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FOREWORD 

In 1983, the Ohio River Valley Water Sanitation 

Commission established an Energy Roundtable to 

provide a forum for discussion of policy issues and 

problems concerned with energy management and water 

pollution control, and related environmental-economic 

issues that have regional or multistate effects. The 

goal is to facilitate early and open communications 

through periodic meetings between the energy industry 

and related interests and the signatory states. The 

Energy Roundtable serves as a public forum for any 

and all energy matters of interest to the Ohio Valley 

public interests. Groundwater resources was the 

initial topic selected for discussion by the Energy 

Roundtable. Information and research in this report 

was compiled as a source document dedicated to 

various issues related to groundwater resources. 

Special acknowledgment is due Mr. William L. 

Klein, Assistant Executive Director and Randy D. 

Meyer, 	Graduate 
	

Intern, 	who 	researched 	the 

literature, prepared the map of major aquifers in the 

Compact District, and drafted the initial report. 

Russell Brant, Geologist with the Kentucky Geological 

Survey, reviewed the hydrogeological sections. 

Membership on the Energy Roundtable consists of 

one Commissioner from each of the signatory states; 

one Commissioner from the federal government; a 

member of the Public Interest Advisory Committee; and 

one member each from the Power Industry Committee and 

East Central Area Reliability Council (ECAR). 
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Executive Summary  

The survey is a compilation of data and information 

obtained from state, federal and local agencies 

concerning the groundwater resources in the Compact area 

of the Ohio River Valley Water Sanitation Commission 

(ORSANCO). A map accompanies the report which shows the 

major aquifers and potential groundwater yields. 	The 

predominance of high yield aquifers is located north of 

the Ohio River and along its main channel. The only 

high yield areas south of the Ohio River are in the 

Jackson Purchase Region of Southwestern Kentucky, which 

extends into extreme Southern Illinois; and in an area 

of Southeastern Kentucky that extends through West 

Virginia into Western Pennsylvania. The map should 

prove useful for site planning and regional development 

and in identifying areas that should be protected from 

groundwater contamination. 

The Ohio Valley aquifer which follows the main 

channel of the Ohio River and borders on six states is 

the largest and has an estimated 4,500 billion gallons 

of groundwater available in storage. About 70% of this 

amount is located in the lower third of the river. 
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The availability of groundwater for the entire 

Compact area is estimated to be 17,700 million gallons 

per day (mgd). Of this amount, only about 2,500 mgd r 

14% of the available groundwater is being withdrawn for 

use, exclusive of saline groundwater. Industry is the 

largest user withdrawing 1,300 mgd, or 50% of the total 

withdrawal, with facilities in the Monongahela, Upper 

Ohio River, Wabash and Lower Ohio River having the 

greatest usage. In the Wabash Basin, agriculture is the 

largest user of groundwater; 

The region has extensive areas of connate or brine 

water located in aquifers below the active groundwater 

circulation that are being used by the chemical industry 

as a source of raw materials in the manufacture of 

chemicals. 	Brine water is also encountered in oil and 

gas production, and the disposal of the wastewater to 

prevent entrance into groundwater and surface water is a 

continuing problem. 

Data on groundwater quality is limited to mineral 

analyses and a limited number of parameters such as ph 

and dissolved solids. Little data was found on the 

organic content of the major groundwater aquifers, 

except in instances connected with a disposal site for 

hazardous wastes. Considering the importance of such 
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data and the toxicity of many organic compounds, there 

is a need to increase the level of surveillance. 

An increasing number of cases of groundwater 

contamination is being reported, such as the two cases 

cited in the report. Because many of the major aquifers 

transcend state lines, failure to protect groundwater 

resources has far-reaching implications. Seventy 

percent of the surface impoundments -- farm ponds, 

reservoirs, ash settling ponds, etc. 	nationwide 

overlie very permeable aquifers. Ninety percent of 

these impoundments are located within one mile of a 

drinking water source. 	Little or no information was 

found on the extent of groundwater pollution that may 

transcend state borders involving organic chemicals in 

the principal aquifers of the Compact area. 
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INTRODUCTION 

The Ohio River Valley is blessed with an 

abundance of water. The USGS (1984) estimates that 

about 7% of all freshwater withdrawn in 1980, 

excluding hydroelectric power generation, was 

groundwater, constituting a significant part of the 

total water resource. A simple water budget reveals 

that once evapotranspiration and groundwater recharge 

demands are satisfied, the precipitation excess is 

considered runoff to the stream. Having reached the 

saturated subsurface or phreatic zone, groundwater 

generally moves from areas of high head (i.e., high 

elevation) to low head (i.e., low elevation), 

primarily under the influence of gravity (Figure 1). 

During dry weather, when there is little or no 

surface runoff, groundwater is responsible for the 

flow of perennial streams and springs. This- is known 

as base flow and contributes to surface flow at a 

relatively constant rate all year. As the hydrologic 

cycle shows (Figure 2) discharged groundwater becomes 

surface water, (after some delay), evaporates to the 

atmosphere, and eventually returns via precipitation. 
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THE HYDROLOGIC CYCLE 

(From: Bain and Friel, 1972) 

FIGURE 2 
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Direction 
of flow 

(From: Todd, 1980) 

Misconceptions about the nature of groundwater 

continue to exist. This apparent lack of 

understanding stems from the fact that groundwater is 

not directly observable. 	It is commonly assumed that 

surface flow conditions also prevail in the 

subsurface. 	In reality, water-yielding geologic 

units more closely resemble a sponge: able to absorb 

and transmit water in circuitous pathways of 

interconnected pores 	not veins or rivers (Figure 

3). 

FLOW THROUGH POROUS MEDIA 

entrance 

FIGURE 3 

Rocks, especially those near the surface, are 

solid matter, but contain voids (porosity) or pore 

space and may be interrupted by joints or faults. 

Some or all of the rock's porosity (defined as the 

percentage of open space by volume) is due to the 

mechanics of formation, and is termed primary 
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porosity. 	Porosity which is generated subsequent to 

rock formation due to various chemical and mechanical 

processes (e.g., stress relief, faulting, and 

weathering) is secondary porosity. 

Profuse space is not enough to sustain a large 

groundwater resource. There must also be pore 

interconnection or permeability. The ability of 

water to move through rock is known as hydraulic 

conductivity, and varies widely among materials. 	It 

is highly dependent upon pore size, shape, and 

arrangement. Consequently, permeable rock units 

generally perform like pipelines filled with sand in 

their ability to conduct water under a head 

differential. 	In fact, Henry Darcy used an analogous 

physical model in 1856 to develop tire groundwater 

movement equation about which all scientific study of 

groundwater revolves. 	Darcy's law states that QKAI 

where: 

Q is the quantity of water per unit time 

(gallons per minute); 

K is the hydraulic conductivity (gallons per 

minute/sq. ft.); 

A is the cross—sectional area normal to the 

direction of flow (sq. ft.); and 

I is the hydraulic gradient or change in head 

per unit distance (dimensionless). 
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Because 	hydraulic 	conductivity 	(K) 	and 

cross-sectional area (A) are approximately constant, 

the quantity of water (Q) is directly proportional to 

the hydraulic gradient (I). This suggests that fluid 

flow is laminar (i.e., streamlined) or nearly so. 

Most geological conditions are conducive to laminar 

flow. When flow becomes turbulent, such as occurs in 

Karst regions (e.g., caves) and other large rock 

openings, the equation is no longer valid. 

Porous rock, with high permeability, and a 

copious supply of recharge will result in a large, 

renewable supply of groundwater that may be tapped 

naturally by springs and streams or by wells. 

Groundwater is ubiquitous in the Ohio River Valley. 

Digging or drilling will produce groundwater 

anywhere, although not necessarily in a usable 

quantity. If groundwater is available, then the 

water-bearing layer (formation) is defined as an 

aquifer. 	It may or may not be in usable quantity or 

quality. For example, an aquifer or water-bearing 

unit capable of yielding several hundred gallons per 

day (GPD) would be an aquifer suitable for domestic 

water supply purposes, but would not be adequate for 

an industry requiring this volume per minute. 
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Commonly, aquifers are classified by their 

potential yield in gallons per minute (GPM) on a 

sustained basis. For the Ohio River Valley, the 

principal aquifers have been defined as those capable 

of yielding 100 GPM or more to many individual wells. 

Although 100 GPM is an arbitrary value depending 

upon, among other things, well construction and pump 

size, it represents the production level necessary to 

constitute a water supply for most large industry and 

medium to large municipalities. 	It is aquifers such 

as these that were deemed to be regionally 

significant, and have been chosen for detailed study 

because of their potential yield and other quality 

characteristics. 

6 



PRINCIPAL AQUIFERS 

There are two broad types of principal aquifers 

in the Ohio River Valley: the unconsolidated sands 

and gravels of glacial and coastal plain deposits and 

consolidated sedimentary rocks or bedrock. Plate 1 

shows potential groundwater yields in the Compact 

District. The dark blue represents areas capable of 

yielding 100 GPM or more per well. 	The light blue 

represents areas capable of yielding more than 20 GPM 

but less than 100 GPM. 	The white represents areas 

capable of yielding less than 20 GPM. 	It should be 

noted that groundwater may occur in more than one 

geologic unit. Therefore, the Indicated yield may be 

available from more than one aquifer. 	This is 

especially true north of the Ohio River where high 

yield glacial outwash overlies high yield bedrock in 

many places. Note that the shape of glacial and 

other aquifers that are not extensive may be 

completely masked by more extensive aquifers In the 

same location. 

The map shows the predominance of high yield 

aquifers north of the Ohio River and along its 

channel. The only high yield areas south of the Ohio 
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River are in the Jackson Purchase Region of 

southwestern Kentucky and in the extensive sandstones 

and conglomerates running from southeastern Kentucky, 

through West Virginia, and into western Pennsylvania. 

The map is particularly useful for site planning and 

regional development. For example, industries and 

other groundwater users, who know their demand for 

groundwater, can restrict their regional site search 

to those areas capable of satisfying their needs. 

Additionally, the map can be used to delineate areas 

that 
	

should 	be 	aggreàsively 
	pt'otected 	from 

groundwater contamination. 

An aquifer may contain water under either 

confined or unconfined conditions. In the unconfined 

situation (Figure 4), water percolates from the 

surface to the water table (i.e., level at which 

water pressure is equal to atmospheric pressure) 

unimpeded. Water only partly fills the aquifer, so 

the water table is free to rise and fall as a 

function of recharge and discharge. As shown in 

Figure 4, wells open to unconfined aquifers are known 

as water table wells and are indicative of the water 

table level in the surrounding aquifer. - 
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UNCONFINED OR WATER TABLE CONDITIONS 
IN A NON-PUMPING SITUATION 

WATER TABLE 

WELL 

FIGURE 4 

In confined or artesian aquifers, there is an 

impediment 	to 	downward 	movement 	(Figure 	5). 

Characteristics influencing the movement are source 

or catchment area, confinement in the porous bed, 

impermeable beds above and below, dip of rocks, 

depth, etc. The confining layer, usually impermeable 

shale or clay in the Compact District, prevents water 

in the aquifer from freely rising or falling as a 

function of recharge. Because water in the recharge 

zone is at a higher elevation, pressure in the 

confined portion of the aquifer will exceed 

atmospheric pressure and water will rise above the 

top of the water-bearing unit. As shown in Figure 5, 
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this level will sometimes be above land surface, 

resulting in a flowing artesian well. 

CONFINED OR ARTESIAN CONDITIONS 

FIGURE 5 

With respect to the occurrence of groundwater, 

the hydrogeologic configuration is seldom so simple 

as to foster the formation of a single water table. 

Aquifers may exist in any combination of conditions 

as described above. Owing to the differential 

porosity and permeability of stratigraphic units in 

the Ohio River Valley, complex multi—aquifer systems 

may exist (Figure 6). 
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FIGURE 6 
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SPRINGS- 

LAND SURFACE 
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STREAM 

TYPICAL MULTI-AQUIFER SYSTEM 

Glacial aquifers are, for the most part, limited 

to areas north of the Ohio River and along its 

channel. These aquifers, sometimes known as 

valley-fill aquifers, have a distinct, riverine 

geometry because they occupy the valleys of 

preglacial streams. These buried valleys are filled 

with sand and gravels to depths sometimes exceeding 

200 feet, forming high yield aquifers capable of 

sustaining intensive groundwater development. 

Because of the complexity of glacial and outwash 

processes, 	most 	valley-fill 	aquifers 	have 

discontinuous clay lenses and extensive layers of 

impermeable silt and clay associated with them 
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(Figure 7); producing complex flow systems where 

pressure conditions change rapidly in time and space. 

(From: Schmidt, 1959) 

FIGURE 7 

Many valley-fill aquifers have major streams flowing 

on their surface. 	If hydraulically connected to the 

groundwater, modern streams serve as a source of 

additional recharge should the normal hydraulic 

gradient be reversed by high stream flow (Figure 8) 

or heavy pumping (Figure 9). As shown in Figure 9, 
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heavy pumping induces surface water to flow down into 

the streambed, through the subsurface, and into a 

nearby well. 	Bank storage or recharge from high 

stream flow is only temporary, but induced recharge 

is always available as long as sufficient stream flow 

and an adequate hydraulic connection are maintained 

(Spieker, 1968). 

GROUNDWATER RECHARGE DUE TO TEMPORARY 
BANK STORAGE 

Water entering bank storage 

(From: Freeze and Cherry, 1979) 

FIGURE 8 
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FIGURE 9 

Worthy of special mention is the Ohio Valley 

aquifer, which parallels the Ohio River channel from 

Pittsburgh, Pennsylvania to Cairo, Illinois 

approximately 981 miles. Considering its limited 

areal extent, this is a prolific source of 

groundwater. The aquifer actually exists in a number 

of segments that are interrupted by tributary 
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The 	other 

unconsolidated sediments 

comprised 	of 

is the sands and gravels in 

major 	aquifer 

valleys, and in some locations being displaced some 

distance from the present river course. In addition, 

the size has also been influenced by the high level 

navigation dams which have altered the storage of the 

companion terraces along the river. Bloyd (1974) 

estimates that about 4,500 billion gallons of water 

are available in storage. Because aquifer volume 

increases with downstream distance, more than 70 

percent is stored in the lower third of the river 

(Table 1). With substantial induced recharge 

available all along the main stem, this aquifer has 

been intensively developed by large groundwater 

users. 

TABLE 1 

WATER STORED IN THE OHIO VALLEY AQUIFER 

Reach of 
Ohio River 

Stored Groundwater 
(Billions 	of 	Gallons) 

Percent 	of 
Total 

Upper Third 371 8.2 

Middle Third 875 19.4 

Lower Third 3,255 72.3 

Total 4,501 

(Adapted from Bloyd, 1974) 

the Jackson Purchase region of southwestern Kentucky 
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and extreme southern Illinois. This is a thick 

coastal plain deposit yielding large amounts of water 

close to the bedrock contact where very coarse 

grained sediments intermingle with the rubble of 

weathered bedrock (Davis, Lambert, and Hansen, 1973). 

The remaining aquifers of regional significance 

are in extensive consolidated sediments (i.e., 

sandstones, 	conglomerates, 	limestones, 	and 

dolomites). 	These rocks were all formed in ancient 

seas. Someancient seawater is believed to have been 

retained with these sediments during induration, and 

is known as connate water or brine. 	Some brine is 

very rich in trace elements and minerals and 

relatively 	close 	to 	the 	surface. 	These 

characteristics attracted early chemical industries 

to several sires in the Ohio River Valley (e.g., 

Charleston, WV; Barberton, OH; New Martinsville, WV; 

and others). 	Although some flushing has occurred, 

connate water exists in these rocks below the zone of 

active groundwater circulation (about 300-500 feet 

below the surface in most areas). To maintain a good 

water supply, it is imperative that wells only tap 

the zone of active circulation, and are not 

o v e r pumped. Otherwise, connate brines will migrate 

upward to the well bottom. 
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Although elastic sedimentary rocks (e.g., 

sandstone and conglomerates) are composed of 

fragments of preexisting rock, their primary porosity 

is not particularly high because plugging or 

tightness is caused more often from clays and fines. 

Of a secondary nature is the cementing agent, usually 

calcium carbonate or ferric hydroxide which coats the 

grains and fills in much of the pore space in near 

surface rocks. For a elastic sedimentary rock to be 

a principal aquifer, it must have considerable 

secbndàry porosity. 	This can occur through faulting 

and jointing, but more extensive development is 

usually a result of stress relief and weathering 

(Wyrick and Borchers, 1981). where many of these 

secondary openings can be intersected, yields will be 

substantially higher. 

The carbonates (limestone and dolomite) differ 

from the coarse elastics in that they were formed in 

warm seas by chemical precipitation of calcium 

carbonate and magnesium carbonate or from the 

deposition of calcareous plants and animals. 

Carbonates are typically very dense and, in some 

cases, very thick. They are, however, quite soluble 

in acidic water. After forming cracks and crevices 

as a result of various stress or release factors, 

these openings and the inherent zones of weakness 

17 
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along bedding planes are widened by aggressive water 

above, at, and below the water table (Davis and 

DeWiest, 1964). The result is the formation of karst 

topography (Figure 10), where groundwater flows i.n 

underground streams much like those on the surface. 

DEVELOPMENT OF KARST TOPOGRAPHY 

(From: Strahler, 1969) 

FIGURE 10 

Cave systems vary in their degree of flooding. 

The upper portions of the Mammoth Cave, extending 

from south—central Kentucky into southern Indiana, 

are only temporarily flooded. Caves and solution 

channels in this area are directly connected to 
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surface flow through numerous sink holes dotting the 

landscape. Water quickly drains to the groundwater 

base level (the Green River around Mammoth Cave) and 

the caves and smaller openings dry up -- offering no 

water to wells. 	In west—central Ohio and 

east—central Indiana, caves and solution openings are 

permanently saturated. This cave terrane was formed 

at a time of much lower drainage elevation or base 

level (Teays drainage) prior to glacial activity. 

The effect of the glaciers was to smooth out the 

topography and raise the base level by cutting off 

ridges and filling valleys with eroded material. 

Consequently, the water table rose to feed perennial 

streams and saturate what was once a dry cave system 

(Norris and Fidler, 1973). 	The cave is now a high 

yield aquifer. 
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GROUNDWATER AVAILABILITY 

In developing groundwater resources, it is 

important to define aquifer characteristics and 

determine aquifer yield. This requires, among other 

information, a thorough knowledge of: 

1. The position and thickness of the aquifer 

and confining beds; 

2. The transmissivity (i.e., hydraulic 

conductivity x saturated thickness) and 

storage coefficient (i.e., the volume of 

water that is released from or taken into 

storage per unit surface area of aquifer per 

unit change in head normal to that surface); 

3. The hydraulic characteristics of the 

confining beds; 

4. The position and nature of aquifer 

boundaries; and 

5. The location and amounts of withdrawal from 

existing wells, and the water budget of the 

basin. 

Except for the last element, this information is 

best acquired by test drilling and conducting a pump 
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or aquifer test. An aquifer test involves pumping a 

test well at a high rate and noting its influence 

(i.e., drawdown) on nearby observation wells. 	In 

three dimensions, drawdown takes the shape of an 

inverted cone and is known as a cone of depression 

for either confined or unconfined conditions (Figure 

11). Using a mathematical formula developed by Theis 

(1935) or subsequent derivatives thereof, the 

information 	is 	analyzed 	to 
	

define 	aquifer 

characteristics. 	These equations inextricably hinge 

upon a number of assumptions, summarized by Todd 

(1980). For a valid analysis, it is necessary to be 

aware of the assumptions and understand them fully. 

CONE OF DEPRESSION DEVELOPMENT AROUND WELLS IN 
UNCONFINED AND CONFINED AQUIFERS 

FIGURE 11 
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This type of detailed investigation is very 

expensive because of drilling costs. As a result, 

test drilling and an aquifer test are only used on a 

local basis by large groundwater users (e.g., 

industries and municipalities) who must be able to 

document the resource in order to secure their 

investment and, in many cases, comply with 

regulations. Test drilling and an aquifer test are 

also now widely *used in groundwater contamination 

studies and aquifer restoration projects, where it is 

imperative 	to 	precisely 
	

define 	aquifer 

characteristics for design purposes. 

For regional reconnaissance surveys, the 

hydrologist must depend upon more indirect methods 

such as water budgets or flow duration analysis to 

estimate groundwater resources. The United States 

Geological Survey (USGS), in cooperation with other 

agencies, maintains a network of stream gauging 

stations throughout the Ohio River Basin. Data from 

each station are used to develop a flow duration 

curve (Figure 12). 
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FLOW DURATION CURVE 
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On the abscissa is the percentage of time the 

indicated discharge (ordinate) was equaled or 

exceeded. Ninety percent flow is usually taken to 

represent base flow or groundwater discharge. 

Assuming that discharge is approximately equal to 

recharge, 90% flow is a crude estimate of groundwater 

recharge within the basin. Although natural 

groundwater recharge is not necessarily the amount 

available for withdrawal because of water available 

in storage and the recharge that may be induced from 

streams, it is widely recognized as a reliabLe 

indicator of groundwater availability. 
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A flow duration analysis using 1960 data 

published in Deutsch et al. (1969) was performed for 

each of the major subbasins in the Ohio River Basin 

(Table 2). 	The furthest downstream gauging station 

was used for unregulated subbasins. For regulated 

streams, an average of all unaffected upstream and 

tributary stations was used. 	This methodology was 

problematic for the main stem of the Ohio River, 

because data from unregulated tributaries completely 

neglect significant contributions from the Ohio 

Valley Aquifer. 	To conipensate for this deficiency, 

it is assumed that 200,000 GPD recharges each square 

mile of the Ohio Valley Aquifer (Bloyd, 1974). 	The 

contribution of other glacial aquifers paralleling 

controlled streams are similarly neglected but are 

not considered to be significant in determining 

groundwater 	availability 	in 	their 	respective 

subbasins. 

As shown in Table 2, subbasins dominated by 

unconsolidated aquifers have prolific groundwater 

resources. High base flow is a tribute to their 

exceptional ability to store and transmit water. 

Most subbasins dominated by bedrock aquifers do not 

store or transmit water as well. 	They are, 

nonetheless, regionally important because they extend 

into rural areas where groundwater is the primary, 
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Table 2 

Estimates of Subbasin Recharge or Approximate Groundwater 
Availability Using Low Stream Flow Data 

Recharge or 
Approximate 

Dominant 
Aquifer Drainage Area 2 90% flow 

Groundwater 
Availability 

Subbasin Material (SQ 	MI) (CFS/SQ MI) (MGD) 

Allegheny Unconsolidated 11,600 0.15 1,130 
Sediments 

Monongahela1  Bedrock 7,310 0. 10 4704  
Upper 	Ohio Unconsolidated 13,200 0.07 3,240 

Sediments 
Muskingum Unconsolidated 7,980 0.11 3 570 

Sediments 
Kanawha Bedrock 12,200 0.21 1,660 
Scioto Unconsolidated 6,440 0.15 970 

Sediments 
Big Sandy - 
Guyandotte Bedrock 5,900 -. 200 

Big Sandy 4,210 0.05 140 
Guyandot te 1,680 0.06, 60 

Great Miami Unconsolidated 5,330 0.14 480 
Sediments 

Middle Ohio' Unconsolidated 8,850 0.05 2,060 
Sediments 

Kentucky - 
Licking Bedrock 10,500 360 

Kentucky 6,870 0.07 310 
Licking 3,660 0.02 50 

Green Bedrock 9,140 0.09 530 
Wabash Unconsolidated 32,600 0.12 2,530 

Sediments 
Cumberland1  Bedrock 17,700 0.08 9204  
Lower Ohio Unconsolidated 12,500 0.01 2,580 	- 

Sediments 

Total 17,700 

I 	As defined in USGS Circular 878—A. 

2 	1960 Data from Deutsch et al. (1969). 

3 Average of all subbasin gauge sites unaffected by regulation or 
diversion. 

4 Adjusted upward assuming 200,000 GPD/SQ MI of recharge for the Ohio 
Valley Aquifer. 
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and sometimes only, source of water. For the Ohio 

Valley, there is about 17,700 million gallons per day 

(MGD) of available groundwater. 

A better approach to estimate groundwater 

recharge is to construct a water budget for each 

major subbasin. 	Over the long term, precipitation 

( P ) is approximately equal to runoff (a) plus 

evapotranspiration (EVT) plus groundwater recharge 

(GB.): 	P = R + EVT + GR. 	Water budget analysis is 

usually limited to small subbasiri studies because of 

the 	difficulty 	in 	precisely 	defining 

evapotranspiration over large areas. The National 

Weather Service Ohio River Forecast Center estimates 

evapotranspiration from conceptual watershed models 

for about 400 subbasin stations in the Ohio River 

Basin. 	More than 50% of the stations are 

uncalibrated, but there is sufficient data to 

construct 	water 	budgets 	for 	the 	Allegheny, 

Monongahela, Kanawha, Big Sandy—Guyandotte, and 

Scioto Subbasins. Until more stations are 

calibrated, flow duration analysis remains the most 

consistent means of estimating groundwater recharge 

for the entire Ohio River Basin. 
/ 

It is useful to compare groundwater withdrawal 

with estimates of groundwater availability by major 
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subbasins (Table 3). 	In 1980, 2500 MGD were 

withdrawn in the Ohio River Valley. There is a 

striking 	variation 	in 	subbasin 	groundwater 

withdrawal. 	In those subbasins dominated by 

unconsolidated sediments (e.g., the Wabash and Great 

Miami Subbasins) there is tremendous usage of 

groundwater. In fact, the Wabash Subbasin alone 

accounts for more than 20% of total groundwater 

withdrawal in the Valley. On the other hand, most of 

the subbasins dominated by bedrock aquifers show very 

little demand for groundwater. Although other 

factors such as groundwater quality, surface water 

availability, and the degree of regional development 

are involved, the difference appears to be due to the 

availability of potable groundwater and the ease with 

which it can be developed to meet large needs. 

Table 3 also shows that industry is the largest 

user of groundwater in the Ohio River Valley, and is 

of primary importance (i.e., constitutes more than 

50% of total withdrawal) in the Monongahela, Upper 

Ohio, Kanawha, Big Sandy-Guyandotte, Scioto and Lower 

Ohio Subbasins. 	Public supplies account for about 

30% of basin-wide withdrawal, and are of primary 

importance in the Great Miami and Green Subbasins. 

- Rural 	use 	is 	of 	primary 	importance 	in 	the 
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Table 3 

Subbasin 

1980 Groundwater Withdrawal' (MGD) in the 
Ohio River Basin by Major Subbasin and Use 

Public 	 Industrial 
Supply 	Rural 	Self-Supplied 	Total 

Percent of 
Available 

Groundwater 
Withdrawn 

Allegheny 39.2 42.1 51.2 132.5 12 

Monongahela 3.7 14.4 196.7 214.8 46 

Upper 	Ohio  97.9 34.8 344.7 477.4 15 

Muskingum 86.0 23.6 90.0 199.6 35 

Kanawha 13.8 20.7 59.7 94.2 6 

Scioto 21.0 12.9 56.0 89.9 9 

Big Sandy-

Guyandotte 10.0 16.4 55.9 82.3 41 

Great Miami 184.2 21.3 69.6 275.1 57 

Middle Ohio  41.2 21.0 50.9 113.1 5 

Kentucky - 

Licking 1.6 15.6 13.1 30.3 8 

Green 11.8 7.9 0.3 20.0 4 

Wabash 174.3 173.4 194.4 542.1 21 

Cumberland 4.8 22.6 3.0 30.4 3 

Lower Ohio  44.7 17.1 130.6 192.4 7 

Totals 734.2 443.8 1316.1 2494.1 14 

Source: USGS (1984) 

1 	Figures do not include saline groundwater 

2 	As defined in USGS Circular 878-A 
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Kentucky Licking and Cumberland Subbasins, but is the 

least important use basin-wide. 

In no case does present subbasin demand exceed 

60% of estimated availability. Regionally, this 

seems to suggest that groundwater resources are not 

yet being used to their fullest extent. 	In fact, 

groundwater withdrawal is only about 14% of that 

available basin-wide. Actual subbasin percentages 

are, in many cases, substantially lower because of 

the ability to induce recharge from surface streams. 

Moreover, as long as sufficient streamflow is 

maintained in areas amenable to induced recharge, the 

groundwater resource is virtually unlimited (Spieker, 

1968). 

From time to time, temporary problems of local 

overdraft occur. 	When withdrawal exceeds recharge 

over long periods of time, groundwater is being 

mined. The net effect, although this may occur very 

gradually, is the continual lowering of groundwater 

levels which is now being experienced in the 

west-central and southwestern United States. As 

groundwater levels become more seriously depressed, 

other problems may arise. 	These include, any 

combination of the following: 
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1. increased pumping casts; 

2. interruption of water supplies; 

3. land subsidence; 

4. deteriorating water quality; and 

5. legal disputes. 

Groundwater disputes can have complex legal 

ramifications given the generally undefined nature of 

groundwater rights in the Compact District. The 

Signatory States adhere to riparian water rights, 

exaept for Kentucky and Virginia who have adopted 

some supplemental appropriative rights (Edison 

Electric Institute, 1984). For example, while 

continuing to adhere generally to riparian rights 

policy, Virginia has legislated administrative 

requirements for groundwater withdrawal permits for 

large industrial and commericial users in stipulated 

critical areas. For settling groundwater disputes in 

the absence of permits, the courts rely upon the 

American "Rule of Reasonable Use." This rule limits 

the landowner's withdrawal to amounts necessary for 

some useful or beneficial purpose in connection with 

the overlying land. Indiscriminate use is not 

permitted, and the common rights of landowners 

6verlying the groundwater reservoir are recognized 

and protected against injury by those who would waste 

water. There is no accepted definition of reasonable 
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groundwater use, leaving the determinations of 

reasonableness to be made on a case-by-case basis 

(Tank, 1983). 
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GROUNDWATER QUALITY 

Groundwater quality has not received much 

attention until very recently, when much evidence 

(mostly anecdotal) began to suggest the possibility 

of a regional contamination problem. Industrial 

waste dumps, especially those designated for clean—up 

under the Comprehensive Environmental Response 

Contamination and Liability Act (CERCLA) or 

"Superfund," seem to receive the largest amount of 

publicity. 	Groundwater pollution emanates from the  

inappropriate use and disposal of chemicals and waste  

products of all kinds. Thus, contamination occurs in 

all types of cultural landscapes. 

Defining "natural" groundwater quality continues 

to 	be 	the 	major 	concern 	of 	groundwater 

investigations. Chemical analyses tend to focus on 

primary 	constituents 	(i.e., 	chemical 	species 

generally occurring in concentrations exceeding 5 

mg/l), a few secondary constituents (i.e., chemical 

species generally occurring in concentrations 

exceeding 0.1 mg/l), and a few physical properties in 

the absence of a specific contamination complaint. 

The chemistry of routinely measured constituents and 
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physical properties (Rem, 1970) and their sources or 

causes and significance (Table 4) are well 

understood. Unless one of these parameters is 

affected, a pollution problem may go undetected by 

routine sampling. For example, synthetic organic 

compounds are a common groundwater contaminant 

(Dyksen and Hess, 1982) that cannot be detected with 

the usual suite of measurements. 	The cost of 

collection and analysis of water is substantial 

enough to limit the number of parameters routinely 

monitored. As a reult, several indicator parameters 

have been developed. 
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TABLE 4 

ROUTINELY MEASURED CONSTITUENTS AND PHYSICAT PARAMETERS 
OF GROUNDWATER: THEIR SOURCE OR CAUSE AND SIGNIFICANCE 

Constituent or 
physical property Source or cause Significance 

   

Silica (SiO2).....Dissolved from nearly all 
rocks and soils. Gener-
ally In small amounts 
from I to 30 ppm. High 
concentrations, as much 
as 100 ppm, generally 
occur In highly alkaline 
waters. 

It. (Fe). 	 Dissolved from nearly all 
rocks and soils. May be 
derived also from iron 
pipes, pumps, and other 
equipment. More than I 
or 2 ppm of soluble iron 
in surface waters gener-
ally indicates acid wastes 
from mine drainage or 
other sources. 

Forms hard scale in pipes and boilers. 
Carried over in steam of high-pressure 
boilers to form deposits on blades of 
steam turbines. Inhibits deterioration of 
zeolite-type water softeners. 

Qi exposure to air, iron in ground water 
oxidizes to reddish-brown sediment. 
More than about 0.3 ppm stains laundry 
and utensils reddish brown. Objectionable 
for food processing, beverages, dyeing, 
bleaching, ice manufacture, brewing, and 
many other p'ocesses. Federal drinking. 
water standards state that iron and man-
ganese together should not exceed 0.3 ppm. 
Larger quantities cause unpleasant taste 
and favor growth of iron bacteria. 

Same objectionable features as iron. Causes 
dark-brown or black stain. Federal 
drinking-water standards provide that iron 
and manganese together should not exceed 
0.3 ppm. 

Cause most of the hardness and scale-
forming properties of water, soap con-
consuming. (See Hardness.) Waters low 
in calcium and magnesium desired in 
electroplating, tanning, dying, and textile 
manufacturing. 

Large amounts, In combination with chlo-
ride, give a salty taste. Moderate quan-
tities have little effect on the usefulness 
of water for most purposes. Sodium salts 
may cause foaming in steam boilers and 
a high sodium ratio may limit the use of 
water for irrigation. 

Bicarbonate and carbonate produce alka-
linity. Bicarbonates of calcium and mag-
nesium decompose in steam boilers and 
hot-water facilities to form scale and re-
lease corrosive carbon dioxide gas. in 
combination with calcium and magnesium 
cause carbonate hardness. 

Sulfate in water containing calcium forms 
hard scale in steam boilers. In large 
amounts, sulfate in combination with other 
ions gives bitter taste to water. Some 
calcium sulfate is beneficial in the brew-
ing process. Federal drinking-water 
standards recommend that the sulfate 
content should not exceed 250 ppm. 

Dissolved from some 
rocks and soils. Not so 
common as Iron. Large 
quantities often associ-
ated with high iron con-
tent and with acid waters. 

Dissolved from nearly all 
soils and rocks, but es-
pecially from limestone, 
dolomIte, and gypsum. 
Calcium and magnesium 
found in large quantities 
in some brines. Magne-
sium occurs in large 
quantities in sea water. 

Dissolved from nearly all 
rooks and soils. Found 
also in ancient brines, 
sea water, some indus-
trial brines, and sewage. 

Action of carbon dioxide 
in water on carbonate 
rocks such as limestone 
and dolomite. 

Dissolved from rocks and 
soils containing gypsum. 
iron sulfides, and other 
sulfur compounds. Gener 
ally in mine waters and it 
some industrial wastes. 

Manganese (Mn), 

Calcium (Ca) and 
magnesium (Mg) 

Sodium (Na) and 
potassium (K). 

Bicarbonate 
(NCO,) and car-
bonate (CD,). 

Sulfate (504)...... 

Chloride (Cl)-.- Dissolved from rocks and 
soils. Present in sewage 
and found in large 
amounts in ancient 
brines, sea water, and 
industrial brines. 

Fluoride (9__.. Dissolved in small to 
minute quantities from 
most rocks and soils. 

In large amounts in combination with so-
dium gives salty taste to drinking water. 
In large quantities increases the cor-
rosiveness of water. Federal drinking-
water standards recommend that the chlo-
ride content should not exceed 250 ppm. 
Fluoride in drinking water reduces the 
Incidence of tooth decay when the water 
is consumed during the period of enamel 
calcification. However, it may cause 
mottling of the teeth, according to the 
concentration of fluoride, the age of the 
child, amount of drinking water consumed, 
and susceptibility of the individual. (See 
Maier, 1950, p. 1120-1132.) 
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Dissolved solids. Chiefly mineral con-
stituents dissolved from 
rocks and soils. Includes 
any orgainic matter and 
some water of crystal-
lization. 

Hardness as 	In most waters nearly 
CaCO3 	 all the hardness is due 

to calcium and magne-
sium. The hydrogen ion 
and all the metallic ions 
other than the alkali 
metals also cause hard-
ness. 

Significance 

Concentrations much greater than the local 
average may suggest pollution. There is 
evidence that more than about 45 ppm of 
nitrate (NO3) may cause a type of methe-
moglobinemla in infants, sometimes fatal 
Water of high nitrate content should not 
be used in baby feeding. (See Marcy, 1950, 
p. 265, App. D.) Nitrate is helpful in re-
ducing intercryetalline cracking of boiler 
steel. It encourages growth of algae and 
other organisms which produce undesir-
able tastes and odors. 

Federal drinking-water standards recom-
mend that the dissolved solids should not 
exceed 500 ppm. Waters containing more 
than 1,000 ppm of dissolved solids are 
unsuitable for many purposes. 

Causes consumption of soap before a lather 
will form, and deposition of soap curd on 
bathtubs. Hard water forms scale in 
boilers, water heaters, and pipes. Hard-
ness equivalent to the bicarbonate and 
carbonate Is called carbonate hardness. 
Any hardness in excess of this is called 
noncarbonate hardness. Waters having 
hardness up to 60 ppm are considered 
soft; 61 to 120 ppm, moderately hard; 121 
to 200 ppm, hard: more than 200 ppm, 
very hard. 

Specific conductance is a measure of the 
capacity of the water to conduct an elec-
tric current. Varies with concentration 
and degree of ionization of the constit-
uents. Varies with temperature: reported 
at 25C, 

A PH of 7.0 indicates neutrality of a solu-
tion. Values higher than 7.0 denote in-
creasing alkalinity; values lower than 7.0 
indicate increasing acidity. The pH is a 
measure of the activity of the hydrogen 
tons. Corrosiveness of water generally 
increases with decreasing pit However, 
excessively alkaline waters also may 
attack metals. 

Affects usefulness of water for many pur-
poses. For most uses, a water of uni-
formly low temperature is desired. 
Shallow wells show some seasonal fluctu-
ation in water temperature. Ground water 
from moderate depths generally is nearly 
constant in temperature, which is near 
the mean annual air temperature of the 
area. In very deep wells the water tem-
perature generally increases on the aver-
age about l'F with each 50- to 100- foot 
increment of depth. Seasonal fluctuations 
in temperatures of surface waters are 
comparatively large, depending on the 
depth of water, but do not reach the ex-
tremes of air temperature. 

Constituent or 
physical property 

Nitrate (NO3).._ 

Source or cause 

Decaying organic matter, 
sewage, and nitrates in 
soil 

Specific 	 mixed mineral constit- 
conductance. 	uents in the water. 

Hydrogen-ion 	Lcids, acid-generating 
concentration 	salts, and free carbon 
(expressed as 
	

dioxide lower the pH. 
PH). 	 Carbonates, bicarbon- 

ates. hydroxides, phos-
phates, silicates, and 
borates raise the pH. 

Temperature 

TABLE 4 
(continued) 

(From: Hopkins, 1963) 
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One of the indicators of organic contamination 

now being used is total organic carbon (TOC). Under 

normal conditions, groundwater is relatively free of 

organic carbon. Therefore, elevated TOG levels would 

be indicative of organic contamination. The 

technology for measuring TOG has been available for 

some time, but there has always been a problem with 

losing volatile organic carbon (VOC). Barcelona -

(1984) 

arcelona-

(1984) has developed a modified TOG procedure that 

traps VOC, permitting more complete characterization 

of groundwaeer organic carbon content. 

TOC has the potential to be a good indicator 

parameter for organic groundwater contamination, 

avoiding costly gas chromatography (CC) and mass 

spectrometer (MS) analyses. The Miami Conservancy 

District, in cooperation with the USGS, has conducted 

a TOG reconnaissance survey of the Great Miami 

Aquifer (Evans, 1977). The results successfully 

defined several potential contamination areas, 

demonstrating the value of TOC as a screening device. 

Base line or typical groundwater quality should 

be established before considering the possibility of 

contamination. This is best done on a local scale, 

but the regional scale of this study requires some 

generalization. 	Groundwater quality information was 
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abstracted from the literature and organized by major 

subbasin and principal aquifer. 	Due to a lack of 

data, not every principal aquifer in every subbasin 

is represented in the analysis. Some of the 

principal aquifers may transcend topographic divides, 

permitting groundwater to flow from one subbasin to 

another. Consequently, groundwater quality for one 

subbasin principal aquifer may not be completely 

independent of the same aquifer in adjacent 

subbasins. The groundwater quality data predate 1970 

and are limited to routinely measured parameters. 

All available data were included in the analysis, 

except where the procedures or the results appeared 

questionable or where there was obvious contamination 

from human sources. 

Base line data can be statistically established 

in several ways. 	Since natural variability is 

sometimes extreme, the USGS commonly presumes that 

median values approximate typical groundwater 

quality. For convenience, we have chosen to report 

arithmetic mean values (Table 5). The difference 

between the arithmetic mean and median is not 

expected to be great for most parameters. 
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GROUNDWATER CONTAMINATION 

Based on the limited number of parameters in 

Table 5, Table 6 indicates there are problems with 

high iron, manganese, and hardness. Groundwater from 

most subbasin principal aquifers exceeds U.S. Public 

Health Service (US PUS) standards (US P118, 1962) for 

iron and manganese and the USGS "very hard" 

classification. These problems have been reported 

before (Deutsch, Dove, Jordan, and Wallace, 1969). 

While believed to be the result of natural 

geochemical processes, these problems may not be 

completely divorced from human impact. 
	There is 

evidence (e.g., the closing of Westview Water 

Authority Wells on Neville Island because of organic 

chemical contamination from a near-by waste disposal 

lagoon (Westview Water Authority, 1975), the closing 

of Zanesville City Wells along the Muskingum River 

because of organic chemical contamination from a 

waste disposal pit on the other side of the river 

(Ohio EPA, 1984), the Chem-Dyne hazardous waste 

clean-up along the Great Miami River, and others) to 

suggest that there are many localized contamination 

problems. Although believed to be of limited areal 

extent, these incidents, if not properly redressed, 

have the capacity to contaminate large aquifers of 

prime importance to the Ohio Valley. 
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SUBBASIN PRINCIPAL AQUIFERS AND SOURCE 
OF GROUNDWATER QUALITY DATA: 

A KEY TO TABLES 5 AND 6 

Allegheny Subbasin: glacial outwash (Cram, 
1966; Friinpter, 1974; Gallaher, 1973; Legette, 
1957; Newport, 1973a, Newport, 1973b, Poth, 
1973; Schiner and Gallaher, 1979; and Schiner 
and Kimmel, 1976). 

2 	Allegheny Subbasin: Pocono Group (Cram, 1966; 
Frimpter, 1974; Gallaher, 1973; Legette, 1957; 
Newport, 1973a; Newport, 1973b; Poth, 1973; 
Schiner and Gallaher, 1979; and Schiner and 
Kimmel, 1976). 

3 Monongahela Subbasin: 	Pottsville Group (Ward 
and Wilmoth, 1968). 

4 	Upper Ohio River Subbasin: Quaternary alluvium 
and glacial outwash (Adamson, Graham, and Klein, 
1949; Friel and Bain, 1971; Jeffords, 1945; 
Legette, 1957; Ohio Environmental Protection 
Agency, 1981; Poth, 1963; Poth, 1973a; Poth, 
1973b; Schiner and Gallaher, 1979; Schiner and 
Kimmel, 1976; Van Tuyl and Klein, 1951; and 
Wilmoth, 1966). 

5 	Upper Ohio River Subbasin: sedimentary rocks of 
Mississippian 	age; 	primarily 	the 	Burgoon 
Sandstone, Cussewago Sandstone, Berea Sandstone, 
and the lower member of the Shenango Formation 
(Adamson, Graham, and Klein, 1949; Friel and 
Bain, 1971; Jeffords, 1945; Legette, 1957; Ohio 
Environmental Protection Agency, 1981; Poth, 
1963; Poth, 1973a; Poth, 1973b; Schiner and 
Gallaher, 1979; Schiner and Kimmel, 1976; Van 
Tuyl and Klein, 1951; and Wilmbth, 1966). 

6 Muskingum Subbasin: glacial outwash (Dove, 
1960). 

7 Muskingum Subbasin: sedimentary rocks of 
Mississippian and Pennsylvanian age; primarily 
the Berea Sandstone but may include the 
Allegheny and Pottsville Formations (Dove, 
1960). 
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cause problems for years depending on the solubility 

of the material. 	(See Case Studies, page 52.) 

Sanitary wastes from sewage disposal systems 

(i.e., septic tanks, sanitary sewers, and wastes 

applied to the land surface as a soil conditioner) 

can be a source of pollutants (both chemical and 

biological) in areas either unsuitable for disposal 

or within the recharge zone of a nearby well. 

Various household and industrial grade chemicals are 

commonly released into disposal systems not designed 

for their treatment and eventually find their way 

either directly into groundwater or into surface 

streams where they may subsequently contaminate 

groundwater through induced recharge (Norris, 1967 

and Spieker, 1968). 

Urban runoff, charged with road wastes (e.g., 

road salts), seepage from uncontained raw material 

stockpiles (e.g., salt, coal), and minor chemical 

spills (e.g., gasoline), is a source of contamination 

where urban activities are situated on a sensitive 

recharge area. 	The problem is accentuated where 

wells are of poor construction (poorly sealed wells 

allow surface runoff to directly flow into the 

subsurface) or where contaminated runoff is 

artifically recharged to an aquifer. 
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Agricultural 	activities 	can 	introduce 

contaminants over wide areas, where fertilizers and 

pesticides are applied in excess of recommended 

application rates. With the advent of chemigation 

(i.e., the application of agricultural chemicals via 

irrigation water), groundwater beneath irrigated land 

is particularly susceptible to contamination. 

Feedlot runoff, charged with nitrates and other 

pollutants, can also be a serious problem for shallow 

near—surface aquifers and where wells are of poor 

construction. 

Mining (including oil and gas drilling) and 

other excavation works can create pollution problems 

for groundwater. Mining frequently takes place in or 

through an aquifer or a bed hydraulically connected 

to an aquifer. Aside from disrupting groundwater 

flow, mining can introduce contaminants into 

groundwater by making previously isolated elements 

available for chemical alteration or solution in the 

presence of water (e.g., acid mine drainage). 

Furthermore, abandoned mines (especially gravel pits) 

and wells can and often do serve as inappropriate 

waste receptacles. 
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GROUNDWATER CLEANUP 

Locally contaminated groundwater is not an 

irreparable situation. There is a rapidly developing 

technology for containing localized contamination and 

restoring affected aquifers to acceptable drinking 

water standards. Different conditions require 

different techniques, but all cleanup operations have 

three basic objectives -- containment, treatment, and 

monitoring. 

Containment involves sealing the affected 

surface area to prevent further migration of 

contaminants into groundwater, and stabilization of 

the contaminant plume. Construction of physical 

barriers (e.g., grout curtains, sheet pilings, slurry 

cut-off walls, etc.) tied to a shallow (less than 

about 100 feet) impermeable stratum can stop plume 

movement. For deeper situations, it is necessary to 

use hydrodynamic control (Figure 13). By operating 

strategically placed production and recharge wells, 

the water table is leveled out, stopping plume 

movement. 	Containment is a very expensive temporary 

option. It must be followed by further remedial 

efforts to alleviate the contamination problem. 
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HYDRODYNAMIC CONTROL OF A CONTAMINATION PLUME 

FIGURE 13 

Contaminated groundwater may be treated in situ 

or removed to conventional treatment equipment on the 

surface. In situ treatment involves injecting 

chemical or biological treatment agents directly into 

the plume or by constructing a permeable treatment 

bed (limited to depths less than 100 feet) to be 

encountered by the plume (Figure 14). Quality 
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control for in situ operations is difficult and their 

widespread effectiveness and success is yet to be 

documented. 

PERMEABLE TREATMENT BED 

FIGURE 14 

Removing groundwater to the surface for 

conventional treatment (e.g., sand filtration, air 

stripping, granulated activated carbon, etc.) is 

proven technology. The most popular method is 

hydrodynamic control (Figure 15). The rate of 

pumping from the production wells is adjusted so that 

the plume is intercepted and contaminated water is 

delivered to the surface for treatment. Once treated 

to an acceptable level, the water may be recharged 

upgradient of the source to maintain hydrodynamic 

control, recharged through surface application to 
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(Adapted from: Quince and Gardner, 1982) 

FIGURE 15 
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flush contaminants from the unsaturated zone, 

discharged to a storm sewer or receiving stream, or 

any combination of these methods. 

HYDRODYNAMIC CONTROL WITH A CONVENTIONAL 
TREATMENT SYSTEM ON THE SURFACE 

An integral element in the overall clean up 

process is systems and groundwater monitoring. 	The 

components of the clean up system must be continually 

monitored to assure quality control. 	It is also very 

important to monitor groundwater in situ during the 

clean up process  as well as for month, or even years  
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after, to assess project effectiveness and detect any 

potential complications. 

Case Histories 

The contamination of groundwater and need for 

monitoring is illustrated by an incident that 

occurred from a railroad accident in February, 1977, 

near Guilford, Indiana. Some 34,000 gallons of 

acrylonitrile (AN) was spilled onto the land surface 

from a railroad tank car and a large portion entered 

the groundwater. Monitoring by the Indiana State 

Board of Health revealed that concentrations as high 

as 6,600 ppm were present in the fourteen observation 

and four production wells drilled to monitor and 

reduce the level of AN in the groundwater. The water 

from the production wells was treated before 

discharge to the stream from February to December, 

1977, at which time the level of AN was reduced to 

<0.05 mg/l. The relative ease that the AN entered 

the groundwater and the length of time needed (and 

associated cost) to reduce the concentration to 

acceptable levels illustrates the need to provide 

safeguards against contamination of the underground 

stata from the land surface and the importance of 

monitoring. 
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Contamination of a groundwater aquifer which 

serves as a source for a public water supply is 

illustrated in another case history. The West View 

Waterworks, located on two islands in the Ohio River 

downstream from Pittsburgh, Pennsylvania, used some 

19 production wells as a source of water. 	In 1975, 

an oily odor was detected in eight of the wells, and 

studies were initiated to determine the source of the 

organic contamination. Wells serving two industries 

in same vicinity were also found to contain the same 

type of organic contamination. 	A series of 

observation wells were drilled to monitor the 

movement of the groundwater in the vicinity of the 

production wells. 	Organic (GC/MS) analysis by the 

waterworks and the Commonwealth of Pennsylvania 

suggested that the source of the contamination was a 

liquid waste lagoon in the vicinity of the wells 

since many of the organic compounds were common to 

both the groundwater and the lagoon. Residual 

contamination continued to move in the aquifer long 

after corrective action was taken to control the 

source. 	It is projected that years will be required 

to purge the groundwater system of the organics now 

present. 	Continued pumping of some production wells 

became necessary as a preventative measure to contain 

contamination in the affected area. 
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and 

CONCLUSIONS 

The 	following conclusions 	are 	based 	on 

information compiled during this survey. 

the 	data 

1.  Many 	misconceptions 

groundwater continue 

about 	the 	nature 

to 	exist. 

of 

2.  Based 	on 	potential yield, 	most of the 

groundwater 	resources are 	situated north of 

the Ohio River and along its channel. 

3. The Ohio Valley Aquifer, paralleling the 

Ohio River from Pittsburgh, Pennsylvania to 

Cairo, Illinois, is one of the most 

important principal aquifers in the Ohio 

River Basin. An estimated 4500 billion 

gallons of water are in storage, and more 

than 30% of total groundwater withdrawal in 

the Ohio River Basin is from this aquifer. 

4. Much geologic, hydraulic, and other physical 

information on aquifers is available but is 

somewhat difficult to assemble. 
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5. Stream flow duration analysis indicates the 

availability of approximately 17,700 MCD 

groundwater in the Ohio River Valley. It 

should be noted that groundwater use may 

offset stream flow, particularly in the 

stream valleys. 	As groundwater pumpage 
p 

increases, base stream flow may be reduced, 

especially if the groundwater use is highly 

consumptive. 

6. Groundwater is currently underutilized in 

the district. 	In 1980, 2500 MGD of 

groundwater were withdrawn in the Ohio River 

Basin, representing about 14% of available 

groundwater and about 7% of all freshwater 

withdrawn (excluding hydroelectric power). 

7. Generally, groundwater rights are not well 

defined. The Signatory States adhere to 

riparian water rights, with Kentucky and 

Virginia (limited to large users in 

stipulated critical areas) having adopted 

supplementary appropriative rights requiring 

groundwater withdrawal permits. 
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8. Primary drinking water standards continue to 

be the major concern of groundwater 

monitoring efforts. 	Little data concerning 

trace organics and trace metals exist in the 

literature and data systems (e.g., STORET). 

9. Average groundwater quality information 

indicates that iron, manganese, and hardness 

exceed US PHS drinking water standards in 

many of the subbasin principal aquifers. 

10. Many instances of local groundwater 

contamination have been identified from the 

literature, particularly in connection with 

the hazardous waste control programs. 

Although believed to be of limited areal 

extent, many have the potential to 

contaminate large aquifers, if not properly 

redressed. 

11. The extent of groundwater pollution 

(particularly incidents involving organic 

chemicals) in the principal aquifers is not 

known. 
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