EVALUATION OF

 THE OHIO VALLEY REGON BASAL SANIDSTONE AS A WASTEWATER IWUEGTIOX INTERIVALPrepared by the Geological Surveys of Illinois, Indiana, Kentucky, New York, Ohio, Pennsylvania and West Virginia, and the Department of Geological Engineering, University of Missouri Rolla.

under sponsorship of the
OHIO RIVER VALLEY WATER SANITATION COMMISSION
with the assistance of a grant from the
WATER RESOURCES DIVISION, U. S. GEOLOGICAL SURVEY

JULY 1976

ILLINOIS
Richard H. Briceland, Ph. D., Director, Environmental Protection Agency (Vacancy)
(Vacancy)

INDIANA
William T. Paynter, M.D., State Health Commissioner Ralph C. Pickard, Assistant Commissioner, State Board of Health
(Vacancy)

KENTUCKY

Robert D. Bell, Secretary, Department of Natural Resources
Kenneth O. Gibson, Sr., Senator, Commonwealth of Kentucky
Arnold L. Mitchell, Commissioner, Dept. of Fish and Wildlife Resources
NEW YORK
Peter A. Berle, Commissioner, Department of Environmental Conservation (Vacancy)
Joseph R. Shaw

OHIO
Christine M. Carlson, League of Women Voters
Lloyd N. Clausing, Director, Portsmouth Water Department
Ned E. Williams, Director, Ohio Environmental Protection Agency
PENNSYLVANIA
Wesley E. Gilbertson, Deputy Secretary, Dept. of Environmental Resources Maurice K. Goddard, Ph. D., Secretary, Department of Environmental Resources Marion K. McKay, Ph. D., Professor Emeritus, University of Pittsburgh

VIRGINIA
Denis J. Brion, State Water Control Board
(Vacancy)
(Vacancy)

WEST VIRGINIA

Luther N. Dickinson
N. H. Dyer, M.D., State Health Commissioner

Edgar N. Henry, Director, West Virginia Water Development Authority
UNITED STATES GOVERNMENT
Norman H. Beamer, District Chief, U. S. Geological Survey
Francis T. Mayo, Regional Administrator, Region V., Environmental Protection Agency
Donald L. Williams, Chief, Planning, Ohio River Division, Corps of Engineers
OFFICERS
Ralph C. Pickard, Chairman
Arnold L. Mitchell, Vice Chairman
Ned E. Williams, Secretary
Albert J. Brooks, Treasurer
Leo Weaver, Executive Director
LEGAL COUNSEL
Leonard A. Weakley, Taft, Stettinius \& Hollister

Prepared by the Geological Surveys of Illinois, Indiana, Kentucky, New York, Ohio, Pennsylvania and West Virginia, and the Department of Geological Engineering, University of Missouri -- Rolla, under sponsorship of

Ohio River Valley Water Sanitation Commission with the assistance of a grant from the Water Resources Division, U. S. Geological Survey

Copies are avallable at $\$ 3.00$ each. Single coples free to tax supported institutions.

SUMMARY

ORSANCO involvement in the study of underground wastewater injection began in 1967 and, during 1967-1973 resulted in the publication of two reports documenting the findings of that period. They were "Perspective on the Regulation of Underground Injection of Wastewater" and "Underground Injection of Wastewaters in the Ohio Valley Region." Whereas the previous efforts were directed toward policy and administrative procedures, the present study describes regional characteristics and utilization potentials. These efforts are directed to form a basis for location, design and engineering of wastewater wells in the basal Cambrian age sandstone units.

The present project produced a series of geologic and physical characteristic maps and geologic cross sections that have been formulated from a large number of observations and measurements made in wells throughout the Ohio Valley. Data used in preparation of the maps and cross sections are included in tables.

The mapping revealed that basal sandstone is present throughout the Ohio Valley region, with the exception of small areas where it was never deposited. It lies at the base of the stratigraphic sequence and is not exposed at the surface anywhere within the region. This vertical location in combination with the lack of usable resources contained in the basal sandstone cause it to be favorable for wastewater injection. Only in northern Illinois, where it contains fresh water, and in the few localities where gas is stored or hydrocarbons have been found, is the basal sandstone precluded for wastewater injection because of its value for other uses.

In addition to the restrictions mentioned above, the basal sandstone is too deep for practical consideration in southern Illinois and Indiana, in most of Pennsylvania and West Virginia, and in southern New York. Zones of major faulting in southern Illinois and Indiana and across Kentucky considerably restrict the potential for injection in those areas. Occasional major faults that require consideration are also present at a few other locations in the region.

The reservoir properties of thickness, porosity and permeability, and areal extent determine the quality of a rock unit for wastewater injection. The wide areal extent of the basal sandstone has been mentioned. Generally, the other properties are present in the most favorable combination in northeast Illinois and northwest Indiana and become less favorable eastward and southward from that area. This does not eliminate locations other than northern Illinois and Indiana from consideration, but it does suggest caution in selecting the basal sandstone as a potential injection interval throughout the rest of the region.

Vertical confinement of injected wastewater is necessary to prevent its escape from the injection interval and entering fresh-water aquifers or strata containing valuable mineral deposits of stored gas. Because the basal sandstone is underlain by Pre-Cambrian age crystalline rock, downward migration is not possible. The basal sandstone is overlain by several hundred feet of shale and siltstone with varying percentages of sandstone and carbonate throughout most of Illinois and Indiana and in western Ohio. A1though local confirmation is always necessary, for preliminary purposes, the basal sandstone would be considered suitably confined in these areas. Elsewhere, the degree of confinement, though possibly adequate, is less certain before drilling and testing have been accomplished.

Earthquake history in an area must be considered because an earthquake might potentially damage injection well facilities or alter geohydrologic conditions. In addition, it is now believed possible to stimulate seismic activity by fluid injection and the susceptibility of an area to such induced seismic events should be examined. Within and near the Ohio Valley region, two localities stand out as having been affected by significant earthquakes during recorded time. These areas include extreme southern Illinois, adjacent western Kentucky and western New York.

Evaluation of the possible effect of earthquakes on wastewater injection operations and the relation between wastewater injection and earthquake stimulation is less certain than reservoir evaluation because of the limited experiences in this technology. However, the generalization can be made that extra precautions should be taken in system construction and operation in areas of high seismic risk and that care should be exercised in injection operations sited near faults which could be the source of earthquake generation.

C O N TENTS

Summary I
Introduction 1
Definition of the basal sandstone 3
Map presentations
Well locations 4
Elevation of the top of the Precambrian basement surface 5
Elevation of the top of the basal sandstone 7
Thickness of the basal sandstone 8
Porosity and permeability of the basal sandstone 9
Pore volume and flow capacity fo the basal sandstone 12
Salinity of water in the basal sandstone 14
Thickness of the confining unit 16
Ratio of lithologies in the confining unit 18
Zones of seismic risk and earthquake generation 19
Discussion of cross sections
Illinois 22
Indiana 23
Ohio 24
Pennsylvania 24
West Virginia 24
Summary of the adequacy of the basal sandstone for wastewater injection. 25
References 27
Abbreviations used in well data tables 28
Acknowledgments 29
Figure 1 - Correlation chart of Cambrian rocks in Indiana and
adjacent areas
Map 1 - Well locations
Map 2 - Elevation of the top of the Precambrian basement surface
Map 3 - Elevation of the top of the basal sandstone
Map 4 - Thickness of the basal sandstone
Map 5 - Porosity of the basal sandstone
Map 6 - Pore volume of the basal sandstone
Map $7 \quad$ - Salinity of water in the upper 100 feet of the
Map $8 \quad$ - Thickness of the confining unit
Map $9 \quad$ - Ratio of lithologies in the confining unit
Map $10 \quad$ - Zones of seismic risk
Cross section 1 Basal Sandstone Northern Illinois
Cross section 2 Basal Sandstone Eastern Illinois
Cross section 3 Basal Sandstone Northern Indiana
Cross section 4 Basal Sandstone Central Indiana
Cross section 5 Basal Sandstone Eastern Indiana
Cross section 6 Basal Sandstone Northern Ohio
Cross section 7 Basal Sandstone Pennsylvania
Cross section 8 Basal Sandstone Western West Virginia

TABLES

Table 1 Well Data -- Illinois
Table 2 We11 Data -- Indiana
Table 3 Well Data -- Kentucky
Table 4 Well Data - New York
Table 5 Well Data - Ohio
Table 6 Well Data -- Pennsylvania
Table 7 Well Data - West Virginia
Tabile 8 Salinity and Density of Water in the Basal Sandstone -- Illinois

Table 9 Salinity and Density of Water in the Basal Sandstone -- Indiana

Table 10 Salinity and Density of Water in the Basal Sandstone -- Kentucky

Table 11 Salinity and Density of Water in the Basal Sandstone -- Ohio

Table 12 Salinity and Density of Water in the Basal Sandstone -- New York

ORSANCO involvement in underground wastewater injection began in 1967 at the initiation of Dr. Edward J. Cleary, then Executive Director and Chief Engineer at ORSANCO. This first effort culminated in 1969 with the publication of the report "Perspective on the Regulation of Underground Injection of Wastewaters" (Cleary and Warner, 1969). A recommendation of this report was that an ORSANCO committee be formed to develop policy guidelines, regulatory procedures and technical criteria pertaining to underground injection of wastewaters in the Ohio Valley. The Commission adopted this recommendation and the Advisory Committee on Underground Injection of Wastewaters was organized. The report of that committee was submitted to the Commission in late 1972 and the committee's policy recommendations were adopted by the Commission in January, 1973. This policy statement and the regulatory guidelines and technical criteria to support it are contained in the publication "Underground Injection of Wastewaters in the Ohio Valley Region" (ORSANCO, 1973).

Upon completion of its original assignment, the Advisory Committee on Underground Injection of Wastewaters considered how it might further contribute to the advancement of the technology in the area of its responsibility. A possible project, the detailed delineation of the geologic and engineering potential of the basal Cambrian age sandstone unit for wastewater injection, was selected and a proposal for this project developed. All state geological agencies of the ORSANCO states expressed their willingness to participate in the study, with technical corrdination to be provided by Dr. D. L. Warner of the University of Missouri, Rolla. Under ORSANCO's sponsorship, a proposal for the project was submitted to the U. S. Geological Survey in order to obtain the funds necessary to defray expenses for travel, meetings, and report preparation and publication. The project was funded by the U.S.G.S., and work began early in 1974.

The broad objective of the project was the determination, in as much detail as possible, of the geological and utilization characteristics of the basal sandstone for wastewater injection in the Ohio Valley area. This interval was selected for study because it was generally known to have many of the characteristics favorable for use as an injection in a number of locations, and because it could be anticipated that there would be an interest in using it more extensively for this pupose in the future. A further reason for selecting the basal sandstone for study was the fact that it is present throughout most of the Ohio Valley area and would, therefore, present maximum opportunity for cooperative study among the ORSANCO states.

At a meeting of the Committee on Underground Injection of Wastewater, the detailed objectives of the present study were established and the procedures for their accomplishment agreed on. During the study, some minor adjustments in the original plan were made. The actual scope of the study as it has been completed is reflected by the list of maps, cross sections and tables.

The data for maps $1-4,8$, and 9 were obtained by the Geological Surveys of each of the participating states and, where enough points were available, state maps were drawn by the respective agencies. The data and maps were supplied to the University of Missouri, where they were compiled to form the regional maps presented here. Maps 5-7 were prepared at the University of Missouri, using data supplied by the states and well logs obtained from commercial suppliers. Map 10 is the same map that was used in previous ORSANCO (1973) report. The cross sections were prepared by the respective state agencies.

Each of the maps and the cross sections will be discussed individually and their significance for underground wastewater injection planning and regulation analyzed.

DEFINITION OF THE

THE BASAL SANDSTONE

For this study, an unusual geologic procedure was followed in that the rock unit being mapped is not a conventional geologic formation. Rather, it is a hydrogeologic or engineering unit equivalent in character to an aquifer or petroleum reservoir.

The relationships of the geologic formations that comprise the basal sandstone unit in four of the Ohio Valley states and in three other adjacent states are shown in Figure 1. In Figure 1, the basal sandstone includes the Mt. Simon Sandstone and sandstones in the lower Eau Claire Formation in Illinois, Indiana, Kentucky and Ohio.

The Mt. Simon Sandstone consists principally of fine- to coarse-grained sandstone. It is commonly poorly sorted and contains conglomeritic zones. Cross bedding is often visible in cores. It ranges in color from clear in quartzose portions to pink in the arkosic intervals. It may be only slightly cemented and friable or silica cemented and very hard. Although the formation is primarily sandstone, shale beds are often present, particularly near the top or the base. These beds are from a few inches to more than 50 feet thick. Generally, the Mt. Simon Sandstone rests unconformably on Precambrian age igneous or metamorphic rocks, but some geologists have recognized a so-called "granite wash" unit below the Mt. Simon; and, it has been interpreted that the Mt. Simon lies on older Cambrian or Precambrian age sandstones in some localities.

For the purpose of this report, all sandstones that rest upon the Precambrian basement are included with the basal sandstone. Its upward extent is determined by the point at which it becomes overlain by more than about 100 feet of rocks that are dominantly ($>50 \%$) siltstone, shale, or carbonate, as determined by examination of cores, cuttings, and geophysical logs. Formations comprising the basal sandstone in western Ohio are the same as in eastern Indiana, but toward central Ohio a sandstone facies of the Rome Formation in combination with the Mt. Simon Formation forms the basal sandstone. In Pennsylvania, the basal sandstone is known as the Gatesburg Formation. In New York, the Potsdam and lower Galway (or Theresa) Formations comprise the basal sandstone. The West Virginia Geological Survey designated the basal sandstone as the Mt. Simon in this study, but other terminology has been used previously.

Well Locations

The locations of wells penetrating the basal sandstone in the Ohio Valley region and used in this study are shown in Map 1 , and data for these wells are given in Tables 1-7. Information in the tables includes: the well operator and well name; year completed; location; reference elevation (at or near ground surface); total depth; well status; available logs; availability of water and core analyses; depth, thickness, and characteristics of the confining unit and basal sandstone; and depth of the Precambrian basement. The wells in each state are numbered consecutively and the well number appears in Map 1. Locations of the cross sections are also shown.

In addition to the locations, the purpose for which each well was constructed is shown by symbol. From this information, it is possible to infer the extent of potential conflicts between wastewater injection and other uses, including oil and gas production, natural gas storage, and water supply.

One of the outstanding characteristics of the basal sandstone for waste disposal is the relatively little use it receives for other purposes in the Ohio River Basin region. In northern Illinois, the basal sandstone is used for water supply. This is reflected by the numerous water supply wells shown in that area. Storage of natural gas is also practiced in northern and central Illinois and northwestern Indiana. More such storage areas will be developed, but they are limited to anticlinal structures and no appreciable quantity of the total subsurface volume will be consigned to this use. Exploration for oil and gas in the basal sandstone has proven to be disappointing and only six exploratory wells in the entire Ohio Valley area are known to have encountered significant amounts of hydrocarbons. Three wells in Illinois and two in Kentucky have encountered gas. One oil discovery has been drilled in Kentucky. These six wells are shown in Map 1.

Elevation of the Top of

the Precambrian Basement Surface

Map 2 depicts the relief on the Precambrian basement surface. The reference datum is sea level. The contour interval is generally 1,000 feet. Some 500 foot contours appear in Illinois.

The map is used to estimate the total thickness of sedimentary rocks and unconsolidated deposits that are present at a location. This is done by determining the approximate ground surface elevation at the location, then adding this elevation to the subsea elevation of the Precambrian basement surface. In this case, the basal sandstone is the objective for injection purposes; therefore, this computation will yield the approximate total well depth if the entire formation is penetrated. Because of the large contour interval used, the estimate is obviously not a precise one, but it is sufficiently accurate for feasibility studies. It should be noted that the map is not equally reliable everywhere, because its reliability depends on the density of data. The relative reliability at any particular location, however, is easily determined by combined reference to the well location map and the data tables.

The map shows that the depth to the Precambrian surface is well within a reasonable drilling range of about 5,000 to 6,000 feet for a disposal well in much of Illinois, Indiana, Ohio, and Kentucky, but only in northern New York, Pennsylvania, and extreme western West Virginia is this true. In the central Illinois basin portion of Illinois and Indiana, the Precambrian surface is at depths of 12,000 to 15,000 feet and in the central Appalachian basin of Pennsylvania and West Virginia, depths rapidly reach beyond 12,000 feet and may ultimately reach more than 30,000 feet.

Faults that are known and are judged to be significant are also shown. Only representative faults are shown in southern Illinois, extreme southwestern Indiana, and central Kentucky, because there are too many to depict at the map scale used. A highly faulted mineralized area is shown in southeastern Illinois and western Kentucky, where geologic conditions are particularly complex. Faults affect the potential of a site for injection by complicating geologic conditions, by acting as possible flow barriers or conduits, and by creating planes of weakness along which tectonic stresses may be relieved, thus causing earthquakes. The latter topic will be discussed in greater detail later in this report.

Not all faults are of equal significance in evaluating the quality of a. site and each case must be evaluated individually. However, the generalization can be made that the more extensive the faulting at a site, the less desirable the site is for an injection well because of the difficulty of predicting the fate of the injected waste.

Elevation of the Top of

the Basal Sandstone

Elevation of the top of the basal sandstone is shown in Map 3. The reference datum is sea level. The contour interval is 1,000 feet.

When the ground surface elevation is known, the map can be used to estimate the depth to the top of the basal sandstone and thus the potential disposal interval. Depth to the basal sandstone ranges from less than 1,000 feet in northern Illinois to more than 13,000 feet in the center of the Illinois basin. Depth to the basal sandstone rapidly increases to beyond 12,000 feet in the Appalachian basin of Pennsylvania and West Virginia. Generally, potential of the basal sandstone for injection becomes very limited at a depth greater than about 5,000 to 6,000 feet because of well construction costs. Its potential is also limited where it is very near the surface, because it may contain fresh water and is less well confined than where it is more deeply buried.

Several areas are shown where the basal sandstone is absent. This probably occurred because such areas were topographically high, perhaps islands, during the deposition of the sandstone. As it is necessary for a well to strike these areas before they are known to exist, only a few of these have been identified. It is, therefore, reasonable to expect that the basal sandstone is absent from more portions of the Ohio Valley area than are indicated in Map 3.

Sandstone

The thickness of the basal sandstone and throughout the Ohio River Valley is shown (in May 4) by contours of equal sandstone thickness (Map 4) (isopach map). The contour interval ranges from 50 to 500 feet, depending on the total sandstone thickness in the area. The basal sandstone reaches a maximum thickness of more than 2,500 feet in northeastern Illinois, but it thins in all directions from there. Thinning results both from lack of deposition of sediment and from lateral change from sandstone to shale or dolomite. The basal sandstone is completely absent north of the zero isopach line in extreme northern New York. It is also known to be absent in several local areas as previously mentioned and as is shown in Map 4.

The thickness of the basal sandstone is an important factor in determining its adequacy as an injection interval. If other characteristics are equal, the thicker it is, the greater the volume of wastewater it can accept without the development of excess pressure. Also, the rate of lateral spread of waste away from the injection well is inversely related to the thickness of the reservoir.

Porosity and Permeability of

the Basal Sandstone

Porosity is the volume of pores in a rock divided by the total rock volume. It is expressed either as a ratio or a percent. Porosities of over 35 percent are found in newly deposited sands, while porosities of less than 5 percent occur in lithified, well-cemented sandstones. Dense limestones and dolomites may have almost no porosity. Porosity is not a measure of the fluid transporting capability of a rock, but a sandstone with high porosity is a better reservoir than one with low porosity, because the greater the amount of pore space the smaller the radius to which the injected waste will spread.

Porosity can be determined by laboratory analysis of core samples obtained during drilling and by examination of borehole geophysical logs run in drilled wells. Where core analysis data were available, as indicated in Tables 1 to 7, they were used, checked, and supplemented by log examination. In wells where core samples were not taken, log examination was performed and, if the logs were believed to be reliable, average porosity values were determined. Map 5 was constructed by contouring the average porosities (in percent) obtained from laboratory and log data. Average porosities ranged from slightly over 20 percent to less than 5 percent. Whereas a porosity of over 20 percent is very good for a lithified sandstone, a porosity of less than 5 percent is very poor. Although Map 5 should not be relied upon too heavily, it does show trends in porosity useful for judging the probable quality of the basal sandstone as a disposal reservoir. These trends will be interpreted in combination with other reservoir properties.

It should be mentioned that average porosity values were used for some Illinois wells which only partially penetrate the basal sandstone. Before using figures from these, a comparison was made between average values for the upper part of the basal sandstone and vaules for the entire unit in fully penetrating, nearby wells. It was found, in the cases examined, that sampling of the upper several hundred feet would yield values representative of the entire unit. An additional important consideration is that, where the basal sandstone is more than several hundred feet thick, significant zones with good porosity may occur even where the average porosity of the total unit is fair or poor.

Permeability is the capacity of a porous medium to transmit a fluid. The unit of permeability used in evaluating deep aquifers is the darcy. Because most deep aquifers have permeabilities of much less than a darcy, the millidarcy (0.001 darcy) is most frequently reported. Permeability can be evaluated by core analysis and formation testing. Log analysis can sometimes be used also, but was not attempted in this study because of its relative unreliability. Most of the available permeability values were from gas storage fields in Illinois. A few values were also obtained from wastewater disposal wells in Illinois and other states, but too few were available for preparation of a contour map. Therefore, the individual values are listed in the tables, but not shown on a map. For wastewater injection, permeabilities of more than 100 millidarcys are very good, those of 10 to 100 millidarcys fair to good, those of less than 10 millidarcys indicate a relatively poor reservoir, and of less than 0.1 millidarcy, an aquiclude. A thick sandstone, like a porous one, can have poor average permeability, but may still be an adequate reservoir, if it has a few good permeability zones.

Most of the available permeability values are for the upper 100 to 300 feet of the basal sandstone. As with porosity, it is believed that an average for the upper part of the basal sandstone is representative of the entire unit, but this assumption may not always be valid. Examination of Table 1 shows that the average permeabilities of the basal sandstone in Illinois are quite variable, ranging from a low of 15 millidarcys to a high of 185 millidarcys, values which would be categorized as fair to good. As indicated in the table, some of these values are average for an entire gas storage field, which causes them to be unusually reliable.

The basal sandstone in two waste disposal wells in northwestern Indiana has exceptional permeability (300 to 420 millidarcys), but the basal sandstone in a third disposal will in the same area has only fair permeability (45 millidarcys).

Values were obtained for only three other wells in Indiana and these wells are located along the eastern border. The values are 48,13 , and 11 millidarcys (Table 2).

Permeability values were obtained for the basal sandstone in five Ohio disposal wells that penetrate the basal sandstone and for one oil and gas exploration well (Table 5). The high value was 80 millidarcys in one of the Vistron Company wells and the low value was 11.6 millidarcys in the Calhio Chemical Company well.

Only three additional permeability values were obtained for the basal sandstone in the Ohio Valley area. These were 230 millidarcys for the llamermill Paper Company well in Pennsylvania (Table 6) and 113 and 7 millidarcys respectively for the Bethlehem Steel Company and Hooker Chemical Company wells in New York (Table 4).

In summary, average permeabilities for 37 wells or gas storage fields were obtained. These ranged from a high of 420 millidarcys to a low of 7 . No obvious pattern of permeability distribution could be deduced from this small number of values.

Pore Volume and Flow Capacity
 of the Basal Sandstone

The average porosity multiplied by the total thickness of sandstone yields the pore volume. This number provides a means of readily comparing the storage capacity of a formation at various locations. In Map 6, an isoval map, equal values of sandstone pore volume have been contoured. No criteria have been developed, however, for classification of the quality of a reservoir based on its pore volume. Such a classification may not be possible, because a thick sandstone with a low porosity can have the same pore volume as a thinner sandstone with a high pore volume yet the reservoirs will not be of equal quality for injection purposes. Nevertheless, a reservoir with a high pore volume will generally be of better quality than a reservoir with a low pore volume.

The pattern in Map 6 shows that the greatest reservoir volumes are present in northeastern Illinois, where the basal sandstone is thickest (Map 4) and where it also has the highest average porosity (Map 5). In areas of westcentral Ohio and everywhere east of central Ohio, pore volumes of less than 10 prevail. These have only one-thirtieth the volume available to a well in northeastern Illinois. As discussed above, these values do not provide an absolute measure of reservoir quality, but they do indicate that the basal sandstone of northern Illinois and Indiana and western Ohio is much more promising than it is elsewhere in the Ohio Valley area. The values shown in Map 6 can be directly entered into equations that require a porosity-foot term, e.g., equations for distance of waste travel and pressure buildup during injection.

Perhaps the most significant measure of the quality of the basal sandstone as a disposal reservoir is its flow capacity ${ }^{1}$, which is its average permeability multiplied by the effective thickness of sandstone. Although flow capacity values are not given, they can easily be obtained by multiplying the average permeabilities in the data tables by the total thickness of basal sandstone and the sandstone percent, which are also in the tables. Although the

[^0]average permeability of the basal sandstone in northern Illinois and Indiana is clearly not always higher than in other areas, the thickness of the unit is so much greater there than elsewhere that its flow capacity will be many tires greater than elsewhere in the region. The highest value for the region can be calculated to be about 92 darcy-feet for the U.S. Steel well in northern Indiana, and the lowest, 0.65 darcy-feet for the Hooker Chemical Company well in New York.

Salinity of Water in
 the Basal Sandstone

Evaluation of injection feasibility includes consideration of the 1) salinity, 2) density, 3) chemistry of the formation water. This may also be a factor in designing a waste pretreatment. plan and in predicting the extent and direction of travel of injected wastes.

Tables 8-12 contain values of total dissolved solids content and density that were collected or determined during the study. Water for analysis was collected by well operators during well construction by means of drill stem testing or swabbing (a form of pumping). The values from water analyses were obtained through laboratory determinations of both total dissolved solids and density. The results from logs are based almost entirely on resistivities from induction logs. No other electric log was found to be usable in the Ohio Valley area. Accurate conversion from resistivity to dissolved solids requires a knowledge of the ionic composition of a water. During this study, it was assumed that the waters were sodium chloride solutions, an assumption that was considered sufficiently accurate in view of other inherent limitations in well log analysis. Data obtained by water analysis are not always reliable either, given the difficulty of obtaining representative and uncontaiminated samples. Whenever possible, comparisons made of the results of the two methods were consistent enough to give confidence in the general reliability of the data in Tables $8-12$. However, it should be realized that any particular value may be subject to considerable error. Confidence in a particular value is greatest where several consistent values are given for the same well, where several wells that are in the same vicinity yielded approximately the same values, and where both laboratory and log analyses are given. Confidence is least where \log analysis alone was possible, where values in a particular well differ considerably, and where only one well is present or values in nearby wells differ considerably.

Map 7 is a contour map of equal total dissolved solids content (isocon map) for water in the upper 100 feet of the basal sandstone. This was used for comparison because it normally has the lowest salinity of water at any level in the fornation, thus making it controlling for injection purposes, and because more analyses and logs were available for this interval than for any other.

Map 7 shows that in the Ohio Valley states the basal sandstone contains very saline water except in northern Illinois and possibly near fault zones in southern Kentucky. It was known that water in the basal sandstone is generally saline, but the areal variation in salinity had previously been determined only in $11-$ linois, and even in that state, the data given are now more extensive than previously reported. Within the region, values range from fresh potable water in northern Illinois to water with a total dissolved solids content of $300,000 \mathrm{mg} / 1$ which is about 30 percent. No state or Federal agency has suggested that waters with dissolved solids contents greater than $10,000 \mathrm{mg} / 1$ need be protected for water supply purposes; injection is therefore not precluded by that factor except in the limited areas mentioned.

During injection, if the injected water is less dense than the formation water, the injected water will tend to flow updip as a wedge. If the opposite is true, flow will be downdip. While this is not significant in most cases, it would have to be taken into account where the extent of spread of an injected waste is considered important. In such a case, adjustment of waste density to that of the formation fluid might be contemplated, or, as has been suggested, the waste might be made more dense than the formation fluid and injected into a synclinal area where it would tend to be trapped.

In addition to lateral variation in formation water salinity, there is considerable vertical variation, as can be seen by examination of the data in Tables 8-12. In general, salinities increase with increasing depth, but reversals in this pattern can be found. The apparent reversals that are shown are all the result of 10 g interpretation; none that are shown are confirmed by water analysis. The fact that water of varying salinity occurs within the basal sandstone is evidence that vertical flow is restricted even within that unit. This is favorable for disposal because it suggests that wastewater flow may be restricted in the same way.

Thickness of the Confining Unit

The characteristics of the confining units are also important to the suitability of a potential disposal interval. It is essential that injected waste be prevented from escaping from the basal sandstone and entering fresh-water aquifers or strata containing minerals or stored gas. Because the basal sandstone is underlain by Precambrian age crystalline rock, downward migration is not possible. In various portions of the Ohio Valley area, the basal sandstone is immediately overlain by shale, by siltstone, or by carbonates (dolomite or limestone). Map 8 shows, by contours of equal thickness, the amount of shale and siltstone that directly overlies the basal sandstone.

Where a sufficient thickness of unfractured shale or siltstone is present, it is probable that injected waste would be completely confined to the basal sandstone. While it is not possible to state exactly what constitutes a sufficient thickness of shale or siltstone without performing an engineering analysis of the particular injection program, it can be calculated that, under typical circumstances, approximately 50 years would be required for any waste to migrate through a 100 foot shale or siltstone confining bed. In most cases an injection well will have been shut down and all driving pressure will have been dissipated before 50 years have passed, so that the waste would never have reached the top of the confining bed. This calculation indicates that 100 feet of shale or siltstone should provide adequate confinement in most cases. A lesser amount may be sufficient in some instances and a greater amount required in others. It should be noted that, by virtue of its position at the base of the stratigraphic sequence, several thousand feet of beds containing no usable resources will often overlie the basal sandstone and that absolute confinement to the immediate basal sandstone may not be necessary.

Where dolomite or limestone immediately overlie the basal sandstone, no confining unit is shown to be present for two reasons. First, where carbonates are present over the basal sandstone in the Ohio Valley, there is commonly a very substantial thickness, perhaps interbedded with minor sandstone and shale. This makes definition of the boundaries of the confining unit difficult. Second, it it not possible to assume that all limestones or dolomites will act as aquicludes. In many cases they will, but in others they are porous and permeable, thus acting
as aquifers. Therefore, when limestones or dolomites immediately overlid the basal sandstone, their confining properties must be locally determined by examination of geologic and engineering information obtained during drilling and testing of any proposed disposal well. This should also be done when shales or siltstones are present, but considerable confidence in these lithologies has already been established because a number of gas storage fields have been developed and operated in Illinois and Indiana, demonstrating the capability of the shale and siltstone units overlying the basal sandstone to provide confinement for injected fluids.

Ratio of Lithologies in the Confining Unit

As previously discussed, a characteristic which may influence the effectiveness of a waste confining unit is its lithology. It has already been established that only within the limits shown in Map 8 is a confining unit accepted as being present. It is within these limits that the basal sandstone is directly overlain by shale and siltstone. However, even within the area where a shale and siltstone unit is present, the lithology is variable. By definition, geologists consider a rock that contains more than 50 percent clay- and silt-sized clastic grains to be shale and siltstone. A shale or siltstone may be composed entirely of such grains or may consist of only fifty-one percent. Without specific testing, a confining unit would be thought to be of better quality the greater the percent of shale and siltstone. Therefore, an estimate was made of the relative percents of shale and siltstone, sandstone, and carbonate that compose the confining unit.

Map 9 depicts the results of these estimates by use of a numerical rating scheme. In the areas assigned the number 1 , the confining unit is greater than 79 percent shale and siltstone. In the areas designated 2 and 3, the confining unit is greater than 66 percent shale and siltstone. In area 2 the remaining 34 percent is predominantly sand and in area 3, predominantly carbonate. The same rationale applies to areas 4 and 5. Outside of the numbered areas, the rocks overlying the basal sandstone are predominantly carbonate or sandstone. Although these assigned numbers do not constitute a quantitative ranking, the confining unit in area 1 would be thought to be qualitatively superior to that unit in areas 2 and 3, and so forth. Furthermore, gradation into sandstone would be thought to be more detrimental to the quality of the confining unit than would gradation into carbonate.

It is apparent that the confining units in Northern Illinois and Indiana grade into sandstone and in southern Illinois and Indiana into carbonate. At the eastern boundary, in Ohio, there is a very rapid change from shale and siltstone to carbonate.

Zones of Seismic Risk and Earthquake Generation

The past history of earthquake activity in an area must be considered because an earthquake might potentially damage injection well facilities or alter geohydrologic conditions. In addition, it is now believed possible to stimulate seismic activity by fluid injection; thus, the susceptibility of an area to such induced seismic events should be examined.

Within and near the Ohio Valley region, two localities stand out as having been affected by significant earthquakes during recorded time. Three of the most intense earthquakes recorded in this country were centered near New Madrid, Missouri, and occurred in December 1811, and January and February 1812. A11 three of these earthquakes were of greater intensity than any that have occurred in California, the 1906 San Francisco earthquake included. A total area of at least 2,000,000 square miles was shaken and significant topographic changes occurred, including the formation of Reelfoot Lake, Tennessee. Because the epicenter area was largely a wilderness, few lives were lost. The area of southeast Missouri and portions of adjoining states are still active and more than one hundred earthquakes have been reported there since 1812 .

An earthquake occurred November 9, 1968, near Broughton, Hamilton County, Illinois, about 100 miles northeast of the epicenter of the New Madrid earthquakes. The intensity was about 7 (modified Mercalli scale) as compared to an estimated intensity of 12 for the New Madrid earthquakes. These values are equivalent to 5.5 and 8.1 on the Richter scale. Reports from the oil and gas industry (Heigold, 1968) reveal that subsurface hydrologic changes and minor damage to well facilities occurred.

A second area in the Ohio Valley where relatively intense earthquakes have been recorded is in western New York. Here earthquakes with intensities of 8 were recorded in 1929 and 1944. These two earthquakes were centered near Attica and Massena, New York, respectively, and related changes in groundwater conditions reportedly occurred in 1929. A less intense 1966 earthquake was also centered near Attica, New York.

Data from the most recently published seismic risk map of the United States are reproduced in Map 10. These data agree with the above discussion and indicate a possibility of major earthquake damage in the extreme southeast and northeast portions of the Ohio Valley and of moderate to minor damage elsewhere in the area.

The first observation of apparent relationship between fluid injection and seismic activity was made at the Rocky Mountain Arsenal injection well near Denver, Colorado in the early 1960's. Since that time, similar relationships have been documented at Rangely, Colorado, and Dale, New York. The former related to water injection for secondary recovery of oil and the latter to disposal of brine from solution mining of salt.

It has been erroneously stated by many that these seismic events have been stimulated by "lubrication" of a fault zone by injected fluids. What has happened, if injection has been involved, is that the water pressure on a fault plane has been increased, thus decreasing the friction on that plane and allowing movement and consequent release of stored seismic energy.

Based on this interpretation of the mechanism of earthquake triggering by. fluid injection, the following conditions would necessarily be present for the earthquake to occur:

1. A fault with forces acting to cause movement of the blocks on either side of the fault plane, but which are being successfully resisted by frictional forces.
2. An injection well constructed close enough, vertically and horizonally, to the fault so that the fluid pressure changes caused by injection will be transmitted to the fault plane.
3. Injection at a sufficiently great rate and for a sufficiently long time to increase fluid pressure on the fault plane to the point that frictional forces resisting movement become less than the forces tending to cause movement. At this time movement will occur and stored seismic energy will be released. That is, an earthquake will occur.
There is no known precedent for regulatory policy and requirements that will take seismic risk and earthquake generation into account. Tentative suggestions are:
4. If possible, sites should be avoided where risk of major earthquake damage is possible, as suggested by Map 10 ;
5. Where a well is constructed in a zone of major or moderate seismic risk, special attention should be given to standby facilities;
6. In areas of major or moderate seismic risk, wells should not be constructed so that they pass through fault planes because of the danger of shifting along the fault plane during an earthquake and consequent possible damage to well casing;
7. When wells are constructed in the vicinity of a major fault or faults that could be a source of earthquake occurrence, injection pressures should be kept to a minimum and a seismic monitoring network should be considered to provide early warning by detection of initial minor movements.

DISCUSSION OF CROSS SECTIONS

Eight cross sections were prepared. The locations of the lines of cross section are given in Map 1. The purposes of the cross sections are to show lateral variations in the thickness and lithology of the basal sandstone and the immediately overlying strata and characteristic responses of these units in the various types of geophysical logs that are used. For convenience in showing these relations, the sections are drawn with the top of the Mt. Simon Sandstone as a horizontal datum. This is conventional practice with such illustrations, but it is misleading to those not familiar with construction of cross sections. Actually, the top of the Mt. Simon occurs at widely varying depths from well to well, as can be determined by observing the depth markings in the 10 g of each well or by consulting the appropriate table among Tables $1-7$. Each of the cross sections is briefly discussed below.

Illinois

Two cross sections were prepared for Illinois. In the east-west cross section across northern Illinois (Cross Section 1), the basal sandstone ranges in thickness from about 900 feet in Well No. 17 on the west side to about 2300 feet on the east side in Well No. 23. The 2300 feet of basal sandstone represents nearly the maximum thickness at any location in the Ohio Valley.

In this cross section, the basal sandstone is almost entirely sandstone, with a few scattered shale beds, mostly thin ones. The log of Well No. 21 clearly shows the difference between the Mt. Simon Sandstone, and the basal sandstone in northern Illinois. The Mt. Simon Sandstone includes the sandstones below 3110 feet, and the basal sandstone includes the sandstones and shales below 2900 feet. The confining unit is also very well displayed in the $10 g$ of this well and, as the legend indicates, is principally shale and siltstone, with a few beds of sandstone and dolomite.

Cross Section 2 ranges from northeastern to southeastern Illinois. The northermost well, Well No. 3, was drilled for use as an injection well and would probably have been satisfactory for that purpose, except that the water in the upper part of the sandstone is fresh enough to be used for water supply. The sandstone in that well is thick, porous, and relatively free of shale. The basal sandstone thins progressively as it is traced southward from Well 35 to Well 22 . This
thinning is partly a result of the passage of sandstone to carbonate. It can be seen that carbonate is present in and above the confining unit in these wells.

Indiana

Cross Section 3 proceeds from west to east across northern Indiana from Well No. 9 to Well No. 60 in Mercer County, Ohio. The basal sandstone can be seen to grade upward into silstone and sandy dolomitic silstone in the logs of several of the wells. The contact between the basal sandstone and the confining unit is not clearly defined in these wells and was established by use of all available evidence as to the permeability of the beds. The lithology of the confining unit is also variable. In some wells, it is nearly all shale and silstone whereas in others it becomes dolomitic. As the cross section proceeds from the northern Il-linois-Indiana area, where the basal sandstone reaches its maximum thickness, toward the east, it becomes progressively thinner and therefore has less reservoir capacity. Wells No. 9 and 15 are both being used successfully for injection into the basal sandstone.

The basal sandstone shows no major variation in thickness or lithologic character in the four wells in Cross Section 4, which progresses from north-central Indiana to northeast Kentucky. The confining unit also retains about the same thickness in these wells. It does exhibit some variation in dolomite and sandstone content, but this is probably not sufficient to be significant in determining its adequacy to provide waste confinement. The cross section terminates on the south with the E.I. DuPont disposal well in Jefferson County, Kentucky. It was originally intended to inject into the basal sandstone in this well, but it was found to be inadequate for accepting the waste volume produced by the plant; thus, a shallower zone was used.

The basal sandstone shows little variation in thickness or lithology as it is traced from northern Indiana to southern Indiana in Cross Section 5. The Cross Section proceeds along the eastern border of Indiana and terminates in western Kentucky with the DuPont well, which is also the southermost well in Cross Section 4. The basal sandstone is almost entirely sandstone and ranges from about 350 to 500 feet in thickness in the Indiana wells. It is about 800 feet thick in the DuPont well. The confining unit has, however, changed in character as it has been traced eastward and, while it is still shale and silstone, it has become dolomitic, as is shown in the logs of the Indiana wells in this cross section.

Ohio

cross Section 6 begins on the west with well No. 60, the extreme eastern well in Cross Section 3. From there it proceeds eastward across northern Ohio to hell No. 8, in extreme northeastern Ohio. Throughout this cross section, the basal sandstone and the Mt. Simon Sandstone are the same. The only variation in the basal sandstone in this figure is the progressive thinning from about 350 feet in the west to just over 100 in the east. However, the confining unit can be seen to pass by facies change from shale and silstone in the west to dolomite in the east. As previously discussed, dolomite may provide adequate confinement, but this must be verified locally.

Pennsylvania

Conditions shown by Cross Section 7, which is comprised by wells in northwest Pennsylvania, are little different from those in northeastern Ohio. The basal sandstone is thin and is overlain by dolomite and sandy dolomite. Well No. 3 is the now-abandoned disposal well of the Hammermill Paper Company. The basal sandstone (Mt. Simon Sandstone) was used in this well, in addition to other intervals, for waste injection.

West Virginia

Cross Section 8 proceeds northeastward through extreme western West Virginia and into southeastern Ohio. The basal sandstone in Cross Section 8 is thin, as it is in Cross Sections 6 and 7, but it becomes an even poorer reservoir because it is interbedded sandstone and carbonate with resultant probably low porosity and permeability. The basal sandstone is also overlain by carbonate strata in this cross section as in the previous two. It is noteworthy that the depths shown in the well logs suggest the unlikelyhood that the basal sandstone would be used for injection in this immediate area.

The data tables, maps, and cross sections, and the discussion of them provide a basis for the evaluation of the basal sandstone as an injection interval in the Ohio Valley region.

The basal sandstone is present throughout the Ohio Valley region, with the exception of areas where it was never deposited, some of which are shown in Map 3. It lies at the base of the stratigraphic sequence, on the Precambrian basement surface. This vertical location, in combination with the lack of usable resources found in the basal sandstone, cause it to be favorable for wastewater injection. Only in northern Illinois, where it contains fresh water, and in the few localities where gas is stored or hydrocarbons have been found is the basal sandstone precluded for wastewater injection because of its value for other uses. Such locations are indicated by the well symbols in Map 1.

Another restriction on the use of the basal sandstone for waste injection is indicated in Maps 2 and 3, which show that in southern Illinois and Indiana, in most of Pennsylvania and West Virginia, and in southern New York, the unit is too deep to be practical for wastewater injection. These maps also show the presence of zones of major faulting in southern Illinois and Indiana and across Kentucky, which considerably restrict the potential for injection in those areas. Occasional major faults that require consideration are also shown in other parts of the region.

The reservoir properties of thickness, porosity, and pore volume are shown in Maps 4, 5, and 6, and data on permeability are provided in Tables 1-7. Generally, the maps and tables show that the basal sandstone is most favorable for wastewater injection in northeast Illinois, and northwest Indiana, and that it becomes less favorable eastward and southward from those areas. Experience supports this conclusion, because wastewater injection and gas storage have been extensively and successfully practiced in northeast Illinois and northwest Indiana, while attempts in other areas have met with mixed results. This by no means eliminates from consideration locations other than northern Illinois and Indiana, but it does suggest caution in projecting the potential of wells throughout the rest of the region. Map 7 shows that, except for the areas north
of the $10,000 \mathrm{mg} / 1$ isocon line in northern Illinois and perhaps near fault zones in other locations, there need be no concern with contamination of usable water in the basal sandstone.

Maps 8 and 9 show that the basal sandstone is directly overlain by several hundred feet of shale and siltstone with varying percentages of sandstone and carbonate throughout most of Illinois, Indiana, and in western Ohio. Although local confirmation is always necessary, for preliminary purposes, the basal sandstone would be considered suitably confined in these areas. Elsewhere, dolomite or limestone overlie the basal sandstone and the degree of confinement, though very possibly adequate, is less certain before drilling and testing has been accomplished.

Areas of relative seismic risk are shown in Map 10. Evaluation of the possible effect of earthquakes on wastewater injection operations and the relationship between wastewater injection and earthquake stimulation is less certain than reservoir evaluation because of limited experience in this technology. However, the generalization can be made that extra precautions should be taken in system construction and operation in areas of high seismic risk and that care should be exercised in injection operations that are sited near faults which could be the source of earthquake generation.

The cross sections provide a more graphic portrayal of the data presented in Maps 4,8 , and 9 and show the lithic variations occurring in the basal sandstone. They supplement the maps and data tables. In addition, the cross sections show the response of the units under study in the geophysical borehole logs typically used in the region.

REFERENCES

Algermissen, S.T., 1969, Seismic risk studies in the United States; Presented at Fourth World Conference on Earthquake Engineering, January 14, 1969, Santiago, Chile. Reprints available from U.S. Department of Commerce, Environmental Science Services Administration, Washington, D.C.

Becker, L.E., Hreha, A.J., and Dawson, T.A., 1976, Pre-Knox (Cambrian) Stratigraphy in Indiana: Indiana Geological Survey Bulletin --, in preparation

Cleary, E.J., and Warner, D.L., 1969, Perspective on the regulation of underground injection of wastewaters: Ohio River Valley Water Sanitation Commission, Cincinnati, Ohio

Heigold, P.C., 1968, Notes on the earthquake of November 9, 1968, in southern Illinois: Illinois Geological Survey Environmental Geology Note No. 24.

ORSANCO, 1973, Underground injection of wastewaters in the Ohio Valley Region: Ohio River Valley Water Sanitation Commission, Cincinnati, Ohio

KB
DF
GL
TM
ETM
THL
$0 / \mathrm{G}$ ABD
OIL
GAS
GAS STG
GAS STG ABD
SWD
DISP
DISP ABD
WTR
WTR ABD
NI
ND

NP

i
(?)
MD
kelly bushing
derrick floor
ground level
topographic map
estimated from topographic map
drilled for oil or gas - abandoned producing oil
producing gas
drilled and utilized for gas storage or storage field abandoned gas storage well observation salt water disposal well
industrial disposal well
abandoned industrial disposal well
water supply well
abandoned water supply well
not identified
not determined
not penetrated
incomplete section
information unknown or questionable millidarcys

The following organizations and individuals have contributed materially to the preparation of the report Evaluation of the Ohio Valley Region Basal Sandstone as a Wastewater Injection Interval.

Illinois State Geological Survey
Jack A. Simon, Chief
Robert E. Bergstrom, Principal Geologist, Geological Group Thomas C. Buschbach, Geologist, Stratigraphy and Areal Geology Section
Donald C. Bond, Head, $0 i 1$ and Gas Section Timothy Kemmis, Research Assistant

Indiana Geological Survey
John B.Patton, State Geologist
Leroy E. Becker, Head, Petroleum Section Andrew J. Hreha, Geologist, Petroleum Section Thomas A. Dawson, Head, Petroleum Geology Section to April 1974 (deceased)

Kentucky Geological Survey
Wallace W. Hagan, State Geologist Edward N. Wilson, Head, Oil and Gas Section

New York Geological Survey
James F. Davis, State Geologist W. Lynn Kreidler, Senior Scientist (deceased)

Ohio Division of Geological Survey
Horace R. Collins, State Geologist Adriaan Janssens, Head, Subsurface Geology Section

Pennsylvania Bureau of Topographic and Geologic Survey
Arthur Socolow, State Geologist. William S. Lytle, Senior Research Geologist Walter R. Wagner, Geologist, Oil and Gas Geology Division

West Virginia Geological and Economic Survey
Robert B. Erwin, State Geologist Larry D. Woodfork, Assistant State Geologist Douglas G. Patchen, Head, 011 and Gas Section

> ACKNOWLEDGMENTS - cont'd

ORSANCO

Russell A. Brant, Geologist and Principal Investigator
University of Missouri -- Rolla
Department of Geological Engineering
Don L. Warner, Professor of Geological Engineering and Consultant to ORSANCO -- Project Technical Coordinator
A. Herbert Harvey, Professor of Petroleum Engineering

Ernest Bartoli, Graduate Assistant
Dennis Gleason, Graduate Assistant
John Rełss, Jr., Graduate Assistant
U. S. Geological Survey, Water Resources Division

Francis A. Kohout, Project Officer
Leonard A. Wood, Project Officer

FIGURE 1.- CORRELATION CHART OF CAMBRIAN ROCKS IN INDIANA AND ADJACENT - PRRE-XNOX (CAMBRIAN) STRATIGRAPHY IN INUIANA, © BY LEROY E. 日

ITES. FROM INDIANA GEOLOGICAL SURVEY BULLETIN (ER, ANDREW J. HREMA, AND T. A. DAWSON, IN PREPARATION.

(
(2)

1.-

\qquad
-...--
1.,

100 miles

MAP 10

The Ohio River basin and vicinity showing the degree of seismic risk as projected from earthquake history and geologic considerations
from Algermissen. 1969
LEGEND
MAJOR DAMAGE FROM EARTHQUAKES MAY OCCURMODERATE DAMAGE FROM
EARTHQUAKES MAY OCCURMINOR DAMAGE FROM EARTHQUAKES MAY OCCUF

WATER NALYSES	CORE ANALYSES	CONFINING UNIT						BASAL SANDSTONE UNIT					BASEMENT
		$\begin{gathered} \text { SEA } \\ \text { LEVEL } \\ \text { ELEVATION } \end{gathered}$	THICKNESS	FEET OF SHALE/ SILTSTONE	FEET OF SANDSTONE	FEET OF CARBONATE	$\begin{gathered} \text { SEA } \\ \text { LEVEL } \\ \text { EIEVATION } \end{gathered}$	THICKNESS	$\begin{aligned} & \text { SAND- } \\ & \text { SHALE } \\ & \text { RATII } \end{aligned}$	AVERAGE POROSITY	POROSITY FEET	$\underset{(\mathrm{MD})}{\text { PERMEABILTY }}$	$\begin{gathered} \text { SEA } \\ \text { LEVEL } \\ \text { ELEVATION } \end{gathered}$
-	-	- 100	125	94	31	0	- 255	1885	-	-	-	-	-2110
-	-	- 390	140	70	70	0	- 530	2405	-	-	-	-	-2935
x	-	- 686	363	243	18	102	-1049	2230	~ 100	. 17	375	-	-3279
x	-	- 024	333	166	50	117	-6357	1319	~ 100	. 15	198	-	-7676
x	-	NI	-	-	-	-	NI	-	-	-	-	-	-12622
-	-	-1527	268	147	94	27	-1795	738	-	-	-	-	-2533
x	-	-1575	172	120	43	9	-1747	1305	316	. 145	183	-	-3052
x	-	- 313	177	142	35	0	-493	2338	117	. 145	301	150 (field ave)	-2831
-	-	+ 7	306	168	77	61	- 299	2489	27	. 17	399	-	-2788
x	-	- 79	322	194	64	64	-401	2640	46	. 12	277	-	-3041
-	-	- 916	165	83	82	0	-1081	1965	-	-	-	-	-3046
-	-	- 458	180	120	60	0	-638	2015	-	-	-	-	-2653
-	-	NI	-	-		-	NI		-	-	-	-	-4342
x	-	NI	-	-	-	-	-4470	35	8.75	. 145	5	-	-4505
-	-	NI	-	-	-	-	-4631	58	-	. 04	2	-	-4689
x	-	NI	-	-	-	-	-7890	742	16	. 10	68	-	-8632
-	-	-1510	270	149	81	40	-1782	884	~ 100	-	-	-	-2666
x	-	NI	-	-	-	-	NI	-	-	-	-	-	-2082
-	-	NI	-	-	-	-	-2032	457	45	-	-	-	-2489
x	-	NI	-	-	-	-	NI	-	-	-	-	-	-1409
-	-	-2179	194	145	39	10	-2373	1942	14	. 125	202	32.28	-4315
-	-	-10294	359	179	108	72	-10653	357	23	. 04	14	-	-11010
-	-	- 899	372	249	37	86	-1271	2308	52	. 13	293	-	-3579
-	-	- 23	102	77	25	0	- 125	1661	-	-	-	-	-1786
	x	-2618	518	363	52	103	-3136	634 i	97	. 09	53	15 (field ave)	NP
-	x	-2577	516	361	52	103	-3093	640 i	8	-		15 (field ave)	NP
	-	- 825	240	180	12	48	-1065	$113 i$	8.65	-	-	-	NP
-	-	- 918	242	189	12	41	-1160	$168 i$	-	-	-	-	NP
x	-	-3306	482	323	48	111	-3788	405 i	46	. 11	41	-	NP
-	-	-2758	448	336	22	90	-3206	10261		,	-	-	NP

BASEMENT SEA LEVEL ELEVATION

$\underset{7}{J}$
$\stackrel{\ominus}{\sim}$

$$
\begin{aligned}
& \text { 念 } \\
& \text { 夏 }
\end{aligned}
$$

 믕

$$
\dot{\dot{E}}
$$

Nin

采

Continental No． 1 Resur
EEI River No． 1 Blocher
Dame No．i Industrial
U．S．Steel No．WD－1 U．S．Steel
：IIPSCO No． 1 Hamstra
Cananche No． 1 Pippenger
Bethlehem No．WD－1C Bethlehem

\circ
28
88
易
号
2
\circ
2
8
8
4
4
Sanders No．
Contral No． Food No．Woyne No．
Wayne No．
20
88
80
0
20

埌慁

BASEMENT
SEA
LLEVEL
ELEVATION

NP
$N P$

CONFINING UNIT

资
0
0
0
0 SEA
LEVEL
LEVATON
 ELEVATION

 мưo Non on 001111 先11110ู01111

 $\xrightarrow[\text { ANALYSES }]{\text { CORE }}$ 1111×111111111×11111
GEOPHYSICAL LOGS
GR－N \quad E \quad SONIC

出少䠉

 Monitor Pet. No. 1 Blanton Ashland $O \& R$ No. 1 Iee Clay

BASAL SANDSTONE UNIT

SEA
LEVEL
ELEVATION

閶夏

TABLE 4. WELL DATA - New York (con't)

\％		๗ัํํ웅	
$\stackrel{\sim}{\sim}$	세№ion	－¢ ¢－	¢ 0 No

Jefferson
Pierpoint Trumbull
St．Marys
Lemon會 Harmony
Pleasant Stonelick
Wayne事等告
裔荡 シ 4
0
0
0
0
0 H． 0
0
0
0
0
0
0
0
4
4
4 Adams
Adams
Allen
Allen
Allen
Ashland
Ashtabula
Ashtabula
Ashtabula

 Columbiana
 Defiance Delaware
 Delaware Delaware
Delaware ．
Vistron No． 2 Sohio
Ohio Oil No． 1 Krause U．S．Oil No． 1 Roultstone East Ohio No． 1 Bra West Ohio No． 1 Hoelscher Armico No． 1 Armco Armoo No． 2 Armco Hodges No． 1 Elcamere Farms
Edmund No． 1 Brown Continental No． 1 Wi Kewanee No． 1 McVey Kewanee No． 1 Adams Kngmant．Contr．No． 3 Murray Tatum No． 1 Lee
Hawkins No． 1 Leonhardt Brown No．I Haver McClure No． 1 Smith Minnesota－Ohio No． 1 Lindsey Wise No． 1 Vance Wehmeyer No． 1 Sprain Minnesota－Ohio No．I Gregory So．Triangle No． 1 Jones Sun No． 1 Krysik－Wakefield
sun

CONFINING UNIT	
$\begin{gathered} \text { SEA } \\ \text { LEVEL } \end{gathered}$	
ELEVATION	THICKNESS
	ND
	ND
-1548	401
-1536	410
-1544	380
-1444	373
	ND
	ND
-1773	360
-1561	380
-1767	541
	ND
	ND
	ND
-2126	314

（TOWNSHIP）

Concord
Jasper
Union
Franklin
Swancreek
Adams
Amanda
Jackson
Union
Dudley
Jackson
Fairfield
Fairfield

 4
咸
0
0

 आ
4
4
4
4
4
4
4
4
4
 I
O
－
苟
－

y
む

\qquad
Fayette
Fralton Guernsey
 Hancock Hardin
Hardin Highland Highland Hocking肴肴

Kewanee No． 1 Wilson Kewanee No． Kewanee No． 1 Hopkins
Marble Cliff No． 1 Fee Liberty No．I Storeholder Iakeshore No． 1 Marshall Kin－Ark No． 1 Drummelsmith Dever No． 1 Frazier 1 Wolf McMahon－Bullinton No Edmund No． 1 Jones
Ohio Valley No． 1 Courtney Ohio Valley No．I Court Dunigan No． 1 Hockman Halbert No． 1 Wood Ohio Fuel No． 1 Larimore Cantway No．i Cunningham Calhio No． 1 Calhio Atha No． 1 Roberts Lakeshore No． 1 Crowley Ohio Oil No． 1 Johns Liberty No． 1 Ketrin Amerada No． 1 Hume United No．I Mitchell Ohio Fuel No． 1 Warner Harner Union No． 2 Yewey

 บัํํํํํํํํํํํํํํ

TABLE 5．WEIL DATA－Ohio（con＇t）
REFERENCE
ELEVATION

LOCATION
（TOWNSHIP）
Bridgewater
St．Joseph
St．Joseph
Center
Center Liberty
Middleton
Plain

変芫

OPERATOR \＆WELLL NAME

		111111111
$\begin{aligned} & \text { 旨 } \\ & \hline \end{aligned}$		
麓 最	药鼻	
蜀		
	第 曾 品	苐

$\begin{aligned} & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { U } \\ & \text { 号 } \end{aligned}$	11111
	国 $\begin{aligned} & z_{1} \\ & 1 \\ & \end{aligned}$	$x \times x \times 1$ $\times \times x \times \times 1$
宸		
$\dot{\mathrm{B}}$		
		图图团图
$\begin{aligned} & \text { 早 } \\ & 8 \\ & 8 \end{aligned}$		
窝定家		ーNのび

ThBie 6. WEIL DATA - Pennsylvania

TABLE 7．WELJ DATA－West Virginia

总

OPERATOR \＆WELL NAME

気运国是

TABLE 7. WELL DATA - West Virginia

90,000
90,000
 107,100
107,100
$000^{\prime} 00 \tau$
$000^{\prime} 0 \mathrm{~S}$
$000^{\prime} \varepsilon \tau T$
$000^{\prime} \varepsilon \tau T$
10,000
2,000
10,000
7,000
50,000
28,500
100,000
93,000
280,000
46,000
67,000
24,000
58,000 1.000
1.003
1.020
1.070 1.074
1.081
 sțsKTeut 6ot Log Analysis Water Analysis
 sțsKLeut xə7em sțsKieut bot
 sțSKTeut bot sțsKteut xә7eм

응
$\stackrel{3}{\circ}$
i 1.016 1.074 1.081
1.000
1.003 ?
Depth of
Observation -3150
-3203

-3140
-3189 -3203
-3140
-3189
-3818
-3834 -3215
-3316
-3321
-3586 -1084
-1466
-1479
-1766
-2059
-2266
-2909
-3166 -1084
-1466
-1479
-1766
-2059
-2266
-2909
-3166 -1084
-1466
-1479
-1766
-2059
-2266
-2909
-3166 -1084
-1466
-1479
-1766
-2059
-2266
-2909
-3166 -1084
-1466
-1479
-1766
-2059
-2266
-2909
-3166

 \begin{tabular}{c}
Sea Level

Elevation of

Observation

\hline

8

0

0

0

\hline
\end{tabular}

sțsKieut xә7em STSKTEuy тәтем Salinity (total dissolved solids) and Density of Waters from the
Basal Sandstone Unit in the Ohio Valley Area

 $\begin{array}{cccc}m & \dot{H} & 0 & \circ \\ 0 & 0 & 0 & 0 \\ -i & -i & -i & -i\end{array}$

 $\underset{m}{m} \sim \quad \infty$
∞
in
$\stackrel{m}{\square}$
\neq
욱
∞
TABLE 8 (con $^{\prime} t$)
Salinity (total dissolved solids) and Density of Waters from the
$\begin{gathered}\text { Fluid } \\ \text { Density }\end{gathered}$
1.011
1.011
1.034
1.070
 응
i

i Basal Sandstone Unit in the Ohio Valley Area | Total |
| :---: |
| Dissolved |
| Solids | 12,200

13,400 17,900 50,800 98,500 웅

74,400 59,600
59,600 64,400

Method of
Interpretation
Log Analysis
Water Analysis
Water Analysis
Water Analysis
Water Analysis
Log Analysis
Log Analysis
Log Analysis
Log Analysis
Water Analysis
Log Analysis

Sea Level
Elevation of
Observation

\circ
$\stackrel{\circ}{2}$
$\underset{\sim}{1}$
1 -1845 $\stackrel{+}{\circ}$ $\stackrel{\infty}{\sim}$
$\stackrel{\cup}{\sim}$
-4436
-4470
-7859 \circ
∞
∞
$\stackrel{\infty}{1}$
1 -1
\vdots
0
1
1 $\xrightarrow{\infty}$ $\begin{array}{cc}-1 & 0 \\ N & 9 \\ \infty & \infty \\ 1 & 1\end{array}$
-3170
-3180 0
$\underset{\sim}{\infty}$
1
1 -2810 -1
∞
$\underset{\sim}{\infty}$
$\underset{1}{n}$ -3100
-3111 n
$\underset{1}{-1}$
$\underset{1}{n}$ 68,400
68,400

Method of
Interpretation
Log Analysis
Log Analysis
Water Analysis
Water Analysis
Log Analysis
Water Analysis
Water Analysis
Water Analysis

TABLE $8\left(\operatorname{con}^{\prime} t\right)$
Salinity (total dissolved solids) and Density of Waters from the
Basal Sandstone Unit in the Ohio Valley Area
TABLE $8\left(\right.$ con't) $^{\text {The }}$
Salinity (total dissolved solids) and Density of Waters from the
Basal Sandstone Unit in the Ohio Valley Area
TABLE 8(con't)
Salinity (total dissolved solids) and Density of Waters from the
Basal Sandstone Unit in the Ohio Valley Area

Fluid
Density

1.035
1.013
1.041
1.005
TABLE $8\left(\right.$ con't) $^{\text {The }}$
Salinity (total dissolved solids) and Density of Waters from the
Basal Sandstone Unit in the Ohio Valley Area

> | Total |
| :--- |
| Dissolved |
| Solids |
| $\sim 80,000$ |
| 28,000 |

51,400
51,400
20,000
20,000
61,600
\circ
-1
-1
214,000
Depth of
Observation

Sea Level
Elevation of
Observation

H
2
\qquad

 -
TABLE 9

STSKTEUY 6OT	
STSKTEUV	TV 60I
STSKTEUY	ry bor
sțSTeuz	隹 60T
STSKTEU甘 5ot	
SȚKTEU甘 גə7еM	
STSKTEUH	प\％ 501
SțKTeut	\％6OT
sțSTEUY	W\％ 601
SȚSTEUY	\％60\％
STSKLeut	хә7ем
sțSTEUV	¢ БOT
sts ${ }_{\text {cteut }}$	\％60\％
SŢǨEUH	ォә7ем
sțSTEUY	W 60＇
	H 60T
sțsKTEut	V 6OT
SȚSKTEU甘	\％6OT
นот7е7əxđxə7uI	
ғ० роч7ӘW	

Inäiana
ミell No．
Method of
Interpretation
Log Analysis
Log Analysis
Log Analysis
Water Analysis
Water Analysis
Log Analysis
Log Analysis
Log Analysis
Water Analysis
Water Analysis
Water Analysis
Log Analysis
Log Analysis
Log Analysis
Log Analysis
Water Analysis
Log Analysis
Lolysis

Method of
Interpretation
Log Analysis
Water Analysis
Log Analysis
Water Analysis
Log Analysis
Log Analysis
Water Analysis
Log Analysis
Log Analysis
Log Analysis
Log Analysis
Water Analysis
Log Analysis
Water Analysis
Log Analysis
Log Analysis
Log

TABLE 9 (con't)
Salinity (total dissolved solids) and Density of Waters from the

Fluid Density
1.010
1.071
1.092

0	$\stackrel{0}{1}$
-	
-	-
$-i$	

Basal Sandstone Unit in the Ohio Valley Area

［10	0	0				0		
	－ 0		M．			－${ }^{\circ}$	－	
	$\stackrel{1}{2}$		On 0n	0200	$0 \sim 000$	λ	0	0000
	न－	ન入入入入入	入入入	入入入	入入入入	त	\cdots	入入入
	\＆	\＆ 0 ช ช ช	\％	ช	ช ช ๘	¢	τ	σ
（1）	d		名念息			4	穴	合安穴
	$\begin{aligned} & 4 \\ & 0 \\ & 0 \\ & \text { N } \\ & 3 \end{aligned}$	$\begin{array}{llllll} \text { y } & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{array}$	$\begin{aligned} & \text { or or } \\ & 0 \\ & \text { ¢ } \\ & \hline 1 \end{aligned}$	$\begin{array}{ll} \text { ro } \\ 0 & 0 \\ 1 \\ \hline 1 & 0 \end{array}$		$\begin{aligned} & \underset{y}{y} \\ & \underset{\sim}{\sim} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \hline ⿴ 囗 十 \end{aligned}$	1

TABLE $9\left(\operatorname{con}^{1} t\right)$

Salinity（total dissolved solids）and Density of Waters from the Basal Sandstone Unit in the Ohio Valley Area \begin{tabular}{c}
$\begin{array}{c}\text { Fluid } \\
\text { Density }\end{array}$

\hline

1.048

 1.148

Total

Dissolved

Solids

\hline
\end{tabular} 1,280

$\sim 6,500$
68,100
10,000
50,000
100,000
150,000
200,000 $\begin{array}{llll}\circ & 0 & 0 & 0 \\ \circ & 0 & 0 & 0 \\ \text { min } & 0 \\ c & 1 & n \\ n & n\end{array}$ 100,000
100,000
150,000
200,000 250,000
50,000
100,000
150,000
200,000 2200,000
204,400 $\begin{array}{llll}\circ & 0 & 0 & 0 \\ 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ -1 & -1 & N & N\end{array}$

 2561 | 0 | m | 6 |
| :--- | :--- | :--- |
| $\underset{N}{\infty}$ | | |
| N | \cdots | | 3166 4515

4575
4715
4850
3628
3678
3738
3800
3865

5447
$5450-6160$ 5450－6160
 Indiana
$\stackrel{\text { M }}{-}$ $\underset{7}{7}$
$\stackrel{-}{-1}$
17
$\underset{\sim}{\infty} \underset{\sim}{\infty}$

Method of
Interpretation
Log Analysis
Water Analysis

 sțsKteut bot
sṭsKteut bot Water Analysis sțSTEUW ォә7ем
sțsKTEUV 6OT
sțsKteut bot
TABLE 10
SALINITY (TOTAL DISSOLVED SOLIDS) AND DENSITY OF WATERS FROM THE
 BASAL SANDSTONE UNIT IN THE OHIO VALLEY AREA BASAL SANDSTONE

30,000
$\circ 00$
000
00
m N
25,000
200,000

THIS

$$
\begin{gathered}
\text { Sea Level } \\
\text { Elevation of } \\
\text { Observation } \\
\hline
\end{gathered}
$$ -5187

-5257
-5350
-5617
-6812
-7094
-7250
-7486

170,000
-6864
AS N. -7597
70,000 175,000
200,000

200,000
300,000
300,000
300,000
16,000
250,000
250,000
100,000
40,000
-2632
-4132 -4163
-2.101
D995-

-- S

D
1

P | Depth of |
| :--- |
| Observation | SSG9

$80 Z 9$
STT9
SD09

7674
7956
8112
8348
7516
8405 8557
8733 M 9303

3390 REPORTED
\qquad

$-$

Kentucky
Well No.
\bullet
σ
r

$\stackrel{1}{\sim}$

			$\underbrace{\text { den }}_{\substack{\text { Plusit } \\ \text { pensity }}}$
	$\underbrace{-3903}_{-3933}$	(175,000	
$\substack{5062 \\ 5100}_{\substack{\text { cid }}}$	${ }_{-1411}$	$\xrightarrow{\text { linco,000 }}$	
$\underbrace{\substack{\text { and }}}_{\substack{5244 \\ 5426}}$	${ }_{-2429}$	$\xrightarrow{190,000} 1$	
	-4915		
3274	-2505	1490000	
$\begin{aligned} & 5270 \\ & 54505 \\ & 5050 \end{aligned}$	$\underset{\substack{-4281 \\-4.465}}{-4.35}$	170,000 195,000	
	coicle	180,000 80,000	
${ }_{5136}$	-7397	160,000	
5974	-4695	200,000	
	-5894		

$\stackrel{\sim}{\sim}$
in in
in
in
4
6

Method of
Interpretation
Log Analysis

TABIE $10 \quad\left(\operatorname{con}^{\prime} t\right)$

Salinity (total dissolved solids) and Density of Waters from the | Fluid |
| :---: |
| Density |

Basal Sandstone Unit in the Ohio Valley Area

Total
Dissolved
Solids

4,700
13,000
250,000
300,000
300,000

$$
\begin{gathered}
\begin{array}{c}
\text { Kentucky } \\
\text { Well No. }
\end{array} \\
\hline 65 \\
67 \\
66
\end{gathered}
$$

Method of
Interpretation
Log Analysis
Log Analysis
Water Analysis
Log Analysis
Water Analysis
Log Analysis
Log Analysis
Log Analysis
Log Analysis Analysis
Log Analysis
Log Analysis
Log Analysis
Log Analysis
Log Ans

TABLE 11 （ $c o n ' t$ ）
Salinity（total dissolved solids）and Density of Waters from the Basal Sandstone Unit in the Ohio Valley Area

$\begin{array}{l}\text { Total } \\ \text { Dissolved } \\ \text { Solids }\end{array}$

52，000
126，000 197,000
108,000
140，000
315，000
153，000
129，000
132，000
000 ‘ غ
000 ＇LST
000×08
OもT「00て
56，000
106，000

\qquad $\stackrel{\substack{\mathrm{N} \\ \underset{\sim}{\infty} \\ i}}{ }$
－3477
$\underset{\sim}{n}$
$\stackrel{9}{N}$
-2467

-10347
-3824
-2669

$\begin{array}{ll}\text { N } & 0 \\ \underset{\sim}{2} & 0 \\ \underset{1}{1} & 1\end{array}$

$\begin{array}{l}\text { Depth of } \\ \text { Observation }\end{array}$

 5000 3702 2610 5517 3080 $\stackrel{\circ}{\infty}$ | \quad Ohio |
| :--- |
| Well No． |

New York Well No.

```
Jack Simon
Robert E. Bergstrom
Illinois Geological Survey
1 2 1 ~ N a t u r a l ~ R e s o u r c e s ~ B u i l d i n g ~
Urbana, Illinois 61801
    Phone: 217-344-1481
John B. Patton, CHAIRMAN
Leroy Becker
Indiana Geological Survey
6 1 1 \text { North Walnut Grove}
Bloomington, Indiana 47401
    Phone: 812-337-2862 (Patton)
        812-337-5412 (Becker)
Wallace W. Hagan
Edward N. Wilson
Kentucky Geological Survey
120 Graham Avenue
Lexington, Kentucky 40506
    Phone: 606-257-1792
James F. Davis
New York Geological Survey
State Education Bldg., Rm. 973
Albany, New York 12224
    Phone: 518-474-5810
Horace R. Collins
A. Janssens
Ohio Division of Geological Survey
Fountain Square
Columbus, Ohio 43224
    Phone: 614-466-5344
```

Arthur A. Socolow
William S. Lytle
Bureau of Topographis and
Geological Survey
300 Liberty Avenue
Pittsburgh, Pennsylvania 15222
Phone: 412-565-5030
James Calver
Virginia Division of Mineral Resources
P. O. Box 3667
Charlottesville, Virginia 29903
Phone: 804-293-5121
Leonard Wood
U. S. Geological Survey
Water Resources Division, National Center
Mail Stop 411, 1112 Sunrise Valley Drive
Reston, Virginia 22092
Phone: 703-860-6904
Robert B. Erwin
Larry D. Woodfork
West Virginia Geological
and Economic Survey
P. O. Box 879
Morgantown, West Virginia 26505
Phone: 304-292-6331
Don L. Warner
Department of Mining, Petroleum
and Engineering Geology
University of Missouri
Ro11a, Missouri 65401
Phone: 314-341-4754
REGULATORY AGENCIES OF THE SIGNATORY STATES
ILLINOIS
Environmental Protection Agency
State of Illinois
2200 Churchill Road
Springfield, Illinois 62706
(217) 525-5467
INDIANA
Indiana Stream Pollution Control Board
1330 West Michigan Street
Indianapolis, Indiana 46206
(317) 633-4420
KENTUCKY
Department of Natural Resources
Capital Plaza Tower
Frankfort, Kentucky 40601
(502) 564-3410
NEW YORK
Environmental Health Services
NYS Department of Environmental Conservation
50 Wolf Road
Albany, New York 12201
(518) 457-7362
OHIO
Ohio Environmental Protection Agency
P.O. Box 1049
Columbus. Ohio 43216
(614) 466-2390
PENNSYLVANIA
Department of Environmental Resources
P.O. Box 2351
Harrisburg. Pennsylvania 17120
(717) 787-2666
VIRGINIA
State Water Control Board
P.O. Box 11143
Richmond, Virginia 23230
(804) 770-2241
WEST VIRGINIA
Division of Water Resources
Department of Natural Resources
1201 Greenbrier Street
Charleston, West Virginia 25311
(304) 348-2107

[^0]: ${ }^{1}$ Flow capacity (permeability x thickness) is similar to, but not exactly the same as transmissivity (hydraulic conductivity x thickness). Flow capacity is a property of the aquifer only, whereas transmissivity considers the density and viscosity of the aquifer water as well.

