABD	WIR	WTR	O/G ABD	GAS STG	GAS STG	GAS STG	GAS STG	GAS STG	GAS STG	GAS STG	GAS STG	GAS STG	GAS STG
T.D.		4194	4195	3960	4253	6525	2130	3270	2368	2821	6675	2640	3095	1376	8492			4414							2136
REFERENCE ELEVATION		734 KB	785 KB	746 KB	672 KB	686 KB	805 KB	620 TM	611	757 KB	741 KB	743 KB	712 TM	790	424 KB	739 GL	742 GL	679 GL	654	671	663	640	776	746	640
	R	3E	3E	3E	8W	SE	7E	lE	IW	SE	MII	IW	12E	2E	2W	7E	7E	8E	13W	2E	3E	3E	3E	4E	BW
ATION	F	25N	25N	25N	13N	15N	24N	17N	17N	13N	19N	12N	35N	44N	13S	21N	21S	16N	27N	30N	30N	SON	25N	25N	13N
IOC	SEC.	14	22	14	16	22	35	8	8	11	12	e	25	31	21	17	6	4	26	22	24	33	32	20	15
COUNTY -		McLean	McLean	McLean	Morgan	Moultrie	Odle	Rock Island	Rock Island	Stark	Vermillion	Warren	Will	Winnebago	Union	Champaign	Champaign	Douglas	Iroquois	LaSalle	IaSalle	Livingston	McLean	McLean	Morgan
YEAR COMP.		1972	1960		1965	1964	1963			1971	. 1972	1968			1967			1970							c 1965
OPERATOR & WELL NAME		No. 111. Gas Co. No.1 Dadv	No. Ill.Gas Co.No.1 Mary Moore	No. TIL Gas Co. No.1 Pyne	Pan. Fast No. 1-16 Criswell	Harold Sanders No. 1 Harrison	Nat.Gas P.L. No.2 Keckler	- No. 1 Christensen Bros.	- No. 1 Prospect Park	- No. 701 Witte	Iohman & Johnson No.1 Allied Chem.	Ill. Power Co. No. 1 Moberd	- No. 1 J.R. McGlashan	- No. 6 Rockford Unit	Humble Oil No. 1 Pickel	People's Gas No. 5 Hunt	People's Gas No. 1 Fee	Panhandle Estrn. No. 1-4 Bristow	No. Ill. Gas	No. Ill. Gas No. 1 Barr	No. Ill. Gas No. 2 Krischel.	No. Ill. Gas No. 1 Fordyce	No. Ill. Gas No. 1 Schlosser	No. Ill. Gas No. 1 Smith	Panhandle Estrn. No. 7-15 Whitlock

TABLE 1. WELL DATA - Illinois (con't)

NO.

61 65 663 665 665 665 665 77 77 77 77 77 77 88 88 88 88 88

II
-
(con
Illinois
DATA
WELL
1.
TABLE

WATER	COPE ANALYSES		0	ONFINING UN	IT				BASI	AL SANDSTO	NE UNIT		BASEMENT
		SEA LEVEL ELEVATION	THICKNESS	SHALE/ SILTSTONE	FEET OF SAND- STONE	FEET OF CARBONATE	SEA LEVEL ELEVATION	THICKNESS	SAND- SHALE RATIO	AVERAGE POROSITY	POROSITY	PERMEABILITY (MD)	SEA LEVEL ELEVATIO
		-2504	442	287	99	89	-2946	514i	22	.10	43+	1	AN
X		-2650	449	292	67	06	-3099	311i	23	.11	25+	44.6	NP
		IN	ı	1	1	1	IN	1	ı	ı	1	46.9	NP
X		-3208	240	168	12	60	-3448	133i	L	.11	12+	ı	NP
		-5266	340	255	17	68	-5606	233i	10	ī	1	1	NP
		- 27	156	78	78	0	- 183	1142i	~ 50	.13	117+	1	AN
		IN	ı	.1	ı	1	-1680	970i	ı	I	ı	1	NP
		-1479	125	75	25	25	-1604	153i	i	1	I	ı	NP
		-1649	204	143	41	20	-1853	211i	ı	1	1	1	NP
X		-3689	700	455	175	70	-4389	15451	15	.10	143+	25	AN
×		-1514	215	118	75	22	-1729	168i	~100	.155	19+	1	NP
		-1106	338	253	17	68	-1444	939i	1	ı	I	ł	AN
		- 25	105	68	26	11	- 130	456i	ı	1	I	1	NP
	•	IN	1	1	1	1	-7976	92i	~6.0	.075	6 +	į	NP
X		IN	1	1	ı	i	-3150	1	ı	ı	ı	1	C.
X	1	IN	1	1	ı	1	-3140	1	ı	ı	ı	1	c.
X	1	IN	1	1	I	i	-3215	516i	~100	.12	62+	1	NP
X	1	IN	1	1	I	ı	-2900	I	ı	ı	1	1	c.
X	X	IN	ı	I	I	i	-1570	I	ı	1	1	116	c.
X	X	IN	I	I	1	ŀ	-1470	I	1	1	1	109	c.
X	X	IN	t	I.	ı	ĩ	-1420	1	ı	,i	1	63	c.
X	X	IN	Ţ	1	ı	1	-3170	1	1	1	ĩ	61.1	C.
X	X	IN	1	1	ì	1	-3100	1	ı	1	1	38.3	·.
X	1	IN	ï	1	1-	1	-3448	1952i	i	.13	1	ı	NP

AL LOGS	JINOS		>	< ×	: 1	1	1	1	ı	X	××	: >	4 1	X	×	×	* *	(1	×	1	×	1	1	1	I	×	* *	4	X
DISXHdC	GR-N	1	>	4 1	X	1	ı	ł	1	X	. ×	×	: ×	×	×	X	×	: ×	×	1	X	X	: >	: 1	X	×	. 1		1
E	ы	~	< ×	< ×	1	1	ı	ı	1	X	X	×	: 1	X	1	X	X	X	X	ī	X	1	1	1	1	X	X	>	<
STATUS		O/G ARD	O/G ARD	O/G ABD	GAS ST	O/G ABD	O/G ABD	O/G ABD	O/D ARD	DISP	GAS ST	OAD ARD	DISP	DISP	DISP	DISP	O/G ABD	O/G ABD	O/G ABD	O/G ABD	O/G ABD	O/G AB	O/G ABD	O/G ABD	GAS ST	GAS ST	O/G ABD	10 × 1/0	O/G ABD
т.р.		3517	3672	3955	4056	3664	3996	3404	3395	4363	6806	4082	4548	4304	4301	4308	6866	4000	3685	3907	3501	3571	3505	3302	3138	3010	3470	3226	0000
REFERENCE ELEVATION		822	797	959 KB	750	1060	821	948	949	608 KB	800 KB	789	784 KB	625 KB	624 KB	615 KB	1058 KB	880 KB	787 KB	957	851	856	885	892	732	746 KB	759 KB	AN TIT KB	
	R	12E	14E	13E	E	llE	SE	13E	13E	M6	2E	3E	SW	6W	6W	ML	14E	IW	6E	13E	11E	12E	IOE	11E	E	MT	12E	135	
CALION	H	29N	29N	13N	29N	16N	24N	24N	24N	37N	SN	34N	35N	37N	37N	37N	38N	ZN	29N	15N	31N.	32N	24N	24N	28N	28N	IIN	NIL	
QI	SEC.	33	14	32	32	12	32	29	29	14	20	21	16	28	29	25	15	4	25	23.	۵	33	25	20	9	14	29	e	
COUNTY		Allen	Allen	Fayette	Fulton	Henry	Howard	Jay	Jay	Lake	Lawrence	Marshall	Porter	Porter	Porter	Porter	Steuben	Switzerland	Wabash	Wayne	Allen	ALIEN	Blackford	Blackford	Cass	Cass	Franklin	Franklin	
YEAR COMP.		1947	1968	1965	1967	1945	1161	1940	1944	1967	1959	1969	1969	1963	1968	1964	1970	1965	1965	1950	T96T	TAGT		1939	1969	1966	1965	1965	
OPERATOR & WELL NAME		Tecursen No. 1 Gibson	NIPSCO No. 1 Leyenberger	Gulf No. 1 Scott	NIPSCO No. 2 Pheil	Unio No. 1 May	Kokamo No. 1 Greentown	Petroleum No. 1 Binegar	Farm Bureau No. I Binegar	Intand No. Wd-1 Inland	Farm Bureau (Texas-2614) No.1 Brown	NIPSCO NO. 1 Ames	Stoltenberg No.WD-1 Indiana	Bethlehem No.WD-I Bethlehem	Bethlehem No.WD-2C Bethlehem	MIDWEST NO.WD-I MIDWEST	Swager No. 1 Swager	Ashland No. 1 Collins	Ashland No.1 Hudson	Cordon No. 1 Dodaridge.	Marker No. 1 Asnbaugh	INTESCO NO. 1 MAKETAND	Casterline No. 1 Casterline	Keed No. 1 Cale	NIFSCU No. 1 Burton	NIPSCU No. 1 Conn	Gulf No. 1 Lamping	Gult No. 1 Lohrey	
ND.		г	2	m •	4 L		0 1	- 0		א מ	DT	11	12	1:	14 1	CT .	9T	11	D T	AT CC		11	77	27	47	07		17	00

TABLE 2. WELL DATA - Indiana

ELEVATION BASEMENT SEA -2654 -2687 -2955 -2955 -2955 -29550 -29550 -2967 -25804 -25804 -3111 -3125 -3637 -3637 -3650 -3637 -3650 -3657 -3657 -3657 -3725 -3657 -3657 -3725 -3657 -3725 -3657 -3725 -3657 -3725 -3657 -3725 -3657 -3725 -3657 -3725 -3725 -3657 -3725 -3755 -3 POROSITY PERMEABILITY (QW) 13300 13300 113 5+ 9+ 12+ -BASAL SANDSTONE UNIT FEET AVERAGE .15 .09 .13 .13 .13 .115 .115 .1135 .05 .1135 .135 .135 .135 .12 .15 SAND-SHALE RATIO ELEVATION THICKNESS SEA -2098 -2098 -2293 -2205 -2205 -2205 -1941 -1941 -1932 -1941 -1941 -1941 -19565 -1565 -1565 -1565 -1565 -1565 -2748 -2748 -2748 -2748 -2748 -2748 -2748 -2748 -2748 -2748 -2748 -2748 -2748 -2762 -2748 -2762 -2262 -2262 -2262 -22647 CARBONATE FEET OF STONE FEET OF CONFINING UNIT SILTSTONE FEET OF SHALE/ THICKNESS ELEVATION SEA -1393 -1328 -1328 -1328 -2938 -2252 -1498 -1498 -1554 -1554 -1554 -1554 -1438 -1651 -1372 -1343 -1202 -4010 -1657 -1598 -1699 -1921 -1420 -1655 -1524 -1570 A. ALYSES CORE ANALYSES WATTER

TABLE 2. WELL DATA - Indiana

WINK CREATOR & WELL NAME WINK WELL NAME WINK CORF. CONTY LOCHTON ELEMANTION T.D. STATUSAL LOSS CORF. CORF. CONTINENTIAL No. 1 Result 1960 Jay ELEMANTION FLEMANTION FLEMANTION FLEMANTION CONTINENTIAL NO. Contrinental No. 1 Result 1960 Jay SEC. T R SEC. T R E GR-N SOUTH Contrinental No. 1 Result 1960 Jay 11 Z3N 188 922 3100 O/G AND X X X Contrinental No. 1 Result 1996 Jay 11 Z3N 188 922 3100 O/G AND X<												
SEC. T. R SEC. T. R E Gravitantial No. 1 Resur 1960 Jay Jay 2331 2331 132 2331 <th>OPERATOR & WELL NAME</th> <th>YEAR COMP.</th> <th>7 YINDO</th> <th>IOC</th> <th>CALION</th> <th></th> <th>REFERENCE ELEVATION</th> <th>T.D.</th> <th>STATUS</th> <th>G</th> <th>OPHYSICA</th> <th>L LOGS</th>	OPERATOR & WELL NAME	YEAR COMP.	7 YINDO	IOC	CALION		REFERENCE ELEVATION	T.D.	STATUS	G	OPHYSICA	L LOGS
SEC. T. R. SEC. T. R. E. GF-N SOUT Continental No. 1 Resur 1960 Jay 31 23N 13E 922 3100 0/G ABD X X X TER NAVEN No. 1 Haydan 1960 Jay 31 23N 13E 922 3100 0/G ABD X												
Continental No. 1 Resur 1960 Jay 31 23N 13E 922 3100 0/G ABD X <th></th> <th></th> <th></th> <th>SEC.</th> <th>Ħ</th> <th>R</th> <th></th> <th></th> <th></th> <th>ы</th> <th>GR-N</th> <th>SONIC</th>				SEC.	Ħ	R				ы	GR-N	SONIC
Eff River No. 1 Blocher 1951 Kocciusko 12 30N 6E 855 3295 $0/G$ ABD - <	Continental No. 1 Resur	1960	Jay	31	23N	13E	922	3100	O/G ABD	X	X	X
	EEL River No. 1 Blocher	1951	Kosciusko	12	SON	6E	855	3295	O/G ABD	1	ı	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	NTPSCO No. 1 Hayden	1966	Iake	30	32N	8W	640	3052	GAS ST. ABD	X	X	X
U.S. Steel No. WD-I U.S. Steel1965Lake2937N8W600 (KB4303DISP.XXXXIPSCO NO. I Hamstra1965Newton331N8W6583021 O/G AHDXXXYXIPSCO NO. I Hamstra1965Newton331N8W6583021 O/G AHDXXXYXIPSCO NO. 1 Hamstra1965Newton331N6W6733021 O/G AHDXXXXXIPSCO NO. 1 Hamstra1965Porter3037N6W6008433021 O/G AHDXXXXXIPSCO NO. 0-46 Haselby1972Pulaski2529N1W7353029 O/G AHDYXXXXIPSCO NO. 1 Hanawalt1971Pulaski1629N2W6903106 O/G AHDYXXXXIPSCO NO. 2 Good1971Pulaski152629N3W6653105 O/G AHDYXYXIPSCO NO. 2 Good1971Pulaski152629N3W6653106 O/G AHDYXYXYXIPSCO NO. 2 GoodNO. ND-1 Newport1971Pulaski152629N4W6752900 O/G AHDYXXYXXXXXXXXXXXXXXX </td <td>Dome No. 1 Industrial</td> <td>1930</td> <td>Iake</td> <td>22</td> <td>36N</td> <td>M6</td> <td>623</td> <td>2458</td> <td>O/G ABD</td> <td>I</td> <td>1</td> <td>1</td>	Dome No. 1 Industrial	1930	Iake	22	36N	M6	623	2458	O/G ABD	I	1	1
XIPSCO No. I Hamstra 1965 Newton 3 31N 8W 658 3021 0/G ABD X	U.S. Steel No. WD-1 U.S. Steel	1965	Lake	29	37N	8W	600 KB	4303	DISP.	X	X	X
With Second No. 1 Shelhart 1966 Newton 34 32N 8W 642 3021 GAS ST. X <th< td=""><td>VIPSCO No. 1 Hamstra</td><td>1965</td><td>Newton</td><td>e</td><td>31N</td><td>8W</td><td>658</td><td>3021</td><td>O/G ABD</td><td>X</td><td>X</td><td>I</td></th<>	VIPSCO No. 1 Hamstra	1965	Newton	e	31N	8W	658	3021	O/G ABD	X	X	I
Corranche No. 1 Pippenger 1965 Noble 15 33N 10E 971 RB 3694 0/G ABD - X X <th< td=""><td>WIPSCO No. 1 Shelhart</td><td>1966</td><td>Newton</td><td>34</td><td>32N</td><td>8W</td><td>642</td><td>3021</td><td>GAS ST.</td><td>X</td><td>X</td><td>X</td></th<>	WIPSCO No. 1 Shelhart	1966	Newton	34	32N	8W	642	3021	GAS ST.	X	X	X
Bethlehem No. WD-IC Bethlehem 1968 Porter 30 37N 6W 624 KB 3945 DISP. - X X NTPSCO No. O-46 Haselby 1972 Pulaski 25 29N IW 735 3029 SWD X - - - - - - - - - - - - - - - - - - - X - - - - - - - - - - - - - - - X -	Comanche No. 1 Pippenger	1965	Noble	15	33N	10E	971 KB	3694	O/G ABD	I	×	1
NIFBOD (No. 0-46 Haselby) 1972 Pulaski 25 29N W 735 3029 SWD X -	Bethlehem No. WD-IC Bethlehem	1968	Porter	30	37N	6W	624 KB	3945	DISP.	L	×	X
NIFSCO No. 1 Hanawalt 1971 Pulaski 16 29N ZW 690 3106 0/G ABD - X - X - X × X </td <td>VITPSCO No. 0-46 Haselby</td> <td>1972</td> <td>Pulaski</td> <td>25</td> <td>29N</td> <td>IW</td> <td>735</td> <td>3029</td> <td>CIMS</td> <td>X</td> <td>1</td> <td>ı</td>	VITPSCO No. 0-46 Haselby	1972	Pulaski	25	29N	IW	735	3029	CIMS	X	1	ı
NITPSCO No. 2 Good 1971 Pulaski 26 29N 3W 685 3151 GAS ST. X	NIPSCO No. 1 Hanawalt	1971	Pulaski	16	29N	2W	069	3106	O/G ABD	ı	×	I
Sanders No. I Lowry 1971 Pulaski 15 29N 4W 675 2900 0/G ABD - X - X - X - X - X - X - X - X - X - X - X - X - X - X - X - X - X - X <td>NIPSCO No. 2 Good</td> <td>1971</td> <td>Pulaski</td> <td>26</td> <td>29N</td> <td>3W</td> <td>685</td> <td>3151</td> <td>GAS ST.</td> <td>X</td> <td>×</td> <td>X</td>	NIPSCO No. 2 Good	1971	Pulaski	26	29N	3W	685	3151	GAS ST.	X	×	X
Central No. 16752 Edward 1966 Randolph 16 19N 13E 1146 3352 0/G ABD - X - X - X - X - X - X - X <	Sanders No. 1 Lowry	1971	Pulaski	15	29N	4W	675	2900	O/G ABD	1	X	ı
Food No. WD-1 Newport 1960 Vermilion 9 16N 9W 650 KB 6160 DISP. X	Central No. 16752 Edward	1966	Randolph	16	N6T	13E	1146	3352	O/G ABD	ı	x	ı
Wayne No. 1 Taylor 1943 Wayne 22 13N IW 1030 3330 O/G ABD -	Food No. WD-1 Newport	1960	Vermillion	6	16N	M6	650 KB	6160	DISP.	X	X	X
NIFBOD No. 0-85 Johnson 1965 Cass 12 28N IW 751 KB GAS ST. OBS X X - NIFBOD No. 1 Finnell 1966 Cass 17 28N IW 711 GL 3077 GAS ST. OBS X X - NIFBOD No. 1 Ffinell 1966 Fulton 30 29N IE 750 GL 4051 GAS ST. OBS X X X - NIFBOD No. 1 Pfeil 1966 Fulton 20 29N IE 750 GL 4051 GAS ST. X<	Wayne No. 1 Taylor	1943	Wayne	22	13N	IW	1030	3330	O/G ABD	ı	1	1
NIFBCO No. 1 Finnell 1966 Cass 17 28N 1W 711 GL 3077 GAS ST. OBS X X X NIFBCO No. 1 Pfeil 1966 Fulton 30 29N 1E 750 GL 4051 GAS ST. OBS X	NIPSCO No. 0-85 Johnson	1965	Cass	12	28N	JW	751 KB		GAS ST. OBS	X	X	1
NIPSCO No. 1 Pfeil 1966 Fulton 30 29N LE 750 GL 4051 GAS ST. X X X NUPSCO No. 2 Sommers 1968 Fulton 20 29N LE 740 GL GAS ST. X X X X	NIPSCO No. 1 Finnell	1966	Cass	17	28N	IW	711 GL	3077	GAS ST. OBS	X	X	1
NIPSCO No. 2 Sommers 1968 Fulton 20 29N LE 740 GL GAS ST. X X X	NIPSCO No. 1 Pfeil	1966	Fulton	30	29N	E	750 GL	4051	GAS ST.	X	X	X
	NIPSCO No. 2 Sommers	1968	Fulton	20	29N	E	740 GL		GAS ST.	X	X	X

TABLE 2. WELL DATA - Indiana (con't)

TABLE 2. WELL DATA - Indiana (con't)

FLEVATION BASEMENT SEA POROSITY PERMEABILITY (QW) 420 H. I 1 ı 1 1 1 1 1 1 1 1 1 15+ - 20+ 20+ 14+ 14+ 12+ 12+ - 269+ - 25+ 25+ 49+ FEET BASAL SANDSTONE UNIT POROSITY AVERAGE SHALE RATIO -ONAS SEA LEVEL ELEVATION THICKNESS -2028 -2020 -2020 -1641 -1478 -1957 -1957 -2529 -2529 -2922 -2922 -2923 -2957 -2038 -2038 -2038 -2038 -2037 -2016 CARBONATE FEET OF 19 151 1 18 18 4 1 1 1 1 FEET OF SAND-00 I 944 0 1 ı 92 ı I. 1 1 CONFINING UNIT SILTSTONE FEET OF SHALE/ 399 1111 ١ ı ۱ THICKNESS 5545 475 4475 4455 4455 4437 4431 4431 602 5599 602 5599 603 5596 603 5596 603 5596 603 SEA LEVEL ELEVATION -1549 -1275 -1238 -1520 -1521 -1953 -1322 -1328 -1378 -1490 -1465 -1546 -1417 -1442 -1442 -1442 -1442 -1442 -1442 -1442 -1454 -1483 CORE × WATER × 1 XXXX

SONIC GEOPHYSICAL LOGS \times 1 1 × × × I. 1 E × XXIXXI GR-N XXXX IXXX IXIXIXXX 1 1 × 0/G ABD O/G ABD STATUS GAS TIO OIL GAS 6677 L0034 4090 7676 3604 2977 5065 7272 9980 9980 7824 7824 5085 5085 5251 3425 3425 T.D. 3215 7828 9595 9449 8420 11130 4937 6389 9665 9473 6817 3035 5538 5080 4465 ELEVATION REFERENCE Ð R Ð 田田田 Ø 盟 R Ð Ð GR R R 858 865 908 862 868 703 652 762 758 695 973 778 808 675 956 949 907 661 1160 C86 695 793 968 639 677 937 777 777 777 777 777 665 666 666 677 779 779 779 779 61 61 59 66 81 COORD INATES) LOCATION (CARTER 8 3 > SABE 88 3 5 SA OHHHH 0 D D 25 σ Breathitt Campbell Campbell Carter Garrard Garrard Garrard Carter Carter Carter Elliot Elliot Elliot Estill Carter Carter **VIIINOC** Clark Clark Clark' Floyd Boone Adair Boone Clay Boyd Boyd Boyd Bell Boyd Boyd YEAR COMP. 970 959 972 969 973 0967 1959 969 968 1967 996 972 Cabot Crop. & Ashland No.1 Stapleton1966 1967 960 96967 1968 1969 974 1965 Patrick Pet. No.1 Broadus & Tussey Peter Widener No. 1 Burdette Inland Gas No. 535 McKeand Inland Gas No. 551 Smallridge Inland Gas No. 529 White United Fuel Gas No. 8613 Williams Monitor Pet. No. 1 Robinson United Fuel Cas No. 8807 Stampner United Fuel Gas No. 2 Knuckles Day & Algonquin No. 1 Hubbard Ashland O & R No. 1 Wilson Tri-State Pet. No. 1 Schmidt Inland Gas No. 547 Duncan Monitor Pet. No. 1 Ison Monitor Pet. No. 2 Ison United Fuel Gas No. 1 Litton Inland Gas No. 538 Fee Inland Gas No. 546 McDavid Ashland O & R No. 1 Miller Widener No. 1 Glover Ashland O & R No. 1 Tartar Cont. Oil No. 1 Snow Inland Gas No. 537 Fannin Signal O & G No. 1 Hall Clinton Oil No. 1-V Hale Inland Gas No. 533 Fee Texaco No. 1 Williams OPERATOR & WELL NAME Texaco No. 1 Tipton Ford No. 1 Conners KEN. NO. 0088765282828282828765482765482760 008876578828282876654877676

WELL DATA - Kentucky TABLE 3.

TABLE 3. WELL DATA - Kentucky

WATER ANALYSES	CONFIN	TING UNIT		BASAL S	ANDSTONE	TIMU		BASEMENT
	SEA LEVEL ELEVATION	THICKNESS	SEA LEVEL ELEVATION	THICKNESS	SAND- SHALE RATIO	AVERAGE POROSITY	POROSITY FEET	SEA LEVEL ELEVATION
	2404	0711	7013-	:003	LC	20	48	đN
	1505-	1375	-8332	1111			5 1	
ı	-1955	562	-2517	293	1	ı	I	-2810
1	-2032	3181		1	1	ı	ì	AD N
1	-5408	494	-5902	101	ı	1	1	-6003
X	-5642	1142	-6784	863	0.29	.066	13 -	-7647
1	-6152	1385	-7537	186	0.23	.066	12	-8518
I,	1	1	1	1	1	1	ı	1
X	-5882	1142i	AN	ı	1	1	1	AP N
1	-5883	4322	-10205	44	1	1	1	-10249
1	-1850	782	-2632	112	1	1	1	-2744
ı	-1817	453	-2270	12i	1	i	1	CN N
1	1	•		1	1	ı	ŀ	i
1	-5237	887	-6124	254	1	ī	1	-6378
1	-5500	2384	-7884	934	1	i	1	-8818
ł	-5508	1543	-7051	98i	ı	1	1	Ð
X	-3708	431	-4139	57	1.4	.095	3	-4196
1	-3802	362	-4164	111	1	1	1	-4275
1	-1735	360	-2101	112	3.8	.095	2	-2213
1	-2700	1083i	d'Al	1	ī	-1	1	AD N
1	-2372	1606	-3978	127	1	ı	1	-4105
i	-4626	· 603i	AN N	1	1	1	1	AP N
1	-5614	2498	-8112	867i	1	1	1	EN I
L	-5529	2918	-8447	233i	1	1	1	NP
1	-3832	380	-4212	10	1.8	.095	S	-4222
1	-3559	2113	-5672	506i	7.8	.04	+6	AN
ï	IN	1	-12013	162	1	1	1	-12175
X	-2771	1126	-3897	9461	0.32	.07	16+	AP N
1	-2907	1187	-4094	49i	1	1	1	AD.
1	-2741	907i	AN N	1	,	1	1	AN

ENOS GEOPHYSICAL LOGS × XX ы XX XX 1 XXX XX GR-N × × × 50 5 XXX × XXX O/G ABD ABD ABD STATUS DISP. ING 5/0 ч Ч н DR T.D. 4632 5745 3557 5385 5497 5195 4944 5800 6072 6008 L4566 L0000 7343 12712 9432 9432 4190 4450 5080 5080 5781 6117 6117 13172 3310 5858 6114 5500 7608 0012 5757 ELEVATION REFERENCE *** 的西西田田田 Ð 型型 ER RS 型型 931 965 972 867 692 675 797 956 996 465 732 729 884 560 915 1113 1160 1032 629 686 766 989 951 769 986 821 789 COORD INATES) LOCATION (CARTER R 3 D KH S 0 0XX S 0 00 8 9 0 0 P 8 13 19 13 13 113 19 15 23 L4 Abntgomery Jessamine Jessamine Jessamine Jefferson awrence Atcalfe Johnson Grayson Greenop Johnson Garrard Madison Jarrard Garrard Lincoln Lincoln Aenifee Leslie COUNTY aurel Aartin Vorgan brgan brgan Grant Green ewis GW1S ewis lason YEAR COMP. 1969 1968 1966 996 1968 968 1965 1973 1973 1973 1968 1958 1968 1970 1946 1959 1963 1791 1969 1966 1961 1967 1974 1971 1971 Texas Gas Trans. No. 1 Shain Drlg. Moore Oil No. 1 Perkins United Fuel Gas No. 9061 Rawlings United Fuel Gas No. 9380 Brown United Fuel Gas No. 9060 Shepherd Inland Gas No. 542 Young United Fuel Gas No. 28 Fordson United Fuel Gas No. 8610 James Rame O & G No. 1 Foster-Morrow Commonwealth Gas No. 1 New Ell Ferg. & Bros. No. 16-1 Porter Ashland O & R No. 1 Lee Clay Sober No. 3 Cumberland Mins California Co. No. 1 Spears Monitor Pet. No. 1 Blanton Monitor Pet. No. 1 Ison Texaco No. 1 Scherrer Texaco No. 1 Wolfinbarger DuPont No. 1 Fee Signal 0 & G No. 1 Elkhorn Ralph Thomas No. 1 Adams Columbia No. 9784 Evans Tartan Oil No. 1 Graham Benz Oil No. 1 Nunnally Kin-Ark Oil No. 1 Hager L & M Gas No. 1 Causey OPERATOR & WELL NAME Texaco No. 1 Perkins Ashland No. 1 Wolfe Texaco No. 1 Kirby Ford No. 1 Delaney New Series 43 440 445

TABLE 3. WELL DATA - Kentucky (con't)

TABLE 3. WELL DATA - Kentucky

BASEMENT	SEA LEVEL ELEVATION	AN	AN	-4668	NP	1	NP	-4125	-3783	-2323	-5040	-5489	-13563	AN AN	AP N	-11666	-8221	+3598	-3620	-3911	AD.	-4635	-5419	NP	-2513	-4811	-5118	-3401	1	Ð	-4754
	POROSITY FEET	ı	ı	15	1	1	1	1	14	1	33	1	1	1	1	1	1	1	2	3	8	1	20	ı	1.0	24	Ţ	2	1	10	12
TINU	AVERAGE POROSITY	ı	ı	.06	I	ı	1	ı	.11	1	760.	ı	1	ı	1	1	1	ı	.14	.13	.07	1	.085	1	.13	.107	ı	.08	ı	.05	.095
NDSTONE	SAND- SHALE RATIO	1	I	0.42	1	1	1	1	0.69	1	0.29	1	1	1	1	1	ı	ı	0.84	0.37	0.47	ï	0.18	1	3.0	0.75	1	4.4	ı	0.5	0.31
BASAL SA	THICKNESS	1	1	1028	169i	1	T	100	305	272	1530	751	ı	1	i	610	264	48	35	74	391i	650	1516	686i	8	530	67	27	1	606i	407
	SEA LEVEL ELEVATION	đ	AN	-3640	-2521	,	AN	-4025	-3478	-2051	-3564	-4738	1	AN	AN	-11056	-7957	-3550	-3585	-3837	-4358	-3985	-3903	-11827	-2505	-4281	-5051	-3374	1	-8585	-4347
NG UNET	THICKNESS	1300i	9491	922	523	•	1251	506	1007	117	1022	892	1	3408i	678i	4380	1961	486	465	484	1055	866	1294	4172	584	850	700	965	1	3236	496
CONFINI	SEA LEVEL ELEVATION	-3266	-2718	-2718	-1998	•	-4585	-3519	-2471	-1934	-2542	-3846	-6951	-5663	-5505	-6676	-5996	-3064	-3120	-3353	-3303	-3119	-2609	-7655	-1921	-3431	-4351	-2409	1	-5349	-3851
WATER ANALYSES			'n	1	1	1	1	1	1	1	1	X	1	1	1	1		1	1	1	1	1	1	1	•	, 1	1	1	1	1	•

TABLE 3. WELL DATA - Kentucky

SDOL	INOS	ı	1	I	1	1	X	X	1	X	I	
NSICAL	ы	ı	ı	ı	i	I	X	X	X	X	ı	
GEOPH	GR-N	I	i	ı	ı	1	×	×	×	X	ı	
STATUS		O/G ABD	O/G ABD	STRAT. TST.	O/G ABD	O/G ABD	O/G ABD	O/G ABD	O/G ABD	O/G ABD	O/G ABD	
T.D.		5200	7874	2901	12471	6081	6725	8868	3802	4991	4977	
REFERENCE ELEVATION		873 GR	805 GR	467 GR	1199 KB	755 GR	1062 KB	968 KB	737 KB	1201 KB	1240 KB	
N	ES)	78	74	55	85	67	59	60	72	75	74	
CATIC	ARTER	Я	0	Y	L	Р	H	H	D	H	H	
IC	(C COOR	4	18	2	8	80	14	24	19	4	21	
COUNTY		Morgan	Morgan	Owen	Pike	Powell	Pulaski	Pulaski	Rowan	Rowan	Rowan	
YEAR COMP.		1974	1974	1966	1971	1949	1969	1969	1969	1965	1972	
OPERATOR & WELL NAME		Monitor Pet. No. 1 Rice & Trimble	Monitor Pet. No. 1 Stacy	Tenn. Corp. No. BT-3 0'Donovan	Signal O & G No. 1 Stratton	S. Cent. Pet. No. 1 Hall	Amerada-Hess No. 1 Daulton	Amerada-Hess No. 1 Edwards	P. Henderson Oil No. 1 Bailey	Pennzoil No. 1 Jones	Ken. Cent. & Co. No. 1 Perkins	
NEN.		61	62	63	64	65	99	67	68	69	70	

2

TABLE 3. WELL DATA - Kentucky (con't)

SEA LEVEL ELEVATION NP -11221 NP -5608 -7872 -3042 -3765 -3765 ı I POROSITY FEET 13 13 1.0 ı 1 I. 1 AVERAGE POROSITY .055 .065 .09 .08 ï BASAL SANDSTONE UNIT SAND-SHALE RATIO 0.49 0.23 0.91 1.09 1 I 1 1 ۱ THICKNESS 25 179 300 1040 23 23 98 I 1 ī SEA LEVEL ELEVATION -NP -5147 -5147 -5308 -6832 -6832 -2934 -3742 -3730 I THICKNESS 115i 3235 1852 1403 2622 321 418 418 292 CONFINING UNIT I SEA LEVEL ELEVATION -2319 -7961 -3295 -3206 -4210 -2613 -3324 -3338 I 1 WATER 1 1 1

GEOPHYSICAL LOG Sol E × 1 ï ï ×× × GR-N 0/G ABD 0/G ABD 0/G ABD 0/G ABD O/G ABD DISP. DISP. STIATUS DISP. GAS T.D. 7182 5722 5718 5644 5090 4839 7692 6292 6281 4510 7560 3952 3998 3410 2159 3192 2041 2029 2225 2225 2760 4313 3058 7144 22345 7337 2217 REFERENCE ELEVATION 5 B PF U B GL E Ð DF B DF Ð DF DF DF B DF B DF DF B B DF B B DF E B B 1760 295 572 483 573 1504 1 986 1 1881 329 646 862 666 319 277 3350 3350 3359 364 524 579 733 583 672 712 617 Niagara Falls Cherry Creek Gainesville Orangeville Perrysburg Caledonia (ATHSNMOL) Somerset Royalton LOCATION Hamburg Alabama Carlton Carlton Alabama Carlton Ellery Ellery Varsaw lates lates Byron Byron **Kates** Hume Hume York York Cattaraugus Cattarauqus Chautauqua Chautauqua Chautauqua ivingston Chautauqua ivingston ivingston Allegany Allegany Niagara Myoming Niagara Wyoming Wyoming Myoming Orleans Jenesee Genesee Genesee Genesee Niagara Orleans Orleans Orleans Orleans Drleans COUNTY Erie 1960 -2967 964 966 965 968 996 996 996 9967 YEAR COMP. 1968 696 964 964 967 1964 1964 1962 1968 963 1961 964 1961 N.Y.S. Nat. Gas No. 1 McDonald N.Y.S. Nat. Gas No. 1 Johnson N.Y.S. Nat. Gas No. 1 McClurg Weaver Expl. No. I Brakenbury No. 1 Enterprise Transit N.Y.S. Nat. Gas No. 1 Veith N.Y.S. Nat. Gas No. 1 Werner N.Y.S. Nat. Gas No. 1 Wolfer Flanigan Bros. No. 1 Fisher Pennzoil No. 1 Harrington Minard Run Oil No. 1 Gage Humble Oil No. 1 Shadle Duchscherer No. 1 Klotzbach Duchscherer No. 1 Brundage Blair & Assoc. No. 1 Tyler Ashland O & R No. 1 Naylor Duchscherer No. 1 Morrison Hooker Chem. No. 68-D3 WD F.M.C. Corp. No. 68-D1 WD Duchscherer No. 1 Searles Iroquois Gas No. 1 Ellis Beth. Steel No. 68-D2 WD Parsons Bros. No. 2 Cook Duchscherer No. 1 Helfer Hammerstone No. 1 Wolfe Duchscherer No. 1 Green Duchscherer No. 1 Weil OPERATOR & WELL NAME No. 2 Neihaus - No. 1 Wilson i 1 20. 4 50

O/G ABD

B

Gaines

Orleans

Duchscherer No. 1 Woolston

WELL DATA - New York TABLE 4.

> MELL YORK MA

10 H 12 13

TABLE 4. WELL DATA - New York

CORE WATER

BASAL SANDSTONE UNIT AVERAGE SAND-SHALE RATIO

BASEMENT

PERMEABILITY (MD) POROS ITY FEET 11402 - 05 .077 .077 .095 . - 075 1.1 4.5 THICKNESS SEA LEVEL ELEVATION

1 5

SEA LEVEL ELEVATION

SONIC GEOPHYSICAL LOGS ы GR-N XXXXXX $1 \times$ XXXI \simeq 1 XXX 50 O/G ABD O/G ABD O/G ABD 0/G ABD 0/G ABD 0/G ABD O/G ABD STATUS T.D. 2664 2983 3152 3044 2185 3274 13500 6385 6000 4305 4353 3641 3750 4050 4152 11145 9390 5538 4853 2559 2325 2567 REFERENCE ELEVATION 501 GL 612 GL 630 GL 658 DF 658 DF 644 GL 644 GL 584 GL 584 GL 556 GL 556 GL BB 66 BB 316 354 434 597 556 497 587 392 401 1081 542 542 515 589 487 Farmington Farmington Van Etten (dIHSNMOL) Ridgeway Aurelius LOCATION Newfield Noodhull Sweeden Macedon Fayette Arcadia Shelby Kendal1 Kendall Gorham Jaines Tamlin . Sparta Junius Shelby Lyons Galen Danby Barre Livingston Tompkins Tompkins Orleans Orleans Orleans Orleans Steuben Ontario Orleans Orleans Ontario Ontario Orleans Chemung Monroe Monroe Senaca Wayne Wayne Senaca COUNTRY Wayne Nayne YEAR COMP. 1966 1958 1968 1968 1966 1965 1967 1964 1966 1966 1967 1965 1967 1965 1964 1959 1967 N.Y.S. Nat. Gas No. 1 Kesselring N.Y.S. Nat. Gas No. 1 Sheperd N.Y.S. Nat. Gas No. 1 Fee United Prod. No. 2 Schaffer Blair & Weaver No. 1 Kennedy Duchscherer No. 1 Nowack Duchscherer No. 1 Malone Duchscherer No. 1 Thaxter Hammerstone No. 1 Cook Duchscherer No. 1 Domoy Humble Oil No. 1 Kelly N.Y.S. Nat. Gas No. 1 Olin 1 Hammond Midwest Oil No. 1 Alnutt Strodwick No. 1 Bowerman Neaver Expl. No. 1 Hazen Duchscherer No. 1 Herman Duchscherer No. 1 Olson Hammerstone No. 1 Yantz Hammerstone No. 1 Wyman Hammerstone No. 1 Smith Hoover No. 1 Franklish Union Oil No. 1 Martin Duchscherer No. 1 Reed OPERATOR & WELL NAME Duchscherer No.

WELL DATA - New York (con't) TABLE 4.

> YORK NEW NO.

0/G ABD 0/G ABD

B

441

Victory

Cayoga Cayoga

1965

Aumble Oil No. 1 Wasielewski

Midas Gas Co. No. 2 Slayton

Duchscherer No. 1 Ripley

Duchscherer No. 1 Parker

Duchscherer No. 1 0'Neill

Duchscherer No. 1 Smith

1967

Cayoga

O/G ABD

3576 3402 3055

O/G ABD

4260

DF DF B Ð

Brutus

Cato

Cayoga Cayoga

1966

Cayoga

Cayoga

435 476 404

Conquest

Cato Ira

3756

GAS

TABLE 4. WELL DATA - New York (con't)

SEA LEVEL ELEVATION BASEMENT PERMEABILITY (MD) POROS ITY FEET 1.1.1.1.1.1.1.1 1 1 53 BASAL SANDSTONE UNIT AVERAGE .075 .063 .063 .11 .11 .11 .11 .11 .055 .055 .039 SHALE RATIO 2.5 4.9 4.9 14.7 2.0 2.0 2.0 2.0 2.0 2.0 1/0 THICKNESS SEA LEVEL CORE WATER

INOS GEOPHYSICAL LOGS E 5 GR-N × 1 × 1 × O/G ABD 0/G ABD 0/G ABD 0/G ABD 0/G ABD O/G ABD STATUS GAS T.D. 2559 9070 3581 2716 6875 2240 10992 4889 5703 4170 4366 5126 2592 REFERENCE ELEVATION RERE GL B GL DF B BB B GL B B E B 745 1 1785 318 3385 465 504 1830 1506 1255 1319 430 1979 1515 600 1486 1252 590 1549 1373 Sangerfield Brookfield Worchester Brookfield Maryland Franklin (JIHSNMOL) Hastings Williams Columbus LOCATION Lebanon Palermo Roxbury Hamden Verona Warren Oswedo Scriba Stark Delaware Chenango Herkimer Delaware Delaware Herkimer Madison Madison Madison Oswego Dneida Ostego Oswego Oswego Oswego Dneida Ostego Oswego COUNTY COMP. 1960 YEAR 1960 1959 1958 1965 1960 1966 1962 1963 1963 1962 1962 1962 1961 N.Y.S. Nat. Gas No. 1 Danisevich N.Y.S. Nat. Gas No. 1 Branagan N.Y.S. Nat. Gas No. 1 Letts-Miller N.Y.S. Nat. Gas No. 1 Burkard Devonian Gas No. 1 Puskeranko N.Y.S. Nat. Gas No. 1 Keith Bradley Prod. No. 1 Lobdell N.Y.S. Nat. Gas No. 1 Lum Gulf Oil No. 1 Campbell Gulf Oil No. 1 Lanzilotta Humble Oil No. 1 Hoose Humble Oil No. 1 Kellogg Humble Oil No. 1 Heaphy Benedum No. 1 Skranko Duchscherer No. 1 Hall Gulf Oil No. 1 Leslie Tower No. 1 Beckwith Cady No. 1 Ainsworth OPERATOR & WELL NAME 62

WFILL DATA - New York (con't) TABLE 4.

> YORK NO.

663 665 665 665 667 667 667 771 772 772 777 777 880 880 881

0/G ABD 0/G ABD

7185

BB

1928

1788

Highmarket

Wawayanda

Orange -Greene

Lewis

1959

Cromwells Inc. No. 1 Fee

United Prod. No. 1 Gans Humble Oil No. 1 Gould

1961

Wind Ham

TABLE 4. WELL DATA - New York (con't)

SEA LEVEL ELEVATION BASEMENT PERMEABILITY (MD) POROSITY FEET BASEMENT SANDSTONE UNIT AVERAGE POROSITY - 032 + 1 ... 1 1 ī ī ı 1 I I I I I I I I1 SHALE SHALE RATIO 4.5 11111111112 1 1 1 THICKNESS 44 20 20 20 20 43 64 64 118 118 118 119 333 60 1 1 1 SEA LEVEL ELEVATION CORE WATER ANALYSES

TABLE 5. WELL DATA - Ohio

TOG		ы	×	X	X	1	1	1	i	ı	1	X	X	i	1	X	í	Х	X	X	1.	X	Х	1	1	i	1	X	ı	X	1	Х
YSICAI		R-D	X	X	X	X	X	1	X	X	X	X	X	X	1	1	ı	J	ı	ı	X	X	×	X	1	1	1	X	ı	1	1	×
GEOPH		GR-N G	Х	X	I	ī	1	1	X	X	X	X	X	I	X	ı	X	ı	ı	ı	X	X	X	X	X	X	1	1	X	X	X	×
STATUS			O/G ABD	O/G ABD	DISP.	DISP.	O/G ABD	O/G ABD	O/G ABD	O/G ABD	O/G ABD	DISP.	DISP.	O/G ABD	O/G ABD	O/G ABD	O/G ABD	O/G ABD	O/G ABD	O/G ABD	O/G ABD	O/G ABD	O/G ABD	O/G ABD	O/G ABD	O/G ABD	O/G ABD	O/G ABD	O/G ABD	O/G ABD	O/G ABD	O/G ABD
T.D.			3790	3829	3133	3170	3170	5251	6659	6907	6750	3067	3296	3285	3570	3644	3435	3465	3457	3259	10242	6970	3774	3606	4035	4071	4291	4035	4685	3426	4434	4463
REFERENCE ELEVATION			714 KB	624 KB	872 KB	854 KB	856 KB	1114 G	861 KB	977 KB	983 KB	896 KB	667 KB	671 KB	1167 KB	1249 KB	817 KB	1087 KB	1080 KB	1092 KB	1194 KB	1040 KB	1008 KB	702 KB	992 KB	919 KB	920 G	996 KB	1205 KB	945 KB	819 DF	828 KB
LOCATION		(AIHSNMOL)	Jefferson	Jefferson	Shawnee	Shawnee	Shawnee	Ruggles	Morgan	Pierpoint	Trumbull	St. Marys	Lemon	Lemon	Harmony	Pleasant	Stonelick	Wayne	Wayne	Wayne	Hanover	Jefferson	Chatfield	Mark	Brown	Genoa	Orange	Oxford	Porter	Radnor	Florence	Florence
200UNTY			Adams	Adams	Allen	Allen	Allen	Ashland	Ashtabula	Ashtabula	Ashtabula	Auglaize	Butler	Butler	Clark	Clark	Clemont	Clinton	Clinton	Clinton	Columbiana	Coshocton	Crawford	Defiance .	Delaware	Delaware	Delaware	Delaware	Delaware	Delaware	Erie	Erie
YEAR COMP.	•		1964	1965	1968	1969	1972	1945	1970	1965	1965	1970	1967	1968	1964	1962	1960	1960	1958	1959	1970	1971	1965	1962	1965	1965	1937	1962	1965	1964	1964	1966
OPERATOR & WELL NAME			Cabot No. 1-A Bailev	Commonwealth No. 1 Covert	Vistron No. 1 Sohio	Vistron No. 2 Sohio	Vistron No. 3 Sohio	Ohio Oil No. 1 Krause	U.S. Oil No. 1 Roultstone	East Ohio No. 1 Brayman	Horizon No. 1 Rhoa	West Ohio No. 1 Hoelscher	Armeo No. 1 Armeo	Armco No. 2 Armco	Hodges No. 1 Elcamere Farms	Edmund No. 1 Brown	Continental No. 1 Wikoff	Kewanee No. 1 McVey	Kewanee No. 1 Adams	Kewanee No. 1 Van Pelt	Mngmmt. Contr. No. 3 Murray	Tatum No. 1 Lee	Hawkins No. 1 Leonhardt	Brown No. 1 Haver	McClure No. 1 Smith	Minnesota-Ohio No. 1 Lindsey	Wise No. 1 Vance	Wehmeyer No. 1 Sprain	Minnesota-Ohio No. 1 Gregory	So. Triangle No. 1 Jones	Ohio Fuel No. 1 Jones	Sun No. 1 Krysik-Wakefield
NO.			1	2	m	4	2	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30

0	1
ino	
1	
DATA	
MELL	
5.	
TABLE	

BASEMENT	SEA LEVEL ELEVATION	-3055	-3148	-2278	-2289	-2292	1	-5745	-5915	-5757	-2144	-2569	-2562	-2383	-2371	-2528	-2373	-2310	-2126	-9006-	-5924	-2782 (est)	1	-2999	-3134	-2925	-3004	-3480	-2475	-3581	-3627
	PERMEABILITY (MD)	1	1	80	1	1	1	1	ı	1	44	25.1	1	1	1	1	1	1	1	1	1	1	1	1	,	1	1	1	1	1	1
TINU	POROSITY FEET	6	5	1	ı	ı	ı	1	~10	~ 8	1	40	1	45	42	17	25	~38	1.0	13	8	11	25	24	11 1	1	19	18	25	I	14
SANDSTONE	AVERAGE POROSITY	.15	.11	T	ı	I	1	ı	.11	.07	1	.125	1	.185	.145	.10	.17	.115	.02	.06	.075	.10	.13	.18	.19	1	.15	.14	.17	1	.16
BASAI	SAND- SHALE RATIO	9	~100	ı	ı	1	1	ı	t	1	1	45	ı	41	42	4.5	37		~100	~100	~100	~100	8	2.4	~100	1	6	~100	~100	ı	~100
	THICKNESS	QN	R	329	343	368	136i	100	114	120	327	R	Ð	250	430	220	320	330	R	175	104	140	464i	191	58	135	150	125	145	06	95
	SEA LEVEL ELEVATION	Ð	Q	-1949	-1946	-1924	-4001	-5645	-5801	-5637	-1817	Q	2	-2133	-1941	-2308	-2053	-1980	R	-8831	-5820	-2642	-2440	-2808	-3076	-2790	-2854	-3355	-2330	-3491	-3532
TINU DN	THICKNESS	Ð	R	401	410	380					373	R	R	360	380	541	R	Q	Q				314								
CONFINIT	SEA LEVEL ELEVATION			-1548	-1536	-1544					-1444			-1773	-1561	-1767							-2126								
CORE		1	1	X	i	1	1	1	1	1		X	1	1	•	ı	1	1	•	1	1	1	1	1	1	1	1	I	1	1	1
WATER ANALYSES		1	1	X	1	1	1	ı	1	1	1	X	1	ł	1	1	1	,	1	1	1	1	1	•	1	,	,	1	1	•	1

TABLE 5. WELL DATA - Ohio (con't)

DOG .		ы	X	ı	X	X	1	1	1	X	X	Х	X	I	X	X	X	1	1	X	X	X	X	ı	X	1	1	×	X	ı	ı	X
IYSICAI		GR-N	I	1	1	X	X	I	ı	1	I	ı	1	X	1	X	X	1	1	I	X	X	X	1	I	I	X	1	1	X	1	X
GEOPH		GR-N	X	X	X	X	X	X	X	X	X	X	ı	X	1	X.	X	1	X	1	X	X	X	X	1	Х	X	X	X	X	X	X
			3D	BD	Q	SD	SD	3D	3D	BD	BD	BD	SD	D	BD	Q	Q	SD	SD	SD		Q	D	D	SD	D	Q	D	D	D	Q	D
STATUS			O/G M	O/G M	O/G M	O/G M	O/G M	O/G M	O/G M	O/G AF	O/G AF	O/G M	O/G AF	O/G M	O/G AF	O/G AF	O/G AF	O/G AF	O/G AF	O/G AF	DISP.	O/G AF	O/G AE	O/G AE	O/G AF	O/G AF	O/G AF	O/G AF	O/G AF	O/G AF	O/G AB	O/G AB
T.D.			3494	3410	4708	3623	3700	8622	2797	2805	3017	3002	2834	3610	3512	6495	6320	407	5376	5745	6072	4952	4802	1665	3361	4590	3915	3631	3672	6731	7040	3215
REFERENCE			1017 DF	1044 DF	965 DF	697 KB	690 KB	1007 KB	833 KB	809 KB	824 DF	971 KB	941 KB	957 DF	1043 KB	970 KB	816 KB	1183 KB	1204 KB	1253 KB	701 KB	1179 KB	1068 KB	1060 KB	1190 DF	850 DF	675 DF	995 KB	1001 KB	1117 KB	1200 KB	838 DF
LOCATION		(JIHSNMOL)	Concord	Jasper	Union	Franklin	Swancreek	Adams	Amanda	Jackson	Union	Dudley	Jackson	Fairfield	Fairfield	Starr	Franklin	Hilliar	Milford	Pike	Perry	Hartford	Lima	Mary Ann	McArthur	Henrietta	Harding	Fairfield	Claridon	Granger	Hinckley	Center
COUNTY	-		Fayette	Fayette	Fayette	Franklin	Fulton	Guernsey	Hancock	Hancock	Hancock	Hardin	Hardin	Highland	Highland	Hocking	Jackson	Knox	Knox	Knox	Lake	Licking	Licking	Licking	Logan	Iorain	Lucas	Madison	Marion	Medina	Medina	Mercer
YEAR COMP.			1957	1958	1957	1965	1970	1961	1964	1966	1964	1964	1962	1972	1959	1966	1964	1964	1963	1961	1971	1964	1965	1961	1947	1960	1972	1965	1962	1959	1959	1971
OPERATOR & WELL NAME			Kewanee No. 1 Wilson	Kewanee No. 1 Barnes	Kewanee No. 1 Hopkins	Marble Cliff No. 1 Fee	Liberty No. 1 Storeholder	Iakeshore No. 1 Marshall	Cowen No. 1 Harris	Kin-Ark No. 1 Drummelsmith	Dever No. 1 Frazier	McMahon-Bullinton No. 1 Wolf	Edmund No. 1 Jones	Ohio Valley No. 1 Courtney	Kewanee No. 1 Pavey	Dunigan No. 1 Hockman	Halbert No. 1 Wood	Kin-Ark No. 1 Huffman	Ohio Fuel No. 1 Larimore	Cantway No. 1 Cunningham	Calhio No. 1 Calhio	Atha No. 1 Roberts	Ashland No. 1 Schmelzer	Lakeshore No. 1 Crowley	Ohio Oil No. 1 Johns	East Ohio No. 1 Born	Liberty No. 1 Ketrin	Amerada No. 1 Hume	United No. 1 Mitchell	Ohio Fuel No. 1 Warner	Wiser No. 1-A Smith	Harner Union No. 2 Yewey
OHIO WELL NO.			31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	26	57	58	59	09

5

TEP	CORE ANALYSES	CONFINI	NG UNIT			BASI	INOLSONS TN	TINU 3		BASEMENT
		SEA LEVEL ELEVATION	THICKNESS	SEA LEVEL ELEVATION	THICKNESS	SAND- SHALE RATIO	AVERAGE POROSITY	POROSITY FEET	PERMEABILITY (MD)	SEA LEVEL ELEVATIO
	1		Ð	-2011	312	I	i	I	I	-2323
1	I					4	.055	6	1	-2288
	1			-2255	325	6	.18	36	1	2580
	1			-2778	131	~100	.225	29	1	-2909
	1	-2350	300	-2650	220	14	.095	17	1	-2870
	1			-7238	86	1	.04	e	1	-7324
1	1		2	R	R	i	.15	36	1	-1962
	1		240	-1641	345	~100	.185	45	1	-1986
	,		Ð	R	R	1	.17	52	1	-2184
1	1		2	R		5	.18	35	1	-1987
1		-1411	220	-1499	400	~100	.18	45	1	-1899
	1		2	Q	2	ı	1	1	1	-2616
			Q	-2237	235	e	.24	40	1	-2472
	•			-5430	70	6	.08	S	1	-5500
1	1			-5334	80	2	60.	9	1	-5414
1	1			-3477	113	~ 50	60.	10	1	-3590
1	,			-3986	174	4	.13	18	1	-4160
1	i			1	80i	i	1	1	1	1
	X			-5227	137	1	.084	I	11.6	-5364
	i			-3586	149	24	.15	21	1	-3735
1	1			-3721	119	6	.16	17	1	-3721
1	1			-4810	1.08	80	60.	6	1	-4918
1	1	-1325	420	-1745	317	25	1	ı	1	-2062
,	1			-3630	93	11	.05	4	1	-3723
1	1	-2427	198	-2625	323	1	ı	I	I	-2948
1	•			-2415	207	13	.16	31	1	-2622
1	1			-2599	65	1	.18	12	1	-2664
1	ī			-5423	122	6	.07	8	1	-5545
				-5320	60	I	.045	1	1	-5380
		-1527	440	-1967	345	ı	1	i	1	-2312

TABLE 5. WELL DATA - Ohio (con't)

WALL

GEOPHYSICAL LOGS S E GR-D GR-N × XX 0/G ABD 0/G ABD O/G ABD 0/G ABD 0/G ABD O/G ABD O/G ABD O/G ABD O/G ABD 0/G ABD 0/G ABD O/G ABD O/C ABD O/G ABD O/G ABD O/G ABD O/G ABD OISP. ABD O/G ABD STATUS DISP. DISP. T.D. 3876 4100 3513 4450 4215 4890 4048 3411 3866 1442 3731 3257 4179 3377 5085 5503 3863 2932 3123 2721 2822 2782 5617 3175 3276 3360 3352 3242 6919 6897 ELEVATION REFERENCE 1176 KB 1458 KB 1035 KB 2 Ø Ð Ð Ð Ð DF Ð Ð 2 Ð H 693 DF Ð DF Ð Ð Ð 短近ら短 2 U 22 0 1458 1035 620 1035 995 1140 L004 1016 998 995 1035 797 856 740 1398 644 633 650 647 796 1007 557 1050 1037 820 960 151 Washington Lost Creek Bennington Cardington Washington Washington Westfield Woodville *Woodville* (ATHSNMOL) LOCATION Pickaway Townsend Chippewa Jennings Jackson Liberty Madison Concord Canaan Canaan Monroe Riley Adams Perry Union Green Salem Green Peru Troy ELK Pickaway Pickaway Pickaway Richland Richland Sandusky Sandusky Sandusky Sandusky Sandusky Van Wert MOLLOW MOLLOW MOLTOW MOLLOW Putnam COUNTY **WDLTOW** VOLLOW MOLLOW Scioto Seneca Shelby Shelby Miami Nayne Noble Union Miami Wayne Ross COMP. YEAR 1964 1965 1961 1955 1964 1962 1958 1967 McMahon-Bullington No. 1 Croman1963 1959 1944 967 1966 L964 1972 1960 1965 965 L956 973 964 1964 1965 961 1961 Ohio Liquid Disposal No. 1 Fee Pan American No. 1 Windbigler U.S.S. Chemicals No. 1 Fee Kin-Ark No. 5 Shaver-Neff Empire Reeves No. 1 Fee Ashland No. 1 Stigamire East Ohio No. 2 Steiner Great Lakes No. 1 Drake Ohio Oil No. 1 Barlage Otter Creek No. 1 Irev West Ohio No. 5 Miller National No. 1 Walker Comanche No. 1-C Bush Tri-State No. 2 Scott Kewanee No. 1 Long Midwest No. 1 Miller Amerada No. 1 Ullman Ohio Oil No. 1 Bruns H. & R. No. 1 Zenith OPERATOR & WELL NAME Wehmeyer No. 1 Henry East Ohio No. 1 Haff Maguire No. 1 Kerbel Dunigan No. 1 Avers Sun No. 1 Levering United No. 3 Myers Crest No. 1 Clark Wray No. 1 McBee Sun No. 1 Nelson Jump No. 1 Fogt

O/G ABD

TABLE 5. WELL DATA - Ohio (con't)

PEL O.

100400

ATER ALYSES	CORE	CONFINI	NG UNIT			BASI	INOTZUNAS IN	TINU 3		BASEMENT
		SEA LEVEL. ELEVATION	THICKNESS	SEA LEVEL ELEVATION	THICKNESS	SHALE SHALE RATIO	POROSITY	POROSITY	PEMEABILITY (MD)	SEA LEVEL ELEVATION
1	1		R	R	Q	~100	60.	14	1	-2215
1	1	-1509	385	-1894	391	1	1	1	1	-2285
1	1			-3230	75	1	1	ı	1	-3305
1	1			-2756	115	1	1	i	1	-2871
•	1			-2849	137	ı	ı	1	1	-2986
1	1			-2743	124i	13	.15	17	1	1
1	1			-3036	152	37	.17	25	1	-3188
,	'			-3352	120	12	.10	12	1	-3472
1	,			-2870	144	13	.15	20	1	-3014
1	1			-10,200	175	2	.03	S	I	-10,375
,			R	R	Q	1	1	1	1	-2943
1		-1994	150	-2144	185	1	ı	1	1	-2329
1	1			-3256	199	6	.14	25	1	-3455
I	1	-1860	300	-2160	350	1	1	1	1	-2510
X	X			-3817	68	~100	.14	10	6	-3885
1	•			-3947	92	1	.08	2	1	-4039
I	•			-2625	185	10	.16	27	I	-2810
1	X			-2190	122	1	.155	1	30	-2312
1	•			-2314	134	~100	.20	27	1	-2448
1	1			-1887	186	~100	.175	33	1	-2073
1	1			-1827	190	ı	1	1	1	-2017
1	1.			-1883	230	~ 20	.16	37	I	-2113
X	X			-4957	99	~ 50	.12	8	27	-5023
1	•			-2244	100	~100	.22	22	1	-2344
1	1	-1444	402	-1816	274	2	.07	6	i	-2090
1	1		Q	2	Q	,	1	1	1	-2245
1	1	-1724	345	-2069	280	~100	.15	26	1	-2349
•	1	-1580	400	-1980	414	1	1	1	1	-2394
1	1			-5810	134	~ 50	.05	2	1	-5944
1	1			-5435	142	ı	ı	1	1	-5577

÷

TABLE 5. WELL DATA - Ohio (con't)

ANA

TABLE 5. WELL DATA - Ohio (con't)

GS	S	X	1	1	I	i	I	1	I	1	I	I	I	1	
TO	Щ	1	1	X	X	1	1	1	1	1	×	1	X	×	
IYSICAI	GR-D	X	1	1	1	ı	1	ī	1	ĩ	1	1	X	X	12 1 -
GEOPH	GR-N	X	X	X	I	I	×	×	1	X	×	X	X	1	
STATUS		O/G ABD	O/G ABD	O/G ABD	O/G ABD	O/G ABD	O/G ABD	O/G ABD	O/G ABD	O/G ABD	O/G ABD	O/G ABD	O/G ABD	O/G ABD	
T.D.		4497	4172	2827	2764	2927	2825	2786	2801	3260	2902	2875	4097	5681	
REFERENCE		914 KB	842 DF	672 KB	694 KB	688 G	670 KB	677 KB	860 G	942 KB	846 KB	868 DF	1021 KB	665 KB	
LOCATION	(ATHSNMOL)	Bridgewater	St. Joseph	Center	Center	Liberty	Middleton	Plain	Crawford	Eden	Mifflin	Salem	Fitchville	Hamilton	
A.IMOO		Williams	Williams	Mood	Mood	Mood	Mood	Mood	Wyandot	Wyandot	Wyandot	Wyandot	Huron	Jackson	
YEAR COMP.		1971	1963	1965	1964	1937	1965	1965	1942	1965	1964	1964	1965	1964	
OPERATOR & WELL NAME		Columbia No. 1 Cook	Beglinger No. 1 Kennerk	Kin-Ark No. 1 Carter	Southern Triangle No. 1 Kan.	Brailey No. 1 Killian	J.R.S. No. 1 Asmus	Kin-Ark No. 1 Smith	Ohio Oil No. 1 Heck	Minnesota-Ohio No. 1 Eyestn.	Texaco No. 1 Bowen	Comanche No. 1 Frey	Kin-Ark Oil Co. No. 1 Gray	Halbert No. 1 Slavens	
OINC.		16	92	93	94	95	96	57	98	66	100	LOI	102	103	

TABLE 5. WELL DATA - Ohio (con't)

SEA LEVEL ELEVATION BASEMENT PERWEABILITY (MD) 1 ı 1 I. I 1 FEET 10 42 1 1 1 BASAL SANDSTONE UNIT AVERAGE POROSITY .17 - -- 1175 .175 .175 .175 .175 .055 .05 SAND-SHALE RATIO ~50 5 8 8 13 13 13 23 1 I. 1 THICKNESS 357i 422 325 300 ND 355 355 355 355 355 195 175 93 105 SEA LEVEL ELEVATION -3226 -2658 -1828 -1726 ND -1780 -1713 -1698 -2113 -1817 -283 -1817 -283 THICKNESS 400 322 250 250 275 ND 180 170 2 CONFINING UNIT SEA LEVEL ELEVATION -2826 -2336 -1578 -1451 -1543 CORE WATER ANALYSES ۱ 1

TABLE 6. WELL DATA - Pennsylvania

IJOGS	SONIC	i	1	1	1	ı	
HSICAL	ы	X	X	×	X	ı	
GEOPI	GR-N	X	X	X	X	Х	
STATUS		O/G ABD	O/G ABD	DISP. ABD	O/G ABD	O/G ABD	
T.D.		6166	8031	5972	7465	11878	
REFERENCE		1344 KB	1337 KB	650 GL	1474 KB	2240 KB	
LOCATION	(dihsnmol)	Stoneboro	Linesville	Erie	Venango	Bradford	
COUNTY		Mercer	Crawford	Erie	Erie	McKean	
YEAR COMP.		1965	1958	1964	1965	1962	
OPERATOR & WELL NAME		People's Nat. Gas No. 1 Temple	Benedum & Arkla Gas No. 1 Kardosh	Harmermill Paper No. 2 Harmermill	Consol Gas Supply No. 1 Denee	Minard Run Oil No. 1 Minard Run	
PENN. WELL NO.		Ч	2	e	4	S	

TABLE 6. WELL DATA - Pennsylvania

CORE							
ANALYSES			BASZ	INOTSUNS IN	TINU 3		BASEMENT
	SEA LEVEL ELEVATION	THICKNESS	SAND- SHALE RATIO	AVERAGE POROSITY	POROSITY FEET	PERMEABILITY (MD)	SEA LEVEL ELEVATIO
1	-8326	132	6.3	.065	7.4	1	-8458
1	-6473	110	3.23	.07	5.8	1	-6583
X	-5254	48	2.07	.04	1.2	230	-5302
1	-5906	55	2.67	.06	2.4	1	-5961
1	-9455	183	ı	1	1	I	-9638

TABLE 7. WELL DATA - West Virginia

IOGS	JINOS	I X I
V SICAL	щ	× × ×
GEOPH	GR-N	× × ×
STATUS		0/G ABD 0/G ABD 0/G ABD 0/G ABD 0/G ABD 0/G ABD 0/G ABD 0/G ABD
T.D.		8552 20222 19154 8635 19537 14625 13331 17625
REFERENCE ELEVATION		652 1206 737 597 935 594 1039 910
LOCATION	(DISTRICT)	Union Center DuVal Clendenin Harvey Butler Walker Washington
COUNTY		Cabell Calhoon Lincoln Mason Mingo Wayne Wood Jackson
YEAR COMP.		1971 1974 1974 1959 1973 1973 1975 1975
OPERATOR & WELL NAME		Cycops Corp. No. 1 Kingery Exxon No. 1 Hathaway Exxon No. 1 McCormick United Fuel Gas No. 1 Arrington Columbia Gas Trans. No. 1 C.G.T. Exxon No. 1 Smith Hope Nat. Gas No. 1 Power Oil Exxon No. 1 McCoy
WEST VIR. WELL NO.		- こ こ 4 ら ら F ⊗

TABLE 7. WELL DATA - West Virginia

SEA LEVEL ELEVATION BASEMENT -7838 ~19000 ~18000 -7961 ~18000 ~14000 ~14000 ~12233 ~16700 PERMEABILITY (MD) 1 I I I I ۱ I I POROSITY BASAL SANDSTONE UNIT ī I 1 1 I I 1 I AVERAGE POROSITY ı ł i. 1 I I 1 SAND-SHALE RATIO TIGHT HOLE -282 -TIGHT HOLE -I I TIGHT HOLE 415 -TIGHT HOLE TIGHT HOLE THICKNESS 80 SEA LEVEL ELEVATION --7546 --11951 --7758 CORE ī i 1 WATER ANALYSES 1 I ı

TABLE 8

SALINITY (TOTAL DISSOLVED SOLIDS) AND DENSITY OF WATERS FROM THE BASAL SANDSTONE UNIT IN THE OHIO VALLEY AREA

Illinois Well No.	Depth of Observation	Sea Level Elevation of Observation	Total Dissolved Solids	Fluid Density	Method of Interpretation
75	3889	-3150	000,000		
	3942	-3203	000,00	1.059	Water Analysis
76	3882	-3140	82,600		
	3931-4010	-3189	82,600	1.016	Water Analysis
29	4550	-3818	107,100		
	4570	-3834	107,100	1.074	Water Analysis
77	3894	-3215	113,000		
	3995	-3316	113,000	1.081	Water Analysis
	4000	-3321	50,000		Log Analysis
	4265	-3586	100,000		Log Analysis
M	1818	-1084	< 10,000		Log Analysis
	2200	-1466	2,000	1.000	Water Analysis
	2213	-1479	10,000		Log Analysis
	2500	-1766	7,000	1.003	Water Analysis
	2793	-2059	50,000		Log Analysis
	3000	-2266	28,500	1.020	Water Analysis
	3643	-2909	100,000		Log Analysis
	3900	-3166	93,000	1.070	Water Analysis
4	6895	-6357	v 80,000		Log Analysis
	7115	-6577	46,000		Log Analysis
	7245	-6707	67,000		Log Analysis
	0062	-7362	24,000		Log Analysis
	8112	-7574	58,000		Log Analysis

1

TABLE 8 (con't)

Salinity (total dissolved solids) and Density of Waters from the Basal Sandstone Unit in the Ohio Valley Area

TABLE 8 (con't)

Salinity (total dissolved solids) and Density of Waters from the Basal Sandstone Unit in the Ohio Valley Area

		Cea Lettel	Tctal		
Illinois Well No.	Depth of Observation	Elevation of Observation	Dissolved Solids	Fluid Density	Method of Interpretation
80	2133 2508	-1470 -1845	12,200 13,400	1.011	Log Analysis Water Analysis
81	2060 ⁻ 2178	-1420 -1538	17,900 17,900	1.011	Water Analysis
52	2958 3008	-2226 -2276	50,800 50,800	1.034	Water Analysis
14	4940 4974	-4436 -4470	98,500 98,500	1.070	Water Analysis
16	8400 8430 8612 8826	-7859 -7889 -8071 -8285	50,000 175,000 100,000 150,000		Log Analysis Log Analysis Log Analysis Log Analysis
	8892	-8351 -8499	262,000 200,000	1.165	Water Analysis Log Analysis
82	3946 3956	-3170 -3180	74,400 74,400	1.053	Water Analysis
58	3537 3608	-2810 -2881	59,600	1.045	Water Analysis
83	3846 3857-3943	-3100 -3111	64,400 64,400	1.051	Water Analysis
62	3896 3908-3994	-3115 -3127	68,400 68,400	1.050	Water Analysis

TABLE 8 (con't)

Salinity (total dissolved solids) and Density of Waters from the Basal Sandstone Unit in the Ohio Valley Area

Method of Interpretation	Log Analysis Log Analysis	Water Analysis	Water Analysis	Log Analysis Water Analysis	Water Analysis	Water Analysis
Fluid Density		1.035	1.013	1.041	1.005	
Total Dissolved Solids	∿ 80,000 28,000	51,400 51,400	20,000	20,000 61,600	4,100	214,000
Sea Level Elevation of Observation	-3448 -3543	-3448 -3460	-2084	-2371 -2582	-1729	IN
Depth of Observation	4120 4215	4088 4100	2750	2898 3109	2466	6660
Illinois Well No.	64	84	18	21	71	70

SALINITY (TOTAL DISSOLVED SOLIDS) AND DENSITY OF WATERS FROM THE BASAL SANDSTONE UNIT IN THE OHIO VALLEY AREA

2 3090 2293 0.113 0.014 0.010 0.01	Indiana	Depth of	Sea Level Elevation of	Total Dissolved	Fluid	Method of
2 3090 -2293 0.15,000 Log Anallog Anallog Anallog Anallog 3142 -2445 15,000 Log Anallog Anallog Anallog 3125 -2496 109,000 Log Anallog Anallog 20 3132 -2268 0109,000 Log Anallog Anallog 21 2360 -2496 109,000 Log Anallog Anallog 21 2360 -2167 109,000 Log Anallog Anallog 22 2366 -2048 0,000 Log Anallog 25 2780 -0048 0,000 Log Anallog 26 2366 -2014 0,000 Log Anallog 2780 -2014 0,000 1.062 Log Anallog 2866 -2014 0,0000 1.062 Log Anallog 2966 -2111 78,000 Log Anallog Log Anallog 2966 -2234 112,000 Log Anallog Log Anallog 2966 -2214 0,000 Log Anallog Log Anallog 2910 290,000	ON TIDE	INDET VALUATION	ODSET VACTOR	COTTOC	ATTENIAN I	TILLET PLETALEU
3142 -2345 15,000 Log Anal 3275 -2478 25,000 Log Anal 3440 -2643 18,000 Log Anal 3132 -2456 109,000 Log Anal 3360 -2496 109,000 Log Anal 47 2789 -2167 Log Anal 2780 -2167 1.06.4 Water Ana 2780 -2167 1.06.00 Log Anal 2780 -2167 1.06.00 Log Anal 2780 -2167 0.38,000 Log Anal 2786 -2164 0.38,000 Log Anal 2786 -2174 0.90,000 Log Anal 2946 -2117 78,000 Log Anal 2946 -2234 112,000 Log Anal 2946 -2234 112,000 Log Anal 2946 -2234 112,000 Log Anal 2946 -2234 110,000 Log Anal 2946 -2239 140,000 Log	2	3090	-2293	v 15,000		
3275 -2478 25,000 Log Anal 3440 -5643 19,000 Log Anal 3360 -2268 ~100,000 Log Anal 47 2789 -2476 J00,000 Log Anal 25 2780 -2038 J.066 Mater Anc 25 2780 -2048 38,000 Log Anal 25 2786 -2014 was,000 Log Anal 26 2786 -2014 was,000 Log Anal 2786 -2014 was,000 Log Anal Log Anal 2836 -2114 v. 33,000 Log Anal Log Anal 2906 -2214 v. 90,000 Log Anal Log Anal 2910 -2214 J10,000 Log Anal Log Anal 2910 -2214 J00,000 Log Anal Log Anal 2910 -2214 J00,000 Log Anal Log Anal 2910 -2211 78,000 Log Anal Log Anal 2910		3142	-2345	15,000		Log Analysis
3440 -2643 18,000 Log Anal 20 3132 -2268 \u00,000 Iog Anal 47 2789 -2246 109,000 Iog Anal 25 2786 -2038 \u00,000 Iog Anal 25 2786 -2048 \u00,000 Iog Anal 25 2786 -2048 \u00,000 Iog Anal 26 2786 -2048 \u00,000 Iog Anal 2786 -2048 \u00,000 I.064 Water Ana 2906 -2114 \u00,000 I.062 Iog Anal 2916 -2111 78,000 I.062 Water Ana 2946 -2111 78,000 I.062 Water Ana 2910 -2111 78,000 I.063 Mater Ana 2910 -2199 73,000 I.062 Water Ana 2910 -2111 78,000 I.063 Mater Ana 2910 -2199 73,000 I.062 Mater Ana		3275	-2478	25,000		Log Analysis
20 3132 -2268 \u100,000 109,000 Iog Anal 47 2789 -2496 109,000 Iog Anal 25 2780 -2038 -2038 I.064 Water Ana 25 2780 -2048 \u0000 I.064 Water Ana 25 2780 -2034 \u0000 I.064 Water Ana 26 2786 -2034 \u0000 I.064 Water Ana 2786 -2048 \u0000 I.064 Water Ana 2826 -2174 \u0000 I.065 Mater Ana 2966 -2114 \u0000 I.065 Mater Ana 2910 -2234 II2,000 I.062 Mater Ana 2928 -2111 \u0000 I.062 Mater Ana 2910 2928 -2199 I00,000 I.062 Mater Ana 2910 2930 -2199 I00,000 I.062 Mater Ana 2910 2931 100,000 I.062		3440	-2643	18,000		Log Analysis
3360 -2496 109,000 Log Anal 47 2789 -2038 1.064 Water Ana 25 2789 -2048 38,000 Log Anal 26 2780 -2048 38,000 Log Anal 27 2786 -2048 38,000 Log Anal 27 2786 -2054 v. 38,000 Log Anal 2836 -2104 v. 38,000 Log Anal 2906 -2114 v. 90,000 1.062 Water Ana 2946 -2214 100,000 1.062 Mater Ana 2910 2828 -2219 78,000 Log Anal 2910 291 73,000 1.062 Mater Ana 3900	20	3132	-2268	v100,000		
47 2789 -2038 -2038 1.064 Water Ana 25 2780 -2048 38,000 Log Anal 2780 -2048 0.38,000 Log Anal 2786 -2048 0.38,000 Log Anal 2786 -2048 0.38,000 Log Anal 2786 -2104 0.000 Log Anal 2906 -2114 0.0000 Log Anal 2906 -2111 78,000 Log Anal 2910 -2214 100,000 Log Anal 2910 -22199 100,000 Log Anal 2910 -22199 100,000 Log Anal 2958? -2117 78,000 Log Anal 2910 -22199 100,000 Log Anal 2910 -22199 0.000 Log Anal 2910 -22199 101,000 Log Anal 2910 -22199 101,000 Log Anal 2910 -22199 101,000 Log Anal 3770 -2219 104,000 Log Anal 3770 -2211 <td></td> <td>3360</td> <td>-2496</td> <td>109,000</td> <td></td> <td>Log Analysis</td>		3360	-2496	109,000		Log Analysis
2904 -2167 1.064 Water Ana 25 2780 -2048 38,000 Log Anal 2786 -2048 0.38,000 Log Anal 2866 -2174 0.90,000 Log Anal 2906 -2174 0.90,000 Log Anal 2906 -2174 0.90,000 Log Anal 2946 -2214 110,000 Log Anal 2946 -2214 100,000 Log Anal 2946 -2214 112,000 Log Anal 2946 -2214 1100,000 Log Anal 2946 -2214 100,000 Log Anal 2946 -2214 100,000 Log Anal 2946 -2219 100,000 Log Anal 2910 -2117 78,000 Log Anal 2910 -2299 148,000 Log Anal 29587 -2299 148,000 Log Anal 3550 -2591 74,000 Log Anal 3770 -2811 104,000 Log Anal 3890 -2931 121,000 Log A	47	2789	-2038			
25 2780 -2048 38,000 Log Anal 2786 -2054 0.38,000 50,000 Log Anal 2836 -2104 50,000 1.062 Mater Ana 2906 -2174 0.90,000 1.062 Mater Ana 2946 -2214 100,000 1.062 Mater Ana 2946 -2211 78,000 1.062 Mater Ana 2822 -2111 78,000 1.066 Mater Ana 2910 2828 -2113 78,000 1.062 Water Ana 2910 2299 100,000 1.062 Water Ana Nater Ana 3010 2958? -2209? 0.90,000 1.062 Water Ana 3770 2951 74,000 1.062 Mater Ana 1.093 1.093 Nater Ana 3890 -2231 104,000 -231 <td< td=""><td></td><td>2904</td><td>-2167</td><td></td><td>1.064</td><td>Water Analysis</td></td<>		2904	-2167		1.064	Water Analysis
25 2780 -2048 38,000 Log Anal 2786 -2054 0.38,000 Log Anal 2836 -2104 50,000 Log Anal 2836 -2174 0.90,000 1.062 Water Ana 2906 -2214 110,000 Log Anal 2946 -2234 112,000 Log Anal 2946 -2211 78,000 Log Anal 2946 -2234 1100,000 Log Anal 2946 -2234 1100,000 Log Anal 2940 2828 -2117 78,000 2910 -2117 78,000 Log Anal 2910 -2299 190,000 Log Anal 2910 -2299 148,000 Log Anal 3710 2350 -22591 74,000 3770 -2811 104,000 Log Anal 3770 -2811 104,000 Log Anal 3890 -2931 121,000 Log Anal		:				
2786 -2054 v 38,000Log Anal2836 -2104 50,0001.062Water Ane2906 -2214 $100,000$ 1.062 Water Ane2946 -2214 $112,000$ 1.062 Water Ane2946 -2214 $112,000$ 1.062 Water Ane2946 -2214 $112,000$ 1.062 Mater Ane2946 -2214 $112,000$ 1.062 Mater Ane2946 -2214 $100,000$ 1.062 Mater Ane2946 -22117 78,000 1.062 Mater Ane2910 -22199 $100,000$ 1.062 Mater Ane2910 2958 -2117 78,000 1.062 Mater Ane2910 2958 -2119 $100,000$ 1.062 Water Ane2910 2958 -2299 $148,000$ 1.062 Water Ane3 3412 -22591 $74,000$ 1.062 Mater3770 2550 -2291 $74,000$ $1.04,000$ $1.04,000$ 3890 -2811 $104,000$ $1.04,000$ $1.09,000$ $1.09,000$ 3890 -2931 $121,000$ $29,000$ $1.04,000$ $1.09,000$ 3890 -2931 $1.04,000$ $1.04,000$ $1.09,000$ $1.09,000$ 3890 -2931 $1.04,000$ 1.000 1.000 1.000 3890 -2931 $1.01,000$ 1.000 1.000 1.000 3890 -2931 1.000 1.000 1.000 1.000 <	25	2780	-2048	38,000		Log Analysis
2836 -2104 50,000 Log Anal 2906 -2174 $v. 90,000$ Log Anal 2946 -2214 110,000 Log Anal 2946 -2214 112,000 Log Anal 2966 -22111 78,000 Log Anal 48 2822 -2111 78,000 Log Anal 2910 -2117 78,000 Log Anal 210 2828 -2111 78,000 Log Anal 2910 -2119 78,000 Log Anal 2910 -2119 78,000 Log Anal 2910 -2199 100,000 Log Anal 2910 -2299? $v. 90,000$ Log Anal 3010 -2299 73,000 Log Anal 3 3412 -2299 74,000 3770 -2811 104,000 Log Anal 3890 -2811 104,000 Log Anal 3890 -2811 104,000 Log Anal 3890 -2811 100 Log Anal 2820 -2811 100 Lo		2786	-2054	N 38,000		
2906 -2174 v 90,000 1.062 Water Ana 2946 -2214 100,000 Log Anal 2946 -2214 100,000 Log Anal 2966 -2214 100,000 Log Anal 2956 -2111 78,000 Log Anal 2828 -2117 78,000 Log Anal 2910 -2199 100,000 Log Anal 2910 -2199 100,000 Log Anal 2910 -2209? v 90,000 Log Anal 3010 -2299 148,000 Log Anal 3770 -2269 73,000 Log Anal 3770 -2281 74,000 Log Anal 3890 -2311 104,000 Log Anal 3890 -2331 121,000 Log Anal 2890 -2031 121,000 Log Anal		2836	-2104	50,000		Log Analysis
2946 -2214 100,000 Log Anal 2966 -2234 112,000 Log Anal 2966 -2234 112,000 Log Anal 2966 -22111 78,000 Log Anal 2828 -2117 78,000 Log Anal 2910 -2117 78,000 Log Anal 2910 -2117 78,000 Log Anal 2910 -2199 100,000 Log Anal 2910 -2199 100,000 Log Anal 2910 -2209? -2199 Log Anal 2958? -2299 148,000 Log Anal 3010 -22599 148,000 Log Anal 3<3412		2906	-2174	000,000 v	1.062	Water Analysis
2966 -2234 112,000 Log Anal 48 2822 -2111 78,000 Log Anal 2910 -2117 78,000 Log Anal 2910 -2117 78,000 Log Anal 2910 -2119 78,000 Log Anal 2910 -2119 78,000 Log Anal 2910 -2199 100,000 Log Anal 2910 -2199 100,000 Log Anal 2910 -2299 148,000 Log Anal 3010 -2299 148,000 Log Anal 3770 -2291 73,000 Log Anal 3770 -2591 74,000 Log Anal 3890 -2811 104,000 Log Anal 3890 -2931 121,000 Log Anal		2946	-2214	100,000		Log Analysis
48 2822 -2111 78,000 Log Anal 2828 -2117 78,000 Log Anal 2910 -2119 100,000 Log Anal 2910 -2199 100,000 Log Anal 2910 -2199 100,000 Log Anal 2910 -22097 -2000 I.062 Water Ana 3010 29587 -22299 148,000 I.062 Mater Ana 3 3412 -22299 148,000 I.062 Mater Ana 3 33412 -22591 73,000 I.062 Log Anal 3770 -2591 74,000 I.04,000 Log Anal 3890 -2931 121,000 Log Anal Log Anal		2966	-2234	112,000		Log Analysis
2828 -2117 78,000 Log Anal 2910 -2199 100,000 Log Anal 2910 -2199 100,000 Log Anal 2910 -2209? v 90,000 Log Anal 2958? -2209? v 90,000 Log Anal 3010 -22299 148,000 Log Anal 3 3412 -22453 73,000 Log Anal 3550 -2453 73,000 Log Anal Log Anal 3770 -2811 104,000 Log Anal Log Anal 3890 -2931 121,000 Log Anal Log Anal	48	2822	-2111	78,000		
2910 -2199 100,000 Log Anal 2958? -2209? v 90,000 1.062 Water Ana 3010 -2299 148,000 1.062 Water Ana 3 3412 -2299 73,000 Log Anal 3 3550 -2453 73,000 Log Anal 3 3550 -2811 104,000 Log Anal 3770 -2811 104,000 Log Anal Log Anal 3890 -2931 121,000 Log Anal Log Anal		2828	-2117	78,000		Log Analysis
2958? -2209? ~ 90,000 1.062 Water Ana 3010 -2299 148,000 1.062 Water Ana 3 3412 -2299 73,000 Log Anal 3 3412 -2453 73,000 Log Anal 3 3550 -2591 74,000 Log Anal 3770 -2811 104,000 Log Anal 3890 -2931 121,000 Log Anal		2910	-2199	100,000		Log Analysis
3010 -2299 148,000 Log Anal 3 3412 -2453 73,000 Log Anal 3 3550 -2453 73,000 Log Anal 3770 -2591 74,000 Log Anal 3770 -2811 104,000 Log Anal 3890 -2931 121,000 Log Anal		2958?	-2209?	000'06 v	1.062	Water Analysis
3 3412 -2453 73,000 Log Anal 3550 -2591 74,000 Log Anal 3770 -2811 104,000 Log Anal 3890 -2931 121,000 Log Anal		3010	-2299	148,000		Log Analysis
3550 -2591 74,000 Log Anal 3770 -2811 104,000 Log Anal 3890 -2931 121,000 Log Anal	m	3412	-2453	73,000		Log Analysis
3770 -2811 104,000 Log Anal 3890 -2931 121,000 Log Anal		3550	-2591	74,000		Log Analysis
3890 -2931 121,000 Log Anal		3770	-2811	104,000		Log Analysis
		3890	-2931	121,000		Log Analysis

TABLE 9
TABLE 9 (con't)

Indiana	Depth of Observation	Sea Level Elevation of Observation	Total Dissolved Solids	Fluid Density	. Method of Interpretation
ON TTOM	MODEL VALLEN	COSCE VALLOI	COTTOC	1040000	10101010101
26	3386	-2627	~250,000		
	3396	-2637	250,000		Log Analysis
27	3237	-2520	~250,000		
	3244	-2527	250,000		Log Analysis
01	LCLC	1701-	000 20 00		
07	2760	10102-	25,000		Log Analysis
	2770	-2020	68,000	1.045	Water Analysis
	2862	-2112	104,400	1.074	Water Analysis
	3100	-2350	50,000		Log Analysis
•	3770	-3020	100,000		Log Analysis
	387.4	-3124	108,000		Log Analysis
	3991	-3241	124,200	1.090	Water Analysis
50	2784-2823	-2044		1.065	Water Analysis
	2797	-2057			
	2880-2913	-2140		1.075	Water Analysis
30	2635	-1967	15,500		Log Analysis
	2638	-1970	~ 16,500		
	3610	-2942	49,000		Log Analysis
31	2950	-2023	~ 50,000		
	3020	-2093	52,000		Log Analysis
თ	2049	-1441	~ 2,000		
	2410	-1802	10,000		Log Analysis
	2582-2600	-1974	20,100	1.016	Water Analysis
	2970	-2362	50,000		Log Analysis
	3590	-2982	100,000		Log Analysis

TABLE 9 (con't)

Salinity (total dissolved solids) and Density of Waters from the Basal Sandstone Unit in the Ohio Valley Area

4

		Sea Level	Total		
Indiana	Depthof	Elevation of	Dissolved	Fluid	Method of
Well No.	Observation	Observation	Solids	Density	Interpretation
35	2048	-1478	~ 4,500		
	2360	-1760	10,000		Log Analysis
	2469-2491	-1869	13,700	1.010	Water Analysis
	3035	-2435	50,000		Log Analysis
	3316-3333	-2716	101,600	1.071	Water Analysis
	3430	-2830	100,000		Log Analysis
	3560	-2960	150,000		Log Analysis
	3793-3813	-3193	131,100	1.092	Water Analysis
	3880	-3280	200,000		Log Analysis
	4030	-3430	250,000		Log Analysis
	5401	0027-	1945 000		
01	HOFC JOCE J		000 02		Town and and
	2/20	-434	000'61		TOG WIGTASTS
	6024	-5233	100,000		Log Analysis
	3000	-2022	000		
	C000	2179			Cinton Number
	2002	0000		001.1	Toe molinais
	3020	C2221			The subscription of the su
	3/80	1167-	TOO, OOO		Log Analysis
	3820	-3017	150,000		Log Analysis
	3860	-3057	200,000		Log Analysis
	3900	-3097	250,000		Log Analysis
15	2159	-1544	~ 5,000		
	2160-4259	-1545	57,300	1.040	Water Analysis
	2432	-1817	6,000		Log Analysis
	2578	-1963	10,000		Log Analysis
	2950	-2335	28,000		Log Analysis
	3500	-2885	50,000		Log Analysis
	4100	-3485	72,000		Log Analysis

TABLE 9 (con't)

			Sea Level	Total		100 · · · · · · · · · · · · · · · · · ·
Indiana		Depth of	Elevation of	Dissolved	Fluid	Method of
Well No.		Observation	Observation	Solids	Density	Interpretation
13		1865-2918	-1252 to -2305	1,280		Water Analysis
		2181	-1568	N 6,500		
		2222-4263	-1609 to -3650	68,100	1.048	Water Analysis
		2520	-1907	10,000		Log Analysis
	1	2820	-2207	50,000		Log Analysis
		3175	-2562	100,000		Log Analysis
		3535	-2922	150,000		Log Analysis
		3895	-3282	200,000		Log Analysis
42		2561	-1881	N 3,900		
		2630	-1950	5,000		Log Analysis
		2873	-2193	10,000		Log Analysis
		3166	-2486	25,000	*	Log Analysis
16		4515	-3457	~ 100,000		
		4575	-3517	100,000		Log Analysis
		4715	-3657	150,000		Log Analysis
		4850	-3792	200,000		Log Analysis
	. 1		3			
17		3628	-2748	N50,000		
		3678	-2798	50,000		Log Analysis
		3738	-2858	100,000		Log Analysis
		3800	-2920	150,000		Log Analysis
		3865	-2985	200,000		Log Analysis
45		5447	-4797	200,000		
		5450-6160	-4800 to -5510	204,400	1.148	Water Analysis
18		2900	-2113	100,000		Log Analysis
		2915	-2128	v100,000		
		3360	-2573	150,000		Log Analysis
		3465	-2678	200,000		Log Analysis
		3574	-2787	250,000		Log Analysis

Observation
- D.
1

TABLE 10

SALINITY (TOTAL DISSOLVED SOLIDS) AND DENSITY OF WATERS FROM THE BASAL SANDSTONE UNIT IN THE OHIO VALLEY AREA

TABLE 10 (con't)

		Sea Level	Total		
Kentucky Well No.	Depth of Observation	Elevation of Observation	Dissolved Solids	Fluid Density	Method of Interpretation
27	4592	-3897	80,000		Log Analysis
	4632	-3937	80,000		Log Analysis
	4980	-4285	270,000		Water Analysis
	5344	-4649	250,000		Log Analysis
28	5031	-4082	158,000		Water Analysis
32	4612	-3640	160,000		Log Analysis
	4666	-3694	170,000		Log Analysis
	4869	-3897	200,000		Log Analysis
	5205	-4233	250,000		Log Analysis
37	4275	-3478	190,000		Log Analysis
	4390	-3593	155,000		Log Analysis
	4466	-3669	175,000		Log Analysis
	4506	-3709	280,000		Log Analysis
	4540	-3743	130,000		Log Analysis
39	4530	-3558	150,000		. Log Analysis
	4825	-3853	200,000		Log Analysis
	5251	-4279	200,000		Log Analysis
-	5452	-4480	300,000		Log Analysis
	5700	-4728	275,000		Log Analysis
07	6300	1250	130 000		Towlerd Pol
0		-4468	269,000		Water Analysis
	5604	-4572	180,000		Log Analysis

entucky 611 No.	Depth of Observation	Sea Level Elevation of Observation	Total Dissolved Solids	Fluid Density	Method of Interpretation
010	4854	-3903	175,000		Log Analysis
	4884	-3933	>300,000		Log Analysis
	5062	-4111	150,000		Log Analysis
	5100	-4149	110,000		Log Analysis
	5244	-4293	190,000		Log Analysis
	5426	-4475	150,000		Log Analysis
	5742	-4791	200,000		Log Analysis
	6126	-5175	300,000		Log Analysis
52	3274	-2505	140,000		Log Analysis
					1
53	5270	-4281	170,000		Log Analysis
	5454	-4465	195,000		Log Analysis
	5602	-4613	250,000		Log Analysis
	5778	-4789	250,000		Log Analysis
5.7	9406	-8585	180.000		Log Analysis
	9476	-8655	180,000		Log Analysis
	9704	-8883	80,000		Log Analysis
	9986	-9165	130,000		Log Analysis
00	5136	-4347	160,000		Log Analysis
	5348	-4559	200,000		Log Analysis
	5474	-4685	200,000		Log Analysis
59	6370	-5308	15,000		Log Analysis
	6468	-5406	25,000		Log Analysis
	6614	-5552	13,000		Log Analysis
	6646	-5584	000'06		Log Analysis

TABLE 10 (con't)

Salinity (total dissolved solids) and Density of Waters from the Basal Sandstone Unit in the Ohio Valley Area

N S

TABLE 10 (con't)

Salinity (total dissolved solids) and Density of Waters from the Basal Sandstone Unit in the Ohio Valley Area

Method of Interpretation	Log Analysis Log Analysis	Log Analysis	Log Analysis Log Analysis	
Fluid Density				
Total Dissolved Solids	4,700 13,000	250,000	300,000	
Sea Level Elevation of Observation	-6832 -7736	-3744	-2934 -3018	
Depth of Observation	7800 8704	4943	3671 3755	
Kentucky Well No.	65	67	99	

× · ·

SALINITY (TOTAL DISSOLVED SOLIDS) AND DENSITY OF WATERS FROM THE BASAL SANDSTONE UNIT IN THE OHIO VALLEY AREA

uid Method of <u>Interpretation</u>	Log Analysis	Log Analysis	Water Analysis	Log Analysis Water Analysis	Log Analysis									
Total Dissolved F1 Solids Den	300,000	192,000	58,950	122,000 112,500	122,000	129,000	82,000	100,000	114,000	150,000	153,000	66,000	76,000	67,000
Elevation Observation	-3104	-2987	-1908	-2316 -2541	-2071	-2133	-223	-5820	-2415	-2864	-3532	-2888	-1719	-5430
Depth of Observation	3728	3701	2780	2975 3200	3320	3300	3310	6860	3360	3860	4360	3585	2660	6400
Ohio Well No.	2	1	e	11	14	13	16	20	28	26	30	34	41	44

TABLE 11

ß

TABLE 11 (con't)

)hio .1 No.	Depth of Observation	Sea Level Elevation Observation	Total Dissolved Solids	Fluid Density	Method of Interpretation
12	4004	-2983	52,000		Log Analysis
15	6174	-5306	126,000		Log Analysis
33	5485	-4820	197,000		Log Analysis
46	4660	-3477	108,000		Log Analysis
51	4753	-3685	140,000		Log Analysis
49	5930	-5229	315,000		Water Analysis
56	3462	-2467	153,000		Log Analysis
69	3900	-2905	129,000		Log Analysis
70	11382	-10347	132,000		Log Analysis
75	5000	-3824	183,000		Water Analysis
77	3702	-2669	157,000		Log Analysis
30	2610	-1977	80,000		Log Analysis
33	5517	-4960	200,140		Water Analysis
34	3080	-2284	56,000		Log Analysis
37	3180	-2179	106,000		Log Analysis

TABLE 12

SALINITY (TOTAL DISSOLVED SOLIDS) AND DENSITY OF WATERS FROM THE BASAL SANDSTONE UNIT IN THE OHIO VALLEY AREA

th of rvation 3543 3322 5458 5506 5506 113 113	Sea LevelTotalTotalElevation ofDissolvedFluidMethod ofObservationSolidsDensityInterpretation	-2809 20,000 Log Analysis	-3027 25,000 Log Analysis	-2657 68,000 Log Analysis	-4456 230,000 Log Analysis -4504 225,000 Log Analysis	-1881 24,000 Log Analysis	-3575 321,000 1.22 Water Analysis	-2321 270.000 1.2 Water Analysis
	epth of Elevation of Observation	3543 -2809	3743 -3027	3322 -2657	5458 -4456 5506 -4504	-1881	4113 -3575	-2321

UNDERGROUND INJECTION OF WASTEWATER ADVISORY COMMITTEE

Jack Simon Robert E. Bergstrom Illinois Geological Survey 121 Natural Resources Building Urbana, Illinois 61801 Phone: 217-344-1481

John B. Patton, CHAIRMAN Leroy Becker Indiana Geological Survey 611 North Walnut Grove Bloomington, Indiana 47401 Phone: 812-337-2862 (Patton) 812-337-5412 (Becker)

Wallace W. Hagan Edward N. Wilson Kentucky Geological Survey 120 Graham Avenue Lexington, Kentucky 40506 Phone: 606-257-1792

James F. Davis New York Geological Survey State Education Bldg., Rm. 973 Albany, New York 12224 Phone: 518-474-5810

Horace R. Collins A. Janssens Ohio Division of Geological Survey Fountain Square Columbus, Ohio 43224 Phone: 614-466-5344 Arthur A. Socolow William S. Lytle Bureau of Topographis and Geological Survey 300 Liberty Avenue Pittsburgh, Pennsylvania 15222 Phone: 412-565-5030

James Calver Virginia Division of Mineral Resources P. O. Box 3667 Charlottesville, Virginia 29903 Phone: 804-293-5121

Leonard Wood U. S. Geological Survey Water Resources Division, National Center Mail Stop 411, 1112 Sunrise Valley Drive Reston, Virginia 22092 Phone: 703-860-6904

Robert B. Erwin Larry D. Woodfork West Virginia Geological and Economic Survey P. O. Box 879 Morgantown, West Virginia 26505 Phone: 304-292-6331

Don L. Warner Department of Mining, Petroleum and Engineering Geology University of Missouri Rolla, Missouri 65401 Phone: 314-341-4754

REGULATORY AGENCIES OF THE SIGNATORY STATES

ILLINOIS

Environmental Protection Agency State of Illinois 2200 Churchill Road Springfield, Illinois 62706 (217) 525-5467

INDIANA

Indiana Stream Pollution Control Board 1330 West Michigan Street Indianapolis, Indiana 46206 (317) 633-4420

KENTUCKY

Department of Natural Resources Capital Plaza Tower Frankfort, Kentucky 40601 (502) 564-3410

NEW YORK

Environmental Health Services NYS Department of Environmental Conservation 50 Wolf Road Albany, New York 12201 (518) 457-7362

OHIO

Óhio Environmental Protection Agency P.O. Box 1049 Columbus, Ohio 43216 (614) 466-2390

PENNSYLVANIA

Department of Environmental Resources P.O. Box 2351 Harrisburg, Pennsylvania 17120 (717) 787-2666

VIRGINIA

State Water Control Board P.O. Box 11143 Richmond, Virginia 23230 (804) 770-2241

WEST VIRGINIA

Division of Water Resources Department of Natural Resources 1201 Greenbrier Street Charleston, West Virginia 25311 (304) 348-2107

OHIO RIVER VALLEY WATER SANITATION COMMISSION

414 Walnut Street Cincinnati, Ohio 45202