Ground Water Studies of Neville Chemical Site Mile Point 6.2 of the Ohio River

Part of an Investigation of Toxic Substances in the Ohio River Between River Miles 0 and 90

Ohio River Valley Water Sanitation Commission August 1992

GROUND WATER MODEL STUDIES OF NEVILLE CHEMICAL SITE MILE POINT 6.2 OF THE OHIO RIVER

Part of an Investigation of Toxic Substances in the Ohio River Between River Miles 0 and 90

Ohio River Valley Water Sanitation Commission August 1992

TABLE OF CONTENTS

Introduction	1
Scope of Project	1
Identification of an Appropriate Model	1
Case Study - Neville Chemical Company	2
Background	2
Model Set Up	4
Results	7
Conclusions	21
Recommendations	21

Introduction

An objective of the Ohio River Valley Water Sanitation Commission, under its Toxic Substances Control Program, is to assess the influence of ground water on Ohio River water quality. Increased emphasis on the impact of ground water is based on the results of ORSANCO toxic substances field investigations which show an apparent contribution of toxics from contaminated ground water. Simulation of ground water flow, using mathematical models, is identified as the most efficient method for this evaluation.

The selection of modelling as the assessment method was based on several factors, including:

- 1) The availability of hydrogeologic data for several sites along the Ohio River.
- The lack of refined field techniques for measuring flow through the ground water/surface water interface.

Through use of an appropriate model with existing data, flow quantities transferred between ground and surface water can be estimated. Application of the model to a specific site could indicate the likelihood of effects on surface water from contaminated ground water.

Scope of Project

The project included:

- 1) Identification of an appropriate model
- 2) Application of the model to a selected site
- 3) Comparison of model results to actual data

Identification of an Appropriate Model

Model selection includes several considerations: the model should be well accepted and verified, provide flexibility to consider differing levels of complexity, be able to model ground water/stream interfaces, be suitable for execution on a micro computer (286 type machine) and be relatively simple to use.

Consultation with ground water modelers from state government, federal government and a university researcher resulted in the selection of the USGS model MODFLOW, "A Modular Three-Dimensional Finite Difference Ground-Water Flow Model". This model has wide spread acceptance, has been rigorously tested, is very flexible, will run on a personal computer with some limitations), and can handle streams.

Case Study - Neville Chemical Company

Background

The Neville Chemical Company is located on Neville Island at approximately mile point 7.0 of the Ohio River. Neville Chemical produces thermoplastic resins (SIC 2821), bulk organic chemicals (SIC 2869), and specialty organic chemicals (SIC 2818).

The plant site is approximately 50 acres, bordered on the north and south by the Ohio River, on the east by Shenango Inc. and Exxon and to the west by several industrial service facilities (see Figure 1). Contamination of the ground water in the subsurface of Neville Island has been documented. The West View Water Authority installed water supply wells and had to subsequently abandon them because of existing ground water contamination. The wells were installed close to the Neville Chemical waste lagoon, which was operated from 1925 until the late 1970's.

Investigations by the Pennsylvania Department of Environmental Resources (PA DER) have shown that activities at Neville Chemical are responsible for the contamination at the site. Years of on-site waste disposal, process leaks and accidental spills have resulted in high levels of organic compounds in the ground water.

The Neville Chemical Company has been pumping contaminated ground water and recovering free product since the late 1970's. The company has been under a consent order with PA DER since 1980. Because of inadequacies in the cleanup program PA DER issued an administrative order on January 4, 1989. Subsequent negotiations resulted in a consent order and agreement between Neville Chemical and PA DER. Neville Chemical is currently reassessing the magnitude of the problem based on this agreement. Under the terms of these orders and agreements, the company has been required to collect a considerable amount of data; the data proved sufficient to characterize hydrogeologic conditions on the site.

This site was selected for the modeling based on the following factors:

- 1) Data availability
- 2) Long term concern by PA DER
- Level of ground water contamination (Benzene concentrations greater than 10,000 ppb, Naphthalene concentrations greater than 100,000 ppb)
- 4) Unique conditions of higher river stage in back channel.

Model Set Up

Figure 2 shows the grid arrangement used for the simulation of the Neville Chemical site. The grid is 18 rows by 23 columns with varying spacing. The spacing was varied to allow more detail near the river banks and pumping wells. The model boundaries were extended 2000 feet to the east and west to reduce the influence of the no flow boundaries. The model was run as one layer, assuming the bedrock underlying the alluvial materials to be impervious. The constant head boundary formed by the Ohio River was defined based on a site plan submitted by the Neville Chemical Company to PA DER.

The model was run under varying conditions to evaluate the input data. Recharge and the hydraulic conductivity were varied. The hydraulic conductivity was varied by one order of magnitude above and below the value reported by the Neville Chemical Company. The model was run with and without recharge for each hydraulic conductivity. PA DER believes very little recharge takes place given the areal extent of concrete and the storm water collection system maintained by Neville Chemical.

Recharge was input as a matrix to allow for differences in the overlying material. Recharge was calculated as the inverse of runoff using the annual average rainfall $(1.1 \times 10^{-7} \text{ ft/sec})$ on the site and the rational coefficient (C) to describe runoff from different types of areas of the site (see Table 1). The rainfall data was from four years of weekly data submitted by the Neville Chemical Company to PA DER. The relation (1-C) was input to describe recharge to each cell. Recharge to each cell was defined as:

Recharge =
$$(1 - C) * (1.1x10^{-7} \frac{ft}{sec})$$

Figure 2 - Model Grid

----- Approximate Boundary of Neville Chemical Site

5

Table 1 shows the model conditions for the initial simulation:

Table 1 - Model Conditions - D	etailed Simulation
Steady State	
Assume Subsurface is isotropic	and homogeneous
Hydraulic Conductivity	= 0.002 ft/sec
Ohio River is Constant Head Bo	oundary
Bedrock Elevation	= 660' msl
Annual Average Rainfall	= 1.1x10 ⁻⁷ ft/sec@
Pumping Wells (well Id (row,co), pump rate)
WW-2 (5,19) 0.89 cf	S
WW-3 (5,18) 0.84 cf	S
WW-7 (4,9) 0.36 cf	s
Rational Coefficients:	
Undeveloped Areas	= 0.15
Parking Lots/Buildings	= 0.75
Process Areas	= 0.80
Tank Farms	= 0.05
River Stage:	
October 16, 1991	Main Channel 693.3
	Back Channel 711.2

* - From " Ground Water Phase I Report, Neville Chemical Company, Pittsburgh, Pennsylvania", ERM, February 1990. @ - From Neville Chemical Monitoring Data

- From Water Supply and Pollution Control, Fourth Edition, Viessman, W., & Hammer, M.J., Harper & Row NY, NY.

Status reports submitted by the Neville Chemical Company to PA DER provide water table data as well as river stage data. Data collected on October 16, 1991, was used for the initial runs. These runs were used to establish the appropriate hydraulic conductivity and the influence of recharge on the site. Pumping rates are those reported by Neville Chemical in 1990. The pumping well configuration has changed since, according to PA DER. The volume pumped from each of the wells was not available, therefore the same total volume was assumed with the distribution as above.

The model was then executed using river stage data from December 16, 1991 and Janary 22, 1992. The difference between upper and lower river stages for these two days were 14.8 and 16.2 feet respectively. These runs provide additional information on ground water contribution at varying river stage.

Results

Initially the model was executed for six different cases to determine the effect of recharge and the suitability of the hydraulic conductivity value. Table 2 displays the conditions for each of these six runs.

Run	Hydraulic Conductivity	Recharge
Run 1	0.02 ft/sec	Yes
Run 2	0.02 ft/sec	No
Run 3	0.002 ft/sec	No
Run 4	0.002 ft/sec	Yes
Run 5	0.0002 ft/sec	Yes
Run 6	0.0002 ft/sec	No

TABLE 2 - Model Run Conditions

The output of each run was evaluated by comparing the calculated heads with data from monitoring wells. The predicted heads at the monitor wells were interpolated from the four closest model nodes using the inverse distance method. Results from runs 4 and 5 were not evaluated because the results showed that the cells containing the pumping wells went dry. Table 3 shows the calculated heads vs the measured heads and the differences for the first four runs. Neville Chemical has installed well clusters at many locations and head values for both the shallow (S) and deep (D) wells are displayed.

It is clear that the differences between the predicted and measured values are variable. This indicates that the aquifer is not homogeneous and may not be isotropic. The differences may also be attributed to the dynamic nature of the stage of the Ohio River. The model also cannot predict the vertical gradient observed in monitor wells 2, 3, and 5. A layered approach may be needed to better predict this. For the purposes of this investigation the results of run three are acceptable. The results also show that recharge is not a factor in this system.

Figure 3 shows the predicted piezometric surface. The figure shows the influence of the difference in river stage in the back channel on the ground water flow pattern. The figure also shows the influence of the pumping wells and the flow pattern towards the main channel.

The major objective of the study is to predict the quantity of ground water flowing to the Ohio River from the Neville Chemical site. Tables 4 and 5 show the volumetric budget for Run 3. Table 4 shows the total flow to and from the constant head cells and Table 5 shows only those constant head cells which are adjacent to the Neville Chemical site. The budget indicates that approximately 1.9 million gallons per day (MGD) of ground water is contributed to the Ohio River from the area modelled and approximately 0.8 MGD

			Calculated	Heads			Actu	al - Predicte	q	
Monitoring Well	Measured Head	Run 1	Run 2	Run 3	Run 4	Delta 1	Delta 2	Delta 3	Delta 4	Avg
MW-2S	702.8	705.9	705.9	705.6	705.9	-3.1	-3.1	-2.8	-3.1	-3.0
SE-WM	710.6	709.0	709.0	708.9	0.607	1.6	1.6	1.7	1.6	1.6
MW-5S	708.3	701.6	701.6	701.4	702.1	6.7	6.7	6.9	6.2	6.6
MW-6S	693.8	695.2	695.2	694.5	694.9	-1.4	-1.4	-0.7	-1.1	-1.2
ST-WM	697.8	699.5	699.5	698.9	699.4	-1.7	-1.7	-1.1	-1.6	-1.5
MW-8S	693.5	695.2	695.2	694.5	694.8	-1.7	-1.7	-1.0	-1.3	-1.4
Se-WM	693.5	693.4	693.4	693.0	693.1	0.1	0.1	0.5	0.4	0.3
MW-10S	693.6	696.0	696.0	693.2	693.5	-2.4	-2.4	0.4	0.1	-1.1
MW-11S	700.6	702.9	702.8	702.3	702.7	-2.3	-2.2	-1.7	-2.1	-2.1
MW-12S	693.2	694.6	694.5	694.2	694.4	-1.4	-1.3	-1.0	-1.2	-1.2
Delta = Actual -	Predicted				Avg	-0.56	-0.54	0.12	-0.21	
			Calculated	Heads			Actu	ial - Predicte	p	
Monitoring Well	Measured Head	Run 1	Run 2	Run 3	Run 4	Delta 1	Delta 2	Delta 3	Delta 4	Avg
MW-2D	705.5	705.9	705.9	705.6	705.9	-0.4	-0.4	-0.1	-0.4	-0.3
MW-3D	705.8	0.607	709.0	708.9	0.007	-3.2	-3.2	-3.1	-3.2	-3.2
MW-5D	699.2	701.6	701.6	701.4	702.1	-2.4	-2.4	-2.2	-2.9	-2.5
MW-6D	693.9	695.2	695.2	694.5	694.9	-1.3	-1.3	-0.6	-1.0	-1.0
MW-7D	696.6	699.5	699.5	698.9	699.4	-2.9	-2.9	-2.3	-2.8	-2.7
MW-8D	693.7	695.2	695.2	694.5	694.8	-1.5	-1.5	-0.8	-1.1	-1.2
DQ-WM	693.5	693.4	693.4	693.0	693.1	0.1	0.1	0.5	0.4	0.3
MW-10D	693.5	696.0	696.0	693.2	693.5	-2.5	-2.5	0.3	0.0	-1.2
MW-11D	699.1	702.9	702.8	702.3	702.7	-3.8	-3.7	-3.2	-3.6	-3.6
MW-12D	693.6	694.6	694.5	694.2	694.4	-1.0	6.0-	-0.6	-0.8	-0.8
Delta = Actual -	Predicted				Avg	-1.89	-1.87	-1.21	-1.54	

TABLE 3 - Comparison of Calculated and Measured Heads

8

FIGURE 3

TABLE 4 - Flow Budget

low Terms f	or Constant H	ead Cells	Flow Budget For the Modelled Sit	9
Row	Column	Flow - cfs		
1	1	-0.0077	Flo	ow - mgd
1	2	-0.0120		
1	3	-0.0220	Flow To Main Channel	1.24
1	4	-0.0366	Flows $< 0 \& Row < 6$	
1	5	-0.0108		
1	6	-0.0020		
1	7	0.0007	Flow From Main Channel	0.56
2	8	0.0207	Flows $> 0 \& Row < 6$	
2	9	0.0396		
2	10	0.0164		
2	11	-0.0022	Flow To Back Channel	0.70
2	12	-0.0381	Flows < 0 & Row > 15	
2	13	-0.0554		
2	14	-0.0593		
2	15	-0.0486	Flow From Back Channel	2.73
3	16	-0.0668	Flows > 0 & Row > 15	
3	17	0.0042		
4	18	0.3921		
4	19	0.3950	Flow To Wells	1.35
5	20	-0.2129		
5	21	-0.4382		
5	22	-0.4515	Ohio Main Channel Elevation	693.3
5	23	-0.4549	Ohio Back Channel Elevation	711.2
16	10	-0.2831		
16	11	-0.3994		
16	12	0.9097	Negative Flow Indicates Flow int	o Cell
17	1	-0.0082	Positive Flow Indicates Flow out	of Cell
17	2	-0.0141		
17	3	-0.0311		
17	4	-0.0775		
17	5	-0.0625		
17	0	-0.0425		
17	2	-0.0513		
17	8	-0.0592		
17	12	-0.0501		
17	13	0.2779		
19	15	0.3233		
18	16	0.1379		
18	17	0 1802		
18	18	0 1782		
18	19	0 1468		
18	20	0 4789		
18	21	0.4685		
18	22	0 4630		
10	00	0.4600		

TABLE 5 - Flow Budget (Neville Chemical Site Only)

D:...

Flow Terms f	or Constant H	ead Cells	Flow Budget For the Modelled Site	9
Row	Column	Flow - cfs		
1	5	-0.0108	Flo	w - mgd
1	6	-0.0020		Ŭ
1	7	0.0007	Flow To Main Channel	0.18
2	8	0.0207	Flows < 0 & Row < 6	
2	9	0.0396		
2	10	0.0164		
2	11	-0.0022	Flow From Main Channel	0.56
2	12	-0.0381	Flows $> 0 \& Row < 6$	
2	13	-0.0554		
2	14	-0.0593		
2	15	-0.0486	Flow To Back Channel	0.62
3	16	-0.0668	Flows < 0 & Row > 15	
3	17	0.0042		
4	18	0.3921		
4	19	0.3950	Flow From Back Channel	1.52
16	10	-0.2831	Flows > 0 & Row > 15	
16	11	-0.3994		
16	12	0.9097		
17	5	-0.0625	Flow To Wells	1.35
17	6	-0.0425		
17	7	-0.0513		
17	8	-0.0592	Ohio Main Channel Elevation	693.3
17	9	-0.0561	Ohio Back Channel Elevation	711.2
17	13	0.2779		
17	14	0.3235		
18	15	0.1579	Negative Flow Indicates Flow into	Cell
18	16	0.1791	Positive Flow Indicates Flow out	of Cell
18	17	0.1802		
18	18	0.1782		
18	19	0.1468		

flows to the Ohio River from cells adjacent to the Neville Chemical site. Approximately 0.1 MGD flows from the Neville Chemical site to the adjacent property to the west and approximately 0.2 MGD flows from the property to the east.

The volumetric budget indicates approximately 1 cfs (0.65 MGD) is discharged to the back channel of the Ohio River. This is important to note given the flow of the back channel (not to be less than 1200 cfs) and the location of a public water supply. The Robinson Township water supply is located 3 miles downstream, in the backchannel. At a stream flow of 1200 cfs and a discharge to the stream from ground water of 1 cfs, a benzene concentration in the ground water of approximately 6000 ug/L would raise the instream concentration above maximum contaminant levels allowable in drinking water. Benzene concentrations in the ground water at the Neville Chemical site are documented to be as high as 56,000 ug/L.

Two additional runs were then made. Table 6 shows the conditions used:

Table 6 - Mode	el Conditions
Steady State	
Assume Subsurface is isc	tropic and homogeneous
Hydraulic Conductivity	= 0.002 ft/sec*
Ohio River is Constant He	ead Boundary
Bedrock Elevation	= 660' msl
Pumping Wells (well Id (re	ow,col), pump rate)*
WW-2 (5,19) 0	.89 cfs
WW-3 (5,18) 0	.84 cfs
WW-7 (4,9) 0	.36 cfs
River Stage: [@]	
December 16, 19	91 Main Channel 695.9
	Back Channel 710.7
January 22, 1992	Main Channel 694.2
	Back Channel 711.0

* - From "Ground Water Phase I Report, Neville Chemical Company, Pittsburgh, Pennsylvania", ERM, February 1990.
> - From <u>Water Supply and Pollution Control, Fourth Edition</u>, Viessman, W., & Hammer, M.J., Harper & Row NY, NY.
@ - From "Phase II Ground Water Assessment Program" Status Reports, Environmental Resources Management, Inc.

Tables 7 and 8 show the volumetric budget for the simulation of the December 16, 1991 conditions and Tables 9 and 10 are the budgets for the January 22, 1992 conditions. Table 11 shows the calculated

heads resulting from the simulation compared to the measured heads. The differences between the measured heads and the calculated heads are similar to the run using the October 16, 1991 data. Figures 4 and 5 show the predicted piezometric surface for these two runs.

The results indicate the dependence of the quantity discharged from the ground water to the surface water on the difference between the river stage in the back channel and the main channel. As stated earlier the differences between the calculated heads and the measured may be due to the dynamic nature of the ground water because of fluctuations in river stage and the inability of the two dimensional model to predict the vertical gradient.

TABLE 7 - Flow Budget

Flow Terms f	or Constant H	ead Cells	Flow Budget For the Modelled Sit	e
Row	Column	Flow - cfs		
1	1	-0.0055	FI	ow - mgd
1	2	-0.0087		
1	3	-0.0157	Flow To Main Channel	0.98
1	4	-0.0249	Flows < 0 & Row < 6	
1	5	-0.0050		
1	6	0.0008		
1	7	0.0029	Flow From Main Channel	0.62
2	8	0.0285	Flows > $0 \& Bow < 6$	0.02
2	q	0.0453		
2	10	0.0223		
2	11	0.0223	Flow To Back Channel	0 69
2	10	0.0039	Flower C & Rows 15	0.00
2	12	-0.0250	Flows < 0 & How > 15	
2	13	-0.0415		
2	14	-0.0453		
2	15	-0.0365	Flow From Back Channel	2.39
3	16	-0.0445	Flows > 0 & Row > 15	
3	17	0.0194		
4	18	0.4185		
4	19	0.4110	Flow To Wells	1.35
5	20	-0.1329		
5	21	-0.3671		
5	22	-0.3813	Ohio Main Channel Elevation	695.9
5	23	-0.3849	Ohio Back Channel Elevation	710.7
16	10	-0.4252		
16	11	-0.4180		
16	12	0.8278	Negative Flow Indicates Flow int	Coll
17	1	-0.0060	Positivo Flow Indicatos Flow out	
17	2	-0.0102	rosilive riow indicates riow out	OI Cell
17	2	0.0102		
17	3	-0.0224		
17	4	-0.0546		
17	5	-0.0410		
17	0	-0.0251		
17	/	-0.0259		
17	8	-0.0177		
17	9	0.0225		
17	13	0.2464		
17	14	0.2833		
18	15	0.1373		
18	16	0.1551		
18	17	0.1556		
18	18	0.1535		
18	19	0.1262		
18	20	0.4101		
18	21	0.3993		-
18	22	0.3935		
18	23	0.3912		

FABLE 8 - Flow	Budget - Net	ville Site Only
----------------	--------------	-----------------

cember 16	. 1991	River	Stage	
-----------	--------	-------	-------	--

Flow Terms f	or Constant H	ead Cells	Flow Budget For the Modelled Site	2
Row	Column	Flow - cfs	How Budgett of the Modelled Old	
1	5	-0.0050	Flo	w - mad
1	6	0.0008		n ngu
1	7	0.0029	Flow To Main Channel	0.13
2	8	0.0285	Flows < 0 & Row < 6	
2	9	0.0453		
2	10	0.0223		
2	11	0.0039	Flow From Main Channel	0.62
2	12	-0.0250	Flows $> 0 \& Row < 6$	
2	13	-0.0415		
2	14	-0.0453		
2	15	-0.0365	Flow To Back Channel	0.62
3	16	-0.0445	Flows < 0 & Row > 15	
3	17	0.0194		
4	18	0.4185		
4	19	0.4110	Flow From Back Channel	1.74
16	10	-0.4252	Flows > 0 & Row > 15	
16	11	-0.4180		
16	12	0.8278		
17	5	-0.0410	Flow To Wells	1.35
17	6	-0.0251		
17	7	-0.0259		
17	8	-0.0177	Ohio Main Channel Elevation	695.9
17	9	0.0225	Ohio Back Channel Elevation	710.7
17	13	0.2464		
17	14	0.2833		
18	15	0.1373	Negative Flow Indicates Flow into	Cell
18	16	0.1551	Positive Flow Indicates Flow out	of Cell
18	17	0.1556		
18	18	0.1535		
18	19	0.1262		
18	16	0.1551		
18	17	0.1556		
18	18	0.1535		
18	19	0.1262		

TABLE 9 - Flow Budget

Jan 22, 1992	River Stage			
Flow Terms	for Constant H	lead Cells	Flow Budget For the Modelled Sit	е
Row	Column	Flow - cfs		
1	1	-0.0069	Fl	ow - mgd
1	2	-0.0108		
1	3	-0.0197	Flow To Main Channel	1.11
1	4	-0.0322	Flows $< 0 \& Row < 6$	
1	5	-0.0084		
1	6	-0.0009		
1	7	0.0016	Flow From Main Channel	0.59
2	8	0.0239	Flows > 0 & Row < 6	
2	9	0.0420		
2	10	0.0189		
2	11	0.0004	Flow To Back Channel	0.64
2	12	-0.0323	Flows < 0 & Row > 15	
2	13	-0.0490		
2	14	-0.0527		
2	15	-0.0428	Flow From Back Channel	2.51
3	16	-0.0559	Flows > 0 & Row > 15	
3	17	0.0118		
4	18	0.4055		
4	19	0.4033	Flow To Wells	1.35
5	20	-0.1713		
5	21	-0.4007		
5	22	-0.4143	Ohio Main Channel Elevation	694.2
5	23	-0.4178	Ohio Back Channel Elevation	711.0
16	10	-0.2596		
16	11	-0.3668		
16	12	0.8368	Negative Flow Indicates Flow int	o Cell
17	1	-0.0074	Positive Flow Indicates Flow out	of Cell
17	2	-0.0128		
17	3	-0.0282		
17	4	-0.0706		
17	5	-0.0571	1	
17	6	-0.0389		
17	7	-0.0469		
17	8	-0.0542		
17	9	-0.0514		
17	13	0.2559		
17	14	0.2982		
18	15	0.1457		
18	16	0.1653		
18	17	0.1664		
18	18	0.1645		
18	19	0.1355		
18	20	0.4418		
18	21	0.4315		
18	22	0.4260		
18	23	0.4238		

TABLE 10 - Flow Budget - Neville Site Only

Jan 22, 1992 River Stage

Flow Terms f	or Constant H	lead Cells	Flow Budget For the Modelled Site)
Row	Column	Flow - cfs		
1	5	-0.0084	Flo	w - mad
1	6	-0.0009		
1	7	0.0016	Flow To Main Channel	0.16
2	8	0.0239	Flows $< 0 \& Row < 6$	
2	9	0.0420		
2	10	0.0189		
2	11	0.0004	Flow From Main Channel	0.59
2	12	-0.0323	Flows $> 0 \& Row < 6$	
2	13	-0.0490		
2	14	-0.0527		
2	15	-0.0428	Flow To Back Channel	0.57
3	16	-0.0559	Flows < 0 & Row > 15	
3	17	0.0118		
4	18	0.4055		
4	19	0.4033	Flow From Back Channel	1.40
16	10	-0.2596	Flows > 0 & Row > 15	
16	11	-0.3668		
16	12	0.8368		
17	5	-0.0571	Flow To Wells	1.35
17	6	-0.0389		
17	7	-0.0469		
17	8	-0.0542	Ohio Main Channel Elevation	694.2
17	9	-0.0514	Ohio Back Channel Elevation	711.0
17	13	0.2559		
17	14	0.2982		
18	15	0.1457	Negative Flow Indicates Flow into	Cell
18	16	0.1653	Positive Flow Indicates Flow out	of Cell
18	17	0.1664		
18	18	0.1645		
18	19	0.1355		

	TABLE 1	1 - Comparison d	of Calculated a	nd Measured H	leads	
	De	scember 16, 1991		P	anuary 22, 1992	
Monitoring Well	Measured	Calculated	Delta	Measured	Calculated	Delta
MW-2S	702.3	705.9	-3.6	701.7	705.8	-4.1
MW-3S	711.8	708.7	3.1	711.5	708.8	2.7
MW-5S	707.9	701.9	6.0	7.707	701.9	5.8
MW-6S	696.2	696.6	-0.4	695.2	695.8	-0.6
MW-7S	698.4	696.9	1.5	698.4	699.7	-1.3
MW-8S	696.1	696.1	0.0	694.8	695.1	-0.3
Se-WM	695.9	695.6	0.3	694.9	694.5	0.4
MW-10S	696.1	696.6	-0.5	694.9	694.5	0.4
MW-11S	700.6	703.1	-2.5	700.1	702.8	-2.7
MW-12S	695.9	696.5	-0.6	694.7	695.5	-0.8
Monitoring Well	Measured	Calculated	Delta	Measured	Calculated	Dalta
MW-2D	/04.3	/05.9	-1.6	703.9	705.8	-1.9
MW-3D	705.1	709.0	-3.9	704.5	708.8	-4.3
MW-5D	700.2	701.6	-1.4	699.3	701.9	-2.6
MW-6D	696.3	695.2	1.1	695.3	695.8	-0.5
MW-7D	698.2	699.5	-1.3	697.4	699.7	-2.3
MW-8D	696.2	695.2	1.0	695.0	695.1	-0.1
MW-9D	695.9	693.4	2.5	694.9	694.5	0.4
MW-10D	696.1	696.0	0.1	695.0	694.5	0.5
MW-11D	699.7	702.9	-3.2	698.9	702.8	-3.9
MW-12D	696.0	694.6	1.4	694.9	695.5	-0.6
	Delta = Actual - I	Predicted				

FIGURE 4

19

Conclusions

Based on the results of the application of MODFLOW the following conclusions can be made:

- 1) The USGS ground water flow model MODFLOW, is an appropriate model for the estimation of ground water flow from ground water to surface water.
- 2) Ground water elevations estimated by MODFLOW are similar to actual conditions.
- Approximately 0.8 MGD is contributed to the Ohio River from the aquifer underlying the Neville Chemical site.
- Infiltration of contaminated ground water to surface water could cause violations of criteria developed for the protection of human health.

Recommendations

The following are recommendations for future activities in the Commission's ground water assessment program:

- Continue to apply MODFLOW to areas of concern to simulate ground water flow contribution.
- Investigate contaminant transport models for estimation of pollutant contribution.
- Application of MODFLOW on a large scale should be attempted to show ground water contribution to the river on a larger scale. A review of ORSANCO files should be conducted to identify a reach of the river with a large number of sites with the potential for contamination. It is recommended the reach modelled be at least 20 miles in length.