APR 1 6 1965

Pollution Patterns in the Ohio River - 1950

PROPERTY OF 9. S PUBLIC HEALTH SERVICE LIBRARY LEXINGTON, KENTUCKY

Water-quality conditions and changes revealed by a simultaneous sampling of the 963-mile stretch from Pittsburgh to Cairo.

OHIO RIVER VALLEY WATER SANITATION COMMISSION

OHIO RIVER VALLEY WATER SANITATION COMMISSION

An interstate agency representing Illinois, Indiana, Kentucky, New York, Ohio, Pennsylvania, Virginia and West Virginia

HENRY WARD, Chairman CLARENCE W. KLASSEN, Vice Chairman JOSEPH L. QUINN, JR., Past Chairman

F. H. WARING, Secretary LEONARD A. WEAKLEY, Counsel ROBERT K. HORTON, Treasurer

COMMISSION MEMBERS

ILLINOIS

INDIANA

BLUCHER A. POOLE

L. E. BURNEY, M. D. State Health Commissioner

JOSEPH L. QUINN, JR.

The Hulman Company

OHIO

Director of Public Relations Terrace Park, Ohio KENNETH M. LLOYD

Executive Secretary, Mahoning Valley Industrial Council

JOHN D. PORTERFIELD, M. D.

WEST VIRGINIA

W. W. JENNINGS West Virginia Water Commission ROBERT F. ROCHELEAU

Executive Secretary-Engineer

N. H. DYER, M. D. State Health Commissioner

Director of Health

Engineer

HUDSON BIERY

CLARENCE W. KLASSEN Technical Secretary Stream Pollution Control Board Chief Sanitary Engineer ROLAND R. CROSS, M. D.

Director of Public Health J. J. WOLTMANN

Consulting Engineer

PENNSYLVANIA

E. A. HOLBROOK 1543 Shady Lane Pittsburgh 17, Penn. HERBERT P. SORG Acting Speaker, House of Representatives RUSSELL E. TEAGUE, M. D. Secretary of Health

VIRGINIA

E. BLACKBURN MOORE Chairman, Water Control Board T. BRADY SAUNDERS

Commissioner, Water Control Board ROSS H. WALKER

Commissioner, Water Control Board

KENTUCKY

HENRY WARD Commissioner of Conservation

BRUCE UNDERWOOD, M. D. State Health Commissioner

EARL WALLACE Division of Game and Fish

NEW YORK

MARTIN F. HILFINGER President, Associated Industries of New York State, Inc. HERMAN E. HILLEBOE, M. D. State Health Commissioner CHARLES B. McCABE

Publisher, New York Mirror

UNITED STATES GOVERNMENT

O. LLOYD MEEHEAN Fish & Wildlife Service ROBERT G. WEST

- Corps of Engineers LEONARD A. SCHEELE, M. D.
 - Surgeon-General Public Health Service

STAFF MEMBERS

EDWARD J. CLEARY, Executive Director and Chief Engineer JOHN C. BUMSTEAD, Assistant Director ROBERT K. HORTON, Sanitary Engineer JOHN E. KINNEY, Sanitary Engineer WILLIAM R. TAYLOR, Assistant Engineer ELMER C. ROHMILLER, Staff Assistant HAROLD W. STREETER, Consultant

HEADQUARTERS • 414 WALNUT ST. • CINCINNATI 2, OHIO

West Virginia Water Commission

OHIO RIVER VALLEY WATER SANITATION COMMISSION

414 WALNUT STREET CINCINNATI 2, OHIO

TO: The Chairman and Members of the Commission

A knowledge of water-quality conditions in the Ohio River and its tributaries is of basic importance to the work of the Commission. This was recognized by your authorization of an investigation to provide a baseline of reference for measuring streamimprovement progress.

This investigation involving simultaneous sampling around-the-clock of a 963-mile stretch of the river at 36 points, was conducted on Sept. 18-29. Such an undertaking is unique and was made possible by the participation and intimate coordination of sixteen agencies.

Because of unanticipated freshet conditions during the survey an unusual pattern of pollution movement was obtained that heretofore has not been fully recognized. This finding along with other detailed data on water-quality variations provides a fund of information for current use and future policy decisions.

Respectfully submitted,

Saward J. Charry

EDWARD J. CLEARY Executive Director and Chief Engineer

June 20, 1951

TABLE OF CONTENTS

																Page
Letter of Transmittal .																1
Participants																4
Results in Brief		•	•				•	•								7
Behind the Survey																9
Purpose																9
Execution																9
Survey Conditions.																10
Map of Sampling Station	ns.		•	•		•			•		•			•		11

Discussion of Findings

Hydrometric Data
Discharges and Hydrographic Comparisons
Figs 2 and 3 - Typical Discharge Hydrographs
Bacteriological Analyses.
Trend of Regulte 17
Maximum ve Average Paties
Collform vs Enterococci Results
Medians vs Averages
Surface vs Mid-depth Sampling
Confirmed vs Presumptive Results
Bacteriological Methods
Presumptive Test
Confirmed Test
Interpretation of Results
Fig 4 - Average and Maximum Coliform Numbers at Survey
Sampling Points
Fig 5 - Coliform MPN and Discharge (Distant from Sources
of Pollution)
Fig 6 - Coliform MPN and Discharge (Near a Source of Pollution).25
Sanitary, Chemical and Mineral Analyses
Acidity
Alkalinity
pH
BOD
Dissolved Oxygen
Chlorides
Fluoride
Hardness
Iron
Nitrates
Sodium
Solids
Sulfates
Turbidity

TABLE OF CONTENTS (Cont)

Appendix

3

Table 1 - Location of Sampling Points

- 2 Summary Twelve-Day Averages of Bacteriological, Sanitary, Chemical and Mineral Analyses
- 3 Summary of Bacteriological Data
- 4 Comparison of Methods for Reporting Coliform Results
- 5 Cities Using Ohio River Directly as Source of Water Supply
- 6 Average Coliforms (MPN) (1,000) Mid-depth and Surface Sampling
- 7 Daily Confirmed Coliforms (MPN's in 1,000s) Mid-depth and Surface Sampling
- 8 Confirmed Coliform-Enterococci Data
- 9 Summary Averages and Maxima or Minima of Significant Chemical Analyses
- 10 Drainage Areas at Sampling Points on Main Stem Chio River
- 11 Drainage Areas of Principal Tributary Streams
- 12 Mean Daily Gage Heights, in Feet, for Ohio River Gaging
- 13 Summary of Daily Discharges at Sampling Points
- 14 49 Daily Analysis Reports for Sampling Stations A to I and 1 to 27, Inclusive

PARTICIPANTS

The Ohio River Water Quality Survey was made possible by the cooperative efforts of seventeen state, federal and municipal agencies under the general supervision of the Ohio River Valley Water Sanitation Commission.

These agencies and personnel who had a part in this work included:

State Agencies

Pennsylvania: State Department of Health

H. E. Moses	Consulting Chief Engineer
J. R. Hoffert	Chief Engineer
L. D. Matter	Assistant Chief Engineer
C. H. Young	Division Engineer
Rudy J. Cunjak	Advanced Chemist
Wm. J. Engle	Chemist
Wm. L. McHale	Chemist
J. E. Gallagher	Sanitary Inspector
T. Barnhart	Senior Chemist
W. F. Duncan	Junior Sanitary Engineer
Mrs. Bessie Scheidel	Bacteriologist

West Virginia: State Water Commission

Robert F. Rocheleau	Executive Secretary-Engineer
J. H. Faber, Jr.	Engineer
Rex C. Pierson	Chief Chemist
J. E. Winkler	Chemist

Ohio: State Department of Health

F. H. Waring	Chief Sanitary Engineer
Bruce M. McDill	Engineer-in-Charge, Water Pollution Control
Leo Ey	Chief, Division of Public Health Laboratories
M. L. Riehl	Chief Chemist
H. P. Cowgill	Assistant Sanitary Engineer
W. A. Rodger	Assistant Sanitary Engineer
Mrs. Blanche Schwarzkopf	Assistant Chemist

Kentucky: Water Pollution Control Commission

F.	c.	Dugan	Technical	Secretary	y
R.	W.	McIver	Assistant	Sanitary	Engineer
c.	E.	Locke	Chemist		

Kentucky: State Department of Health

Louis	F. Birkel, Jr.		Assistant	Sanitary	Engineer
G. D.	Reed		Assistant	Sanitary	Engineer
N. G.	Johnson	÷.,	Assistant	Sanitary	Engineer
Miss	D. Pedersen		Chemist		

Division of Game and Fish

Charles Black Chemist

Indiana: Stream Pollution Control Board

B. A. Poole Technical Secretary

State Board of Health

R.	н.	Holtje	Chief, Stream Pollution Section
H.	R.	Christy	Assistant Engineer, Stream Pollution Section
s.	R.	Kin	Chief, Water and Sewage Laboratory

Illinois: Sanitary Water Board

Clarence W. Klassen Technical Secretary

rechnical Secretary

State Department of Public Health

wm.	Α.	Ha	sfurthe	I
Rob	ert	A.	Scott	
A.	Wes	ter	hold	
Wm.	Me	yer		
C.	L. 1	Rit	chie	

Sanitary Engineer Bacteriologist Chemist Sampler Sampler

Federal Agencies

Corps of Engineers:

Col. Robert G. West	Assistant Division Engineer, Cincinnati
Edgar Landenberger	Engineer, Cincinnati
Col. Conrad P. Hardy	District Engineer, Pittsburgh
J. H. Dodds	Chief of Operations Div., Pittsburgh
Col. Walter Krueger, Jr.	District Engineer, Huntington
W. C. Steele	Chief of Operations Div., Huntington
Lt. Col. Clarence Bidgood	District Engineer, Louisville
O. H. Bellis	Chief of Operations Div., Louisville

Personnel at locks and dams who assisted in collection of samples.

Geological Survey: Surface Water Branch

J.	٧.	B. Wells	Chief		
F.	F.	Schrader	District	Engineer,	Louisville
Α.	A.	Fischback	District	Engineer,	Charleston
J.	W.	Mangan	District	Engineer,	Harrisburg
М.	No	ecker	Engineer	in charge	Pittsburgh Office
L.	c.	Crawford	District	Engineer,	Columbus
D.	М.	Corbett	District	Engineer,	Indianapolis

Quality of Water Branch

W.	L.	Lamar	District Chemist, Columbus	bus
R.	E.	Elliot	Chemist, Columbus	
Ρ.	N.	Brown	Chemist, Columbus	
И.	E.	Schroeder	Chemist, Columbus	

Public Health Service:

۷.	G. MacKenzie	Officer in Charge, Environmental	
		Health Center	
м.	LeBosquet, Jr.	Sanitary Engineer Director	
E.	P. Dubuque	Senior Sanitary Engineer	
Н.	T. Kramer	Chemist	
R.	P. Myers	Bacteriologist	

Water Treatment Plants

Municipal Authority of Borough of West View, Pa. Parkersburg, W. Va. Portsmouth, Ohio

Ohio River Valley Water Sanitation Commission:

The Ohio River Water Quality Survey was organized and coordinated by the staff of the Commission. Field data was collated by John E. Kinney, sanitary engineer, aided by William R. Taylor, assistant chemical engineer. The report was written by Mr. Kinney and reviewed by Harold W. Streeter, consultant to the Commission.

RESULTS IN BRIEF

The Ohio River Water Quality Survey of Sept 18-29, 1950 was planned originally to coincide with low-stage river-flow conditions, which previous records had shown are most likely to occur during this month and October. The purpose of the survey was to observe pollution densities under most unfavorable conditions of dilution and temperature, as a baseline for measuring future progress in pollution abatement.

Owing to the vagaries of weather during an exceptionally wet summerfall season in 1950, the desired flow condition was not attained. It was possible, however, to observe river pollution as affected by a minor rise and fall in stage, that returned to about the same flow levels after the rise as before it started. In some respects, this condition was advantageous. It reflected certain pollution effects -- not attained under uniformly low stages, but met from time to time when minor freshets occur. This condition is accompanied by reduced times of passage of water in the river, and their consequent effects on natural purification.

Coordinated by the Commission staff, the survey was a cooperative undertaking of the health departments of six signatory states -- Pennsylvania, Ohio, West Virginia, Kentucky, Indiana and Illinois. Daily sample collections were facilitated by arrangements with the U. S. Corps of Engineers, utilizing the personnel at the Ohio River locks and dams. Under contract with the Commission, the U. S. Geological Survey District Laboratory at Columbus carried out a series of mineral analyses of samples. The samples were composited from those collected daily at 27 points along the Ohio River proper, and at nine of the major tributaries near their mouths. The Geological Survey under the same contract supplied daily discharge data for all sampling points.

Findings from this survey, which reflect patterns of pollution under freshet conditions, revealed that:

1. The most highly polluted section of the river was found between Huntington and Louisville. Here both average and maximum coliform concentrations exceeded safe limits of loading for water-treatment plants.

In the upper section of the river -- where sewage and industrial pollution is extremely heavy -- the inhibiting effects of free acidity both on bacterial densities and on organic decomposition were clearly discernible. In the section of the river from Dam 47 to the mouth, pollution densities were found at decidedly lower levels than in the upstream sections. This is due to dilution effects of several large tributaries, together with the beneficial action of natural purification in relatively unpolluted stretches of the lower river.

2. Free acidity is evidenced in the lower Allegheny and Monongahela rivers and in the Ohio River as far downstream as a point below Wheeling, despite the faster flows resulting from the minor freshet. The alkalinity of tributary streams in the upper section, as well as in the main river, was found below the normal level for most streams in the upper Ohio Basin.

7

6,

3. Dissolved oxygen was at favorable levels throughout the entire river except at Louisville, where the average was below 5 ppm at the city's water intake and at Dam 43. In view of flow conditions, this low level in the Louisville area is difficult to explain unless it can be attributed to local pollution effects along the city's waterfront. The 5-day BOD levels were low throughout the river, except immediately below Cincinnati, where an average of 4.6 ppm was observed at Dam 38.

4. In the upper river, a large proportion of the total hardness was found to be of the permanent type, due largely to sulfates originating from mine drainage and steel-mill pollution. In the lower river, the hardness was of the temporary type derived from natural alkaline earth carbonates and bicarbonates.

Chloride levels in the middle section of the river were definitely 'affected by the salinity of the Muskingum River; chlorides were high also in the Louisville pool and in the river section between Dam 31 and Dam 36.

5. Concentrations of nitrate observed were well below physiologically critical limits. Sodium concentrations, however, reached sufficiently high amounts in some sections of the river to merit further study from the standpoint of health diet significance. Fluorides ranged from 0.1 to 0.6 ppm; these values may be of possible significance in the event of future undertakings of fluoridation of public water supplies taken from the river.

6. Agreement between comparable results obtained by the state laboratories from daily spot-sampling and by the U. S. Geological Survey District Laboratory from composite samples was in general, very good. This indicated that both series of results were fairly representative of pollution conditions prevailing at the time of the survey.

7. Medians and geometric means obtained from the coliform data were indicated as being unreliable at most of the sampling points as measures of bacterial pollution significant from a public-health standpoint. They tended to mask or wholly conceal the effects of high bacterial densities -- which are most important from this standpoint.

Arithmetic averages, although influenced by occasionally very high results, were found to reflect the higher ranges of bacterial content more reliably than the medians or logarithmic means. Arithmetic averages were adopted, therefore, as the standard of expression for all of the bacterial results in this report.

It would be highly desirable, as a future project, to undertake a resurvey of the river under the settled low-stage conditions originally sought. It would also be desirable as a follow-up step to carry out as a continuing project -- a monitoring survey of the river at a few carefully selected points throughout the year. This survey would aim to ascertain the effects of both normal and abnormal variations in runoff and seasonal changes on the pollution status of the river under both present and future conditions.

8

BEHIND THE SURVEY

Patterns of water-quality variations in the Ohio River were developed in Sept 1950 following a twelve-day simultaneous sampling of 36 points in six states (Table 1). Although the river had been thoroughly studied in the past, none of these previous surveys had been aimed at the same specific purpose as that which forms the subject of this report.

Purpose -- This survey of the Ohio River was planned as an initial step to:

1. Provide a baseline from which future pollution-abatement progress can be measured.

2. Define the more highly polluted reaches in the river needing primary attention in the abatement campaign of the Commission.

3. Show the sanitary condition of the river as it flows across state boundary lines, and also how and to what extent this condition is affected by major cities and tributaries.

4. Evaluate the various types of pollution as measured by physical, chemical and bacteriological tests -- such as acidity, DO deficiency, coliforms.

5. Standardize analytical techniques among the signatory states.

6. Promote interstate cooperation in field surveys.

Execution -- Under the direction of the Ohio River Valley Water Sanitation Commission six states bordering on the Ohio River -- Pennsylvania, West Virginia, Ohio, Indiana, Illinois and Kentucky -- sampled the river daily in the period Sept 18-29 inclusive.

Personnel were briefed and analytical techniques standardized prior to the field work in a two-day orientation course conducted by the Environmental Health Center of the U. S. Public Health Service. Personnel of the Ohio River Division, U. S. Corps of Engineers, located at locks and dams assisted in the sample collection.

Mineral analyses and hydrometric data were supplied under contract with the U. S. Geological Survey. The laboratory work was done in the district laboratory in Columbus, Ohio; the hydrometric data were prepared in the offices of the district engineers and correlated at the Louisville office.

Daily sanitary-chemical and bacteriological analyses were made at state health-department laboratories. Four states employed trailer laboratories located on the Ohio River; other testing was done at central laboratories or at water-treatment plants.

9

Survey conditions -- Low-flow conditions are normally experienced in the Ohio River during September and October. Higher river temperatures prevail during September and make that month preferable for pollution studies.

Contrary to normal expectations, flow conditions proved to be abnormal in September, owing to unusually heavy rainfall in the valley. Scheduling of the survey had to be established weeks in advance to give participating agencies time for preparation. Changes in plan at short notice, consequently, were not possible.

The flow pattern that developed, consisting of a sharp rise and fall t_0 the initial stages, provided:

1. Conditions that permitted study of short-term flush-out characteristics in river pools and tributary rivers. Because of high flows occurring in July and August, however, this flush-out effect was not so pronounced as it otherwise might have been.

2. A variation in flow that normally can be expected occasionally from spring through fall during short periods of fairly heavy rainfall.

3. Analyses of coliform, turbidity and mineral content under conditions of variable flows rather than at constant-stage low flow.

4. A variable-flow pattern that permits easier comparison of results from other surveys carried out under similar flow ranges. River surveys can be compared best when general flow conditions are similar.

Data from this survey, though not meeting the requirements originally intended, fulfilled a useful purpose in providing a period of disturbed flow, but otherwise with the same seasonal conditions as had been anticipated for settled low-stage flow. That the river returned, after its rise, to about the same stages as prevailed initially is an added advantage in interpreting the results of the survey. This opportunity to compare the results observed in this survey with those obtainable under a static low-flow condition points to the need for additional data under the latter condition.

OHIO RIVER VALLEY WATER SANITATION COMMISSION

HYDROMETRIC DATA

River flows have been averaged (Table 2) in two ways for each station for period of survey:

1. As total discharge in thousand second-feet.

2. In terms of runoff per square mile of drainage area.

Practical use of total discharge can be made in estimating the average daily quantity load of each constituent passing any given sampling point. This can be done by the relation:

cfs x ppm x 5.38 = pounds per day

Use of runoff per square mile permits comparison of analytical data for different streams -- or different points on the same stream -- by making due allowance for similarities or differences in unit-area flow.

To predict possible stream discharges during September, runoff records since 1936 were reviewed by the U. S. Geological Survey. The Huntington (W. λ a.) station was selected as a basis for prediction because it provides discharge data independent of other stations.

Approximate median monthly discharge was determined for the Huntington gage for the July-September period for each year. The median is the result which is exceeded by 50% of the results in a given series. The 1941 water year approximated the median (the "water year" adopted by the U. S. Geological Survey extends from September 1st through the ensuing year). Daily discharges for the threemonth period of that year, therefore, were plotted as well as those for the threemonth periods in 1943 and 1948. Monthly discharge during July and August for those two years was higher than the median; whereas September discharge in both years was lower than the median. Mean discharge during July 1950 was the highest for the period of record.

Analysis of these assembled hydrometric data for the Huntington gage showed:

a. Although high discharge prevailed during the first part of 1950, flows equal to or less than the median could be expected in September;

b. Peak discharges of almost 100,000 cfs during the first part of August, and 80,000 cfs in the latter part of August, have been followed by median or lower monthly discharge during September;

c. Despite maximum daily discharge of 50,000 cfs on Sept 6, 1941 the river reached lower flow conditions during the last fifteen days of the same month;

d. Discharges up to 29,000 cfs were experienced during the period Sept 20-25, 1948 -- a condition that could be experienced again. It was concluded that a mean discharge ranging as low as 10,000 cfs during the period Sept 18-29, 1950 might be normally anticipated, judging from previous records. Discharge would vary above this figure depending on the amount of precipitation during September.

The flow pattern experienced in Sept 1950, did not conform, however, to these expectations. At Huntington, for example, the discharge ranged from 30,100 to 172,000 cfs. Maximum discharge of 366,000 cfs was measured at Dam 53.

Typical hydrographs are shown in Figs 2 and 3. Daily hydrometric data are recorded in the Appendix.

Discharges and hydrographic comparisons -- Among the comments on the hydrometric data submitted by the U. S. Geological Survey were:

The following sampling points being located at, or very near, gaging stations, discharge for the sampling point was considered equivalent to the discharge at the gaging station: Nos 1, 2, 4, 5, 6, 8, 11, 12, 18, 19, 21, 25, 26, 27, B and C.

For other sampling points, discharge at gaging stations was modified by the discharge from other tributary gaging stations, and by discharge from ungaged inflow areas (usually relatively small). For these ungaged areas discharge was determined from miscellaneous discharge measurements at selected points and runoff factors based on the runoff in surrounding areas.

Daily discharge at established gaging stations was computed by the usual methods involving the gage-height record and rating tables.

A consistency study was first made for the entire period by summations of upstream records at each main Ohio River station compared to the record at that station. This analysis showed that, for the period as a whole, the records were generally well within 5% accuracy, though daily flows occasionally exceeded this limit. The base data were then compared for gross errors by means of discharge hydrographs.

The hydrographs showed a number of minor inconsistencies but these did not necessarily indicate errors. The factors causing the apparent discrepancies result primarily from regulation of lock and dam operation, channel storage, and travel time, which is related to storage. These factors combined with inflowing tributary streams at varying magnitudes of flow, may cause a variety of hydrograph shapes progressively downstream.

The small freshet wave, which progressed downstream during the latter part of September, produced variable hydrograph shapes. Times of travel between main-stem gaging stations and sampling points during this flood period were not an important factor until sampling point No 20 was reached. The following tabulation shows the data used, including main-stem gaging station records, tributary and inflow computed records, and factors in order to determine the daily discharge at sampling points Nos 20-27.

Sampling Point	Method of Discharge Determination		
20	Ohio R. at Louisville with 0.4 day travel downstream plus (Salt R. x 1.2).		
21	Ohio R. at Owensboro with 0.4 day travel downstream.		
22	Ohio R. at Evansville with 0.2 day travel downstream plus inflow.		
23	Ohio R. at Evansville with 0.7 day travel downstream plus inflow.		
24	Average of sampling sta. No. 23 plus Wabash River at the mouth, and Ohio R. at Golconda with 0.5 day travel upstream minus inflow (Saline and Tradewater rivers).		
25	Equivalent to Ohio River at Golconda.		
26	Ohio River at Metropolis with 0.25 day travel upstream.		
27	Ohio River at Metropolis with 0.25 day travel down- stream.		

The question was raised concerning the relative plotting of hydrographs for sampling points Nos 23, 24 and 25. It should be noted that inflow from point 21 to 23 was not an important factor, so that the flow crest progressed downstream with slight flattening and broadening of the hydrograph. Between sampling points 23 and 24, however, the Wabash River contributes a large flow thus causing a substantial increase in discharge throughout the freshet. As the flow pattern computed downstream from Sta 23 plus Wabash River to Sta 24 was somewhat different from that which was computed upstream from Golconda minus inflow, it was decided to use the average of these two estimates for Sta 24. The difference probably results from inability to estimate exactly the timing and the effect of flattening of the peak flow curve. However, the resultant average hydrograph for Sta 24 is considered reasonably good.

BACTERIOLOGICAL ANALYSES

Coliform data were obtained from daily samples at each one of the 36 sampling points listed in Table 1, which shows period averages and daily maxima at these points (See Fig 4). Results expressed in terms of "most probable numbers" (MPN), were based on the standard confirmed test, with three tubes planted in each of three or more dilutions in decimal series.

In carrying out the confirmed tests, a record also was made of 24-hr and 48-hr presumptive results. Averages of these results for comparison with those of the confirmed tests are given in Table 3. Methods followed in enumerating coliform organisms were essentially the same as those employed in the Ohio River Pollution Survey of 1939-1940. The results, therefore, are directly comparable with those of the previous survey -- for sampling points having the same locations.

Trend of results -- The coliform data summarized in Table 3 show high bacterial pollution on the Ohio River at Sewickley, just below Pittsburgh, but diminishing sharply at Dam 7, and continuing at relatively lower levels downstream to Gallopolis Dam, some 280 miles below Pittsburgh. This reduction appears to be due mainly to the effect of acidity in the upper section of the river. Owing to the shortened times of flow, the full effect of this acid condition evidently was not exerted until the river had passed some point below Sewickley.

This general picture corresponded to that which had been observed in previous surveys of the upper river: Well-marked decreases in coliform densities below Pittsburgh -- greater than could be attributed to normal self-purification -- were consistently observed.

A sharp increase in coliform densities was shown below Dam 27, resulting mostly from direct sewage pollution in the Huntington-Portsmouth section of the river, augmented by the highly polluted flow of the Scioto River (Sta F).

In the relatively unpolluted stretch extending from Dam 31 to 36, an increase in average coliform numbers was observed, much greater in degree than accountable from intermediate pollution. Under normal low-stage conditions, a marked decrease in bacterial pollution had been consistently noted in previous surveys. In the present case, the increase probably reflected the cumulative effects of channel scouring and shortened times of flow resulting from the rise in the river to a peak discharge of 228,000 cfs at Dam 36.

The relationship between daily variations in discharge and coliform numbers at Dam 36 during the survey period are shown in Fig 5. It will be noted that the greatest increase in coliform numbers coincided with the first stage of the rise in the river on Sept 20, and in advance of the major part of the rise. This is characteristic of increases in bacterial content accompanying freshets in the Ohio. The rapid decline in coliform numbers following the crest of flow is also a commonly observed phenomenon, probably due to the washing-out effect of the freshet in its initial stages, followed by a dilution influence on the residual bacterial content. The secondary increase observed at Dam 36 on Sept 27 possibly was due to a delayed effect of pollution from the Scioto, which also produced a similar effect at Dam 31 beginning on Sept 25.

Coliform density in the river stretch below Cincinnati -- averaged 210,000 at Dam 38, 94,000 at Dam 39 (30 miles downstream), and 44,000 at Madison Bridge (26 miles below the mouth of the Kentucky River). This would represent a fairly normal picture of the combined effects of dilution and natural purification in this relatively unpolluted stretch of the river, following heavy pollution from the combined sewage of the Cincinnati District.

At Sta 19, located at the Louisville water intake, the average MPN was 211,000 -- practically the same as observed immediately below Cincinnati, despite the marked difference in pollution discharge above these two points. This average included, however, a single day's count of 2,300,000, far out of line with the other results at this point. If this result were omitted, the average would be reduced to 21,000. Although this single high result might be considered as unusual, its potential recurrence cannot be disregarded, in view of the proximity of sewer outfalls and the possibility of backflow in the river during sudden rises in pool stage.

At Dam 43, below the center of Louisville, the average coliform number was 156,000, with a maximum-to-average ratio of 1.9; a result which normally would be expected at this point. The pattern shown at Dam 43 is somewhat different from that for Dam 36 (Fig 6). In this case, the more pronounced inverse relation indicated between coliform densities and river discharge is fairly typical of what would be expected just below a major source of pollution. This is distinguished from a point, such as Dam 36, which is located at the lower end of a 100-mile stretch of river receiving little intermediate sewage pollution.

A markedly lower level of coliform numbers was observed from Dam 43 to Dam 53, near the mouth of the Ohio, except for a slight upturn at Dam 48, below Henderson, and at Shawneetown, below the outlet of the Wabash River.

From Dam 51 to Dam 53, the effects of added dilution and natural purification, with little intermediate pollution, was apparent in the steady decline in coliform densities to relatively low levels.

In the entire stretch of river from Dam 43 downstream, ratios of maximum-to-average coliform numbers were comparatively low, indicating a fair degree of stabilization in the run of the data.

Maximum vs average ratios -- A review of the maximum-to-average ratios shown in Table 3 for each sampling point throughout the length of the river indicates the distribution of variations in these ratios:

Number of Sampling Points % of Total

Ratio, Maximum to Average

11	31	Equal to or less than 3.	0
23	64	Equal to or less than 5.	0
32	89	Equal to or less than 6.	0
4	11	Greater than 6.0	

From these figures it appears that ratios of 5.0 or less were observed at nearly two-thirds of the sampling stations, and ratios of 6.0 or less, at roughly 90% of the points.

Under the variable flow conditions prevailing during the survey, ratios up to 5.0 or 6.0 might be expected. From the run of the data, ratios in excess of 6.0 would seem to be exceptional, and where observed, would indicate the need for further study of local conditions, which might explain this degree of variability. Such conditions might include flushing of tributaries, proximity to sewers and storm overflows, and channel flows as affected by natural runoff and drain regulation.

Four stations with maximum-to-average ratios of 6.0 or over were located near water supply intakes.

Coliform vs enterococci results -- Data supplied by the Illinois Department of Health (Table 8) provided a basis for comparison of the coliform and enterococci numbers observed in the same samples collected at Stas 24, 25, 26 and 27. Although no definite numerical correlation was found between these two indices of sewage pollution the trend of the data indicated in general that high enterococci numbers tended to coincide with high coliform densities. With a relatively low level of bacterial pollution in this stretch of the river, extending from Shawneetown to near the mouth, the effect of surface wash, dilution and natural purification might be expected to obscure that of sewage to a greater extent than in upstream sections of the river.

Despite these influences, enterococci numbers less than 23 per 100 ml were observed in only 6 out of the 48 samples examined, and in these six cases the maximum number of coliforms recorded was 2,400 per 100 ml. It thus appears that sewage pollution predominates even in the lower reaches of the Ohio, and that the coliform group of organisms is a reliable indicator of such pollution both qualitatively and quantitatively.

Medians vs averages -- Comparison of the average and median coliform numbers recorded in Table 3 indicates little numerical correlation between these two variables, except a tendency for both to be high, or low, when the ratio of maximum-to-average counts was low. In some cases, where this ratio exceeded 3.0 or 4.0, the disparity between the two figures was wide, the median failing to show in some cases the effect of increased coliform numbers resulting from the rise in the river.

L

At fourteen of the 36 sampling points, the median was less than one-half of the corresponding average figure, and in at least ten cases would have led to an erroneous interpretation of the results as indicating conformance, or near-conformanity, to the bacterial-quality objectives recently adopted by the Commission. The weakness of the median in this respect is most apparent when an increase in colliform numbers to much higher levels occurs at some time after the mid-point of a given period of equally-spaced observations. Had the rise in the river occurred a few days later in the present survey, this weakness would have been even more strikingly shown.

The results of the survey have given ample evidence of the advantages

results: 3/3 in 1 ml, 3/3 in 0.1 ml, 1/3 in 0.01 ml, and 0/3 in 0.001 ml, the three dilutions considered would be 0.1 ml, 0.01 ml, and 0.001ml, as the highest dilution giving a 3/3 result was 0.1 ml. This procedure is in accordance with that given in Standard Methods. It was applied in recording and checking all individual results, both confirmed and presumptive.

The usual precautions regarding sterility of glassware and culture media were carefully observed in carrying out the tests. Samples from the river generally were collected at mid-stream and mid-depth, though some difficulties were experienced during the freshet. Samples intended for bacteriological examination were transported in iced containers to the laboratory and, if not examined immediately on arrival, were stored in the refrigerator until examination.

Number of Sampling Points % of Total

Ratio, Maximum to Average

11	31	Equal to or less than 3.0)
23	64	Equal to or less than 5.0)
32	89	Equal to or less than 6.0)
4	11	Greater than 6.0	

From these figures it appears that ratios of 5.0 or less were observed at nearly two-thirds of the sampling stations, and ratios of 6.0 or less, at roughly 90% of the points.

Under the variable flow conditions prevailing during the survey, ratios up to 5.0 or 6.0 might be expected. From the run of the data, ratios in excess of 6.0 would seem to be exceptional, and where observed, would indicate the need for further study of local conditions, which might explain this degree of variability. Such conditions might include flushing of tributaries, proximity to sewers and storm overflows, and channel flows as affected by natural runoff and drain regulation.

Four stations with maximum-to-average ratios $_{0}f$ 6.0 or over were located near water supply intakes.

Coliform vs enterococci results -- Data supplied by the Illinois Department of Health (Table 8) provided a basis for comparison of the coliform and enterococci numbers observed in the same samples collected at Stas 24, 25, 26 and 27. Although no definite numerical correlation was found between these two indices of sewage pollution the trend of the data indicated in general that high enterococci numbers tended to coincide with high coliform densities. With a relatively low level of bacterial pollution in this stretch of the river, extending from Shawneetown to near the mouth, the effect of surface wash, dilution and natural purification might be expected to obscure that of sewage to a greater extent than in upstream sections of the river.

Despite these influences, enterococci numbers less than 23 per 100 ml were observed in only 6 out of the 48 samples examined, and in these six cases the maximum number of coliforms recorded was 2,400 per 100 ml. It thus appears that sewage pollution predominates even in the lower reaches of the Ohio, and that the coliform group of organisms is a reliable indicator of such pollution both qualitatively and quantitatively.

Medians vs averages -- Comparison of the average and median coliform numbers recorded in Table 3 indicates little numerical correlation between these two variables, except a tendency for both to be high, or low, when the ratio of maximum-to-average counts was low. In some cases, where this ratio exceeded 3.0 or 4.0, the disparity between the two figures was wide, the median failing to show in some cases the effect of increased coliform numbers resulting from the rise in the river. At fourteen of the 36 sampling points, the median was less than one-half of the corresponding average figure, and in at least ten cases would have led to an erroneous interpretation of the results as indicating conformance, or near-conformanity, to the bacterial-quality objectives recently adopted by the Commission. The weakness of the median in this respect is most apparent when an increase in coliform numbers to much higher levels occurs at some time after the mid-point of a given period of equally-spaced observations. Had the rise in the river occurred a few days later in the present survey, this weakness would have been even more strikingly shown.

The results of the survey have given ample evidence of the advantages of the average over the median in surveys of this type, concerned with evaluations of pollution densities having a definite public-health significance, despite the recognized statistical advantages of medians in studying certain other types of natural phenomena.

Surface vs mid-depth sampling -- The standard procedure in the survey involved the collection of all samples at mid-depth. A special comparative study by the Indiana State Board of Health at four of the sampling stations permitted further evaluation of surface vs mid-depth sampling (Tables 6 and 7). These results, though indicating little significant difference in the averages observed at three of the stations, showed a somewhat smoother and more consistent pattern of the daily figures obtained from the mid-depth samples than those derived from the surface sampling.

The few observations thus available tended to support the advantage of mid-depth sampling as a routine procedure, in line with previous observations in the Ohio and other streams.

Confirmed vs presumptive results -- A study of the average 24-hr and 48-hr presumptive results given in Table 3 has shown that agreement with the confirmed averages was closer for the 24-hr figures at 19 sampling points, and for the 48-hr results at 17 stations. Thus an almost even balance was indicated in this respect.

In the section of the river from Dam 27 upstream, however, the 24-hr results corresponded more closely to the confirmed averages at 13 out of 15 stations. In the section below Dam 27, agreement was closer between the 48-hr and confirmed results at 15 out of 21 stations.

With a very few exceptions, the 48-hr results indicated more closely the confirmed numbers at stations where coliform densities were relatively high, whereas the 24-hr figures tended to agree better with those of the confirmed tests when coliform densities were comparatively low.

Without going into a statistical analyses of these deviations, it may be said that neither the 24-hr nor the 48-hr presumptive results -- considered alone -- would appear to provide a very accurate measure of the confirmed results, though in some cases agreement with one or the other was very good. On the whole, the 48-hr presumptive results appeared to run closer to the confirmed results than did the 24-hr figures. If the presumptive test were to be used as a substitute for the confirmed test, the 48-hr period would seem preferable. Bacteriological methods -- The methods followed in determining coliform bacteria were basically the same as described in Standard Methods for the Examination of Water and Sewage, 9th ed, American Public Health Assn New York, N. Y. (Section 9) paragraphs B and C, pp 194-196. The recorded results were based on the confirmed test, but the results of the 24-hr and 48-hr presumptive gas-former tests were also recorded for purposes of comparison.

In making each test, at least three sample dilutions were made in the usual decimal series. Three tubes of standard lactose broth were planted from each dilution, using the inverted-vial type of fermentation tube. In making up dilutions, sterile phosphate buffered distilled water was used, being contained in cotton-plugged bottles each holding 99 ml of dilution water. Pipettes were of one milliliter capacity graduated accurately to 0.1-ml divisions. Measurements were made from meniscus to meniscus.

Sample portions of 1.0 and 0.1 ml were planted directly without dilution. Plantings of 0.01 and 0.001 ml were made from dilutions of the sample by adding 1.0 and 0.1 ml of the sample to 99 ml of dilution water, and transferring 1 ml of the corresponding dilution mixture to the fermentation tubes. Shaking and mixing techniques were in accordance with the directions of Standard Methods.

Judgment as to the number and amount of dilutions were based on the experience of the operator with water samples from each sampling point. In general, the aim was to select a range of dilutions which would give three positive results in the lowest dilution, and preferably three negative results in the highest dilution.

Presumptive test -- After placing the fermentation tubes, suitably racked, in the 37-deg C incubator, any tube showing more than 10% of gas in the inverted vial at 24 hours was recorded as a positive presumptive result. At the end of 48 hours the tubes were read again; tubes showing more than 10% of gas at this time were recorded as 48-hr positive presumptives.

Confirmed test -- As soon as gas in any amount appeared in a tube, a transfer of a 3.0 mm loopful of the liquid was made to standard brilliant-green lactose bile confirmatory medium, also contained in the usual type of fermentation tube. All tubes showing no gas at 24 hours were held over for a 48-hr period so that transplants could be made from tubes developing any gas during the second 24 hours. Any gas formation in the brilliant-green lactose bile medium within 48 hours was recorded as a positive confirmed result.

Interpretation of results -- Enumeration of coliform bacteria from the fermentation tests was in accordance with the "most probable number" (MPN) method, using a table after Hoskins (Public Health Reports, Reprint 1621, 1940 revision) and transcribed from Supplement B, Part II of the report on Ohio River Pollution Control (House Document 266, 78th Congress, 1st Session, p 935), prepared by the U. S. Public Health Service.

In recording the results, the highest dilution showing all three tubes positive, together with the next two higher dilutions, were taken as the basis of the MPN enumeration. Thus, in a series giving the following results: 3/3 in 1 ml, 3/3 in 0.1 ml, 1/3 in 0.01 ml, and 0/3 in 0.001 ml, the three dilutions considered would be 0.1 ml, 0.01 ml, and 0.001ml, as the highest dilution giving a 3/3 result was 0.1 ml. This procedure is in accordance with that given in Standard Methods. It was applied in recording and checking all individual results, both confirmed and presumptive.

The usual precautions regarding sterility of glassware and culture media were carefully observed in carrying out the tests. Samples from the river generally were collected at mid-stream and mid-depth, though some difficulties were experienced during the freshet. Samples intended for bacteriological examination were transported in iced containers to the laboratory and, if not examined immediately on arrival, were stored in the refrigerator until examination.

FIG 4-Average and Maximum Coliform Numbers at Survey Sampling Points

Only three sampling stations on the Ohio River gave average coliform numbers that comply with the average of 5,000 MPN recommended by Ohio River Valley Water Sanitation Commission for water supplies,

SANITARY, CHEMICAL AND MINERAL ANALYSES

Chemical data were obtained from two independent series of observations consisting of:

1. Determinations made on routine samples collected and examined daily at each of the laboratories operated by signatory states. Included were: acidity to phenolphthalein (hot and cold), alkalinity to methyl orange, pH, total solids, turbidity, chlorides, hardness and total iron; dissolved oxygen and 5-day biochemical oxygen demand at 20 deg C. Period averages for the results of these analyses are listed in Table 2, and average and maximum or minimum results for six of the more significant determinations in Table 9.

2. Analyses reported in ionic form obtained from composite samples. This was done at the Columbus, Ohio district laboratory of the U. S. Geological Survey which was under contract with the Commission to do this part of the analytical work, and also to provide the hydrometric data. The weighted average results of these analyses, noted in Table 2 under "Mineral Analysis," afforded a good check on the results which were common to the two series. They also provided a more comprehensive picture of the mineral content of the Ohio and its tributary waters. On the basis of specific conductance of each daily sample, two or more composite samples were prepared for mineral analysis. Specific conductance provides a convenient over-all index of the ionized mineral content of a natural water.

Certain trends, and a few inconsistencies, are to be noted in the results of physical and chemical examinations carried out in the two series above noted. These may best be considered under the heading of each constituent, or group of constituents, with which the analyses have dealt.

Acidity -- Free acidity was recorded at the Monongahela and Allegheny river stations, and on the Ohio to a point below Wheeling, W. Va. In these reaches, alkalinities were lower than normal for non-acid streams in this basin. This lower alkalinity continued downstream as far as Cincinnati.

For the next six stations below Cincinnati (sampled by Kentucky) free acidity was recorded, together with an appreciable increase in alkalinity. Individual daily analyses showed that this free acidity was not experienced every day. Free acidity was recorded in the lower part of the river -beginning at Louisville and extending to the mouth.

It would seem that the free acidity reported at Sta 15 to 18 is inconsistent with the reported pH above 7, and average alkalinity greater than 45 ppm; and inconsistent with results from stations above and below this stretch.

26

Alkalinity -- No constant difference is noted in the daily and composite averages for alkalinity. Alkalinities on composite samples were determined with methyl red indicator; the daily samples were determined using methyl orange in accordance with Standard Methods. It has been the experience of the U. S. Geological Survey laboratory that the end-point is seen more readily with methyl red; hence, their use of this indicator.

Composites were analyzed for carbonate and bicarbonate alkalinity. Except for the Wabash River, carbonate alkalinity was absent.

Using the results of the composite samples, a smoother pattern of effects of tributaries with respect to alkalinity is seen than with the averages of daily samples. Particular attention should be given to results from sampling points at Dam 47 and on the Wabash River.

pH -- Average pH was computed by averaging hydrogen-ion concentrations -- so as to integrate the effects of the low pH values -- and then converting to corresponding pH.

This is a departure from the usual method of averaging pH values directly and the reason may be illustrated thus: An arithmetical average of pH 4.0 and pH 6.0 gives pH 5.0; but as pH 4.0 is 100 times as acid as pH 6.0, the average of hydrogen-ion concentrations gives pH 4.3, showing the true effect of the sample with greater acidity.

BOD -- During this survey, the 5-day BOD values observed were relatively low, as is usually experienced at the higher river stages. Highest average BOD (4.6 ppm) was in the Cincinnati pool below the city.

Low BOD at Louisville was observed coincidently with reduced dissolved oxygen. This might be explained by assuming that the BOD in the river, resulting from pollution at Cincinnati, had been satisfied before reaching Louisville, with insufficient reaeration to replenish loss of dissolved oxygen. It also could be explained as being due to the effect of local sludge deposits in the Louisville pool.

Dissolved oxygen -- Lowest values for dissolved oxygen were found at the Louisville water intake and in the pool below Louisville. Minimum daily DO was critical at both of these points during the survey. Other critically low minimum points included the Beaver and Kanawha Rivers.

A check should be made on these points during low-flow stages of the river because past surveys have not indicated that the Louisville pool is the critical stretch of the river from this standpoint.

Chlorides -- Close agreement between the chloride results from daily and composite samples indicate that the compositing gave representative samples.

Substantial increase in chlorides was noted at Dam 18 -- the effect of high salinity in the Muskingum River.

27

Other increases were noted at the Dam 36 sampling point, an increase that developed between Dams 31 and 36, as well as in the Louisville pool; no obvious reason can be given for these increases.

Study of the daily report forms (Tables 14 to 49) suggests that chloride concentrations in the river, though roughly inversely proportional to the river discharge preceding and during the flow crest, fell sharply to disproportionately low levels immediately after the crest had subsided. The situation at Sta 30, near Haverhill, Ohio, illustrates this as shown:

Discharge 1,000 cfs	Chlorides ppm	Chlorides Ibs/day	
37.0	40	8,000,000	
32.0	35	6,040,000	
42.0	33	7,480,000	
86.0	13	6,030,000	
190.0	8	8,200,000	
234.0	10	12,600,000	
180.0	7	6,780,000	
119.0	10	6,400,000	
67.0	13	8,700,000	
42.0	11	2,490,000	
37.0	14	2,790,000	
32.5	14	2,450,000	

The weighted average for chlorides from U. S. Geological Survey analyses equals the daily-analysis average so these concentrations may be assumed correct.

This means that the concentration of salts at minimum low flows cannot always be calculated from a knowledge of concentrations at higher flows.

It will be noted that up to the last three days of the sampling period, the total chloride discharge, in pounds per day, remained fairly constant, except for an increase on the day of maximum flow. This would be expected if the inverse relations between flow and chloride concentration should hold. On return of the river to its initial stages, however, a sharp decrease in this total chloride quantity to less than one-half of its previous level was observed. Such behavior would suggest that minor freshets in the river tend to flush out chlorides from various sources, and to reduce them to disproportionately low concentrations after the flushing action has been completed. The same general phenomenon probably affects the concentration of other mineral salts carried by the river.

Fluoride -- Even at the prevailing higher flows, the concentration of fluoride averaged 0.1 to 0.6 ppm at all sampling points. As fluoride was found to be present throughout the full length of the river, any supplementary fluoridation of municipal water supplies should consider the amount of fluorides present in the raw water.
Hardness -- Highest values for hardness for average and daily maximum readings were due to flow from certain tributaries, notably, the Beaver, Muskingum, Scioto, Kentucky and Wabash rivers.

An inverse correlation between hardness and runoff was not consistently apparent, as shown in the data collected at Dam 30, though the trend of the results was somewhat similar to that of the chlorides in its general pattern.

.....

Discharge	Hardness
1,000 cfs	ppm
37	146
32	138
42	142
86	57
190	40
234	47
180	46
119	68
67	82
42	84
37	96
32.5	102

1707 -- The most noticeable difference between results from composite and from daily samples was in respect to iron. Composite sample analysis deals only with soluble iron, special precautions being taken to remove colloidal material. This material, primarily silica, contains some iron. Usually filter paper does not remove all of it. The result is that some iron in part of the sediment is measured. The degree of completeness of removal of the sediment before analysis will cause variation in results obtained.

Nitrates -- With the realization that nitrates can cause cyanosis in infants due to methemoglobinemia (blue babies) determination of nitrates should no longer be viewed only as an indicator of the state of nitrification in the river. Latest toxicological data support 10 ppm of nitrate nitrogen as a tolerable limit (about 43 ppm as nitrates). The survey data indicate no present problem in this respect at higher flows in the Ohio.

Sodium -- Sodium has been found to be important in treatment of hypertension cases. In the so-called "salt-free diet," the maximum amount of sodium to be ingested per day, according to some medical authorities, is 200 to 400 milligrams. (Principles of Internal Medicine, T. R. Harrison, Blakeston Co., Philadelphia, 1950, p 1323). The high value for sodium observed in this survey was 38 ppm. For a person drinking 2.5 quarts of water daily, this amount would signify a daily intake of 90 mg of sodium. Thus, ingested water alone would contain about one-half the recommended limit permissible in a low sodium-level diet. **Solids** -- Total solids showed an increase through the central portion of the river -- particularly between Dams 30 to 49. This increase appears to be due largely to increased turbidity.

A different pattern is shown by dissolved solids which are not affected by turbidity. Higher results are shown in upper reaches of the river but without consistent trend.

Sulfates -- Sulfate concentrations were highest in the upper river due mainly to the effects of mine drainage and steel-mill wastes. Below Dam 29, the concentrations were diminished gradually to roughly one-third of those observed in the upper reaches of the river.

The good agreement in chlorides between daily and composite samples was not similarly noted for sulfates. The divergence in sulfate averages is probably due to the method of analysis. For analysis of composite samples, a gravimetric procedure (from Hildebrand and Lundell) was used. This more detailed technique included an ionic balance and would be presumably more reliable than the field method (Benzidene method).

Using the USGS laboratory work as a basis, the variation in state analysis work can be noted. Analysis for sulfate is one that requires specialized training and equipment and differences should be expected.

Turbidity -- Although the Ohio River always carries a measurable turbidity, this survey showed substantial increases in turbidity in the middle reach of the river below the Kanawha. Below Dam 39 turbidity levels diminished gradually, but did attain the low degree shown in the upper river. Turbidities observed throughout the river as a whole reflected the influence of increased runoff accompanying the freshet. This is a normal occurrence under the flow conditions prevailing at the time of the survey.

Table	1	 Location	of	Sampling	Po

Sampling Station No.	Location	Near or At	River Mi. from Source
A B	Lock 2, Allegheny River Haves Station on Monongahela	Pittsburgh, Pa.	
_	River	Pittsburgh, Pa.	
1	Sewickley Highway Bridge	Sewickley, Pa.	6.2
С	Eastvale on Beaver River	East of Beaver, Pa.	
2	Dam No. 7	Below Midland, Pa.	36.5
3	Short Creek Ferry	Above Wheeling, W. Va.	81.1
4	Dam No. 13	At McMechen, W. Va.	96.1
5	Dam No. 17	Above Parkersburg, W. Va.	167.5
6	Dam No. 18	Below Parkersburg, W. Va.	179.9
D	Little Kanawha near mouth	At Parkersburg, W. Va.	
7	Dam No. 19	Below Parkersburg, W. Va.	192.2
8	Point Pleasant, W. Va. bridge	Above Point Pleasant, W. Va.	265.1
E	Kanawha R. near mouth	Opposite Point Pleasant, W. V.	a
9	Gallipolis Dam	Gallipolis, Ohio	279.2
10	Dam No. 27	Above Huntington, W. Va.	301.0
11	Dam No. 28	Below Huntington, W. Va.	311.6
12	Dam No. 29	Below Big Sandy River	319.9
13	Dam No. 30	Above Portsmouth, Ohio	339.4
F	Scioto River near mouth	At Portsmouth, Ohio	
14	Dam No. 31	Below Portsmouth, Ohio	359.3
15	Dam No. 36	Above Cincinnati, Ohio	460.9
G	Licking River near mouth	Opposite Cincinnati, Ohio	
16	Dam No. 38	Below Cincinnati, Ohio	503.3
17	Dam No. 39	Below Cincinnati, Ohio	531.7
Н	Kentucky River near mouth	At Carrollton, Ky.	
18	Madison Bridge	Above Louisville, Ky.	557.3
19	At Louisville Water Intake	Above Louisville, Ky.	600.6
20	Dam No. 43	Below Louisville, Ky.	633.2
21	Dam No. 47	At Newburg, Ind.	111.1
22	Dam No. 48	Above Evansville, Ind.	809.6
23	Dam No. 49	Below Evansville, Ind.	845.0
I	Wabash near mouth	Below Evansville, Ind.	
24	Shawneetown Ferry	Shawneetown, 111.	857.8
25	Dam No. 51	Below Golconda, 111.	903.1
26	Dam No. 52	Below Paducah, Ky.	938.9
27	Dam No. 53	Above Mound City, Ky.	962.6
	*Note: 1 - Major city 2 - Below Major tributar 3 - State line 4 - Near mouth of major	ry tributary	

Drainage Area in Sq. Mi.	Responsibility of Sample Collection	Reason See Note*
11,705	Pennsylvania	4
7,340	Pennsylvania	4
19.500	Pennsylvania	1
3.040	Pennsylvania	4
22,980	Pennsylvania	3
24,650	West Virginia	1
25,170	West Virginia	1
26,950	West Virginia	2
35,600	West Virginia	1.2
2,320	West Virginia	4
37.940	West Virginia	1.2
40.500	West Virginia	1.2
12,200	West Virginia	4
53 510	West Virginia	1.2
53,670	Ohio	î'-
55.900	Ohio	1
60.750	Ohio	1.2.3
61,670	Ohio	1
6 510	Ohio	4
68,910	Ohio	2
71,110	Kentucky	1.2
3,655	Kentucky	4
82, 520	Kentucky	1.2.3
82,910	Kentucky	1.2
6,949	Kentucky	4
90.580	Kentucky	1.2
91,170	Kentucky	1
94.510	Kentucky	1.2
97.710	Indiana	1.2
107,550	Indiana	1,2
107.940	Indiana	3
33,100	Indiana	4
141.160	Illinois	2
143,900	Illinois	1.2
202,800	Illinois	1,2
203,100	Illinois	3
		ORSANCO

its

Table 2 Summary -- Twelve-day Average of Bacteriological, Sanitary Chemical

		P	hysical Dat	8		Bacterio	logical Data						Sani	tary Chemic	al Dat
Sampling Station No.	Location	Mean Di cfs (1,000)	scharge cfs per Bq mile	Water Temp OC	pH	Confirmed M per 100 Average	IPN Coliforms mL (1,000) Maximum	D O ppm	5-day B 0 D ppm	Aci (ph P Hot	dity ien) pm Cold	M O Alkalinity ppm	Total Solids ppm	Turbidity ppm	Chlor
A	Allegheny River	8.3	0.71	17	6.6	24.5	75.0	8.7	0.6	0.0	4.2	32	242	19	22
В	Monongahela River •	13.0	1.77	19	5.5	88.7	930.0	7.4	0.4	4.2	5.7	16	297	25	7
1	Sewickley	22.7	1.16	19	5.7	81.7	230.0	7.7	0.9	3.8	5.7	22	263	18	17
C	Beaver River	1.5	0.51	19	6.4	14.4	43.0	5.1	1.0	1.4	5.2	39	329	22	23
2	0. RDam 7 ••	24.8	1.08	19	6.0	9.6	43.0	9.1	1.0	2.4	5.0	20	284	15	14
3	O. RAbove Wheeling •	26.0	1.05	20	6.6	8.0	23.0	8.2	1.1	2.1	2.6	7	281	18	15
4	0, RDam 13 o	26.3	1.04	20	6.8	15.5	93.0	8.0	1.3	-7.0	2.3	11	310	39	13
5	0, RDam 17	27.1	1.00	21	7.9	4.4	23.0	7.6	1.3	-1.0	2.0	9	382	53	20
6	0. RDam 18	30.9	0.87	22	7.2	6.4	23.0	7.8	1.6	-4.0	2.0	18	486	36	66
D	L. Kanawha River	2.8	1.19	20	7.3	321.4	930.0	7.4	2.3	-2.0	2.6	15	250	205	3
7	0. RDam 19	33.6	0.89	22	7.3	18.4	43.0	7.8	2.0	-2.0	2.1	15	446	66	49
8 *	O. RPt. Pleasant	33.7	0.83	22	7.3	7.9	43.0	7.2	1.6	-2.0	2.0	13	375	50	36
E	Kanawha River	20.2	1.66	21	7.4	3.8	9.3	5.6	1.5	-3.0	2.0	16	203	131	8
9	Q. RGallipolis	57.9	1.08	22	7.3	5.3	23.0	6.5	1.0	-2.0	1.9	13	320	102	25
10	0. RDam 27 •	58.6	1.09	21	6.8	11.1	43.0	6.7	1.2	-7.0	2.0	31	337,	165	25
11	0. RDam 28	70.2	1.26	21	7.9	40.8	230.0	6.9	1.4	-7.0	2.0	28	362	204	- 24
12	0, RDam 29 •0	82.3	1.35	21	6.9	39.9	150.0	7.2	1.9	-9.0	1.0	28	277	262	17
13	0. RDam 30 o	91.5	1.48	21	6.8	69.7	430.0	6.9	1.6	-7.0	2.0	27	430	264	17
F	Scioto River	4.2	0.65	20	7.7	161.9	930.0	7.1	3.5	-9.0	2.0	132	530	273	13
14	0. RDam 31 o	104.0	1.50	21	6.9	40.9	230.0	6.8	1.5	-8.0	2.0	28	392	243	19
15	0. RDam 36	107.0	1.50	21	7.3	76.0	430.0	7.9	2.9	0.7	2.2	47	668	498	26
G	Licking River	13.9	3.79	21	7.3	192.3	930.0	8.2	3.5	0.9	2.9	53	701	458	25
16	O. RDam 38 o	136.7	1.66	20	7.4	209.8	930.0	7.4	4.6	0.8	2.9	50	579	465	25
17	O. RDam 39	137.7	1.66	21	7.3	94.0	430.0	6.8	4.0	0.8	3.1	51	600	498	24
Н	Kentucky River	5.4	0.77	21	7.4	11.7	75.0	8.7	2.5	0.4	3.5	93	351	110	1
18	O. RMadison	142.7	1.57	21	7.3	44.4	230.0	7.1	3.0	0.9	4.0	69	507	295	21
19	0. RLouisville	1. A.				in the second							12.	1 2 1	
	Intake •0	145.0	1.59	22	7.1	211.2	2,300.0	4.3	1.0	0.0	6.8	56	390	157	44
20	0. RDan 43	145.1	1.53	22	7.2	323.8	290.0	4.8	1.5	0.0	6.8	59	595	222	47
21	0. RDam 47	149.0	1.52	21	7.5	9.9	16.5	7.3	1.3	0.0	4.0	125	494	218	28
22	0. RDan 48 •0	149.1	1.38	21	7.5	17.5	28.0	6.4	1.5	0.0	4.0	128	631	272	25
23	0. RDam 49 00	146.9	1.36	21	7.5	7.4	11.0	6.3	1.2	0.0	4.0	130	556	209	25
I	Wabash River	29.9	0.90	21	7.8	20.7	30.5	7.4	2.9	0.0	1.5	299	241	156	18
24	0. RShawneetown	173.1	1.22	21	7.6	15.1	43.0	7.0	1.3	0.0	8.1	68	443	118	20
25	0. RDam 51 00	164.7	1.14	21	7.6	7.6	23.0	6.9	1.2	0.0	3.9	74	359	90	21
26	0. RDam 52 o	238.8	1.18	21	7.6	3.3	9.3	7.5	1.3	0.0	3.7	74	340	82	20
27	0. RDam 53 o	233.6	1.15	21	7.6	4.1	23.0	7.3	1.0	0.0	4.0	71	350	82	19

Ohio River Water Quality Survey (Sept 18 12

0. R. - Ohio River

Indicates source of public water supply near sampling point -- no intermediate pollution.
 Indicates source of public water supply near sampling point but with some intermediate pollution.

d Mineral Analyses

, 1950)

-	1				1.		Mine	ral Analy	vsis - We	ighted	Average	e	· · · ·	and the second		
Sulfates ppm	Hardness ppm	Iron ppm	SiO2 ppm	Fe ppm	Ca ppm	Mg ppm	Na ppm	K ppm	CO 3 ppm	HC 03 ppm	SO4 ppm	C1 ppm	F ppm	NO3 ppm	Dis. Solids ppm	Spec. Cond.
101	110	0.9	5.7	0.11	27	7.0	15	2.7	0	27	86	22	0.2	1.1	188	295
141	113	1.8	6.7	0.05	27	7.4	13	2.5	0	17	107	9	0.3	1.2	199	294
121	118	0.9	6.3	0.06	28	8.0	16	4.1	0	16	109	15	0.2	1.2	207	311
143	154	1.3	6.0	0.07	42	9.4	17	5.6	9	36	130	22	0.6	2.2	269	407
132	129	0.6	6.7	0.07	33	8.3	17	3.4	0	20	121	16	0.3	1.5	227	338
136	133	0.7	6.9	0.04	34	9.2	17	2.7	0	22	133	14	0.3	1.8	241	365
131	128	0.8	6.7	0.05	32	8.6	18	2.8	0	25	126	15	0.3	1.9	238	355
146	135	0.5	7.3	0.05	38	8.9	23	2.9	0	17	142	19	0.3	3.2	265	407
130	181	0.4	5.5	0.05	55	10.1	30	3.3	0	44	133	00	0.4	2.1	367	549
25	38	0.7	0.4	0.05	9	3.1	8	2.3	U	33	22	0	0.2	1.1	80	122
147	160	0.6	6.2	0.06	46	10.0	30	3.2	0	34	126	48	0.3	2.1	306	476
142	156	0.5	6.5	0.05	43	9.3	28	3.1	0	26	137	34	0.3	2.7	295	453
30	56	0.5	7.2	0.04	13	4.8	5	2.0	0	37	25	9	0.1	1.2	92	142
109	115	0.6	0.1	0.05	31	1.8	19	2.5	0	29	101	23	0.2	2.0	211	338
97	122	20.1	1.4	0.00	22	. 1.0	23	2.9	U	21	101	25	0.4	4.0	222	334
92	114	<0.1	7.0	0.06	31	7.0	20	2.6	0	26	93	23	0.4	3.9	307	331
62	84	<0.1	8.3	0.11	22	5.2	16	4.0	0	28	64	19	0.3	2.8	160	201
- 64	87	<0.1	6.8	0.06	23	5.9	15	2.5	0	25	70	17	0.4	3.0	175	263
42	174	<0.1	7.9	0.13	48	10.0	17	3.0	0.	1/1	55	2/	0.0	2.8	2/4	401
68	95	<0.1	1.0	0.12	21	0.0	17	2.0	0	29	00	19	0.5	4.0	100	291
60	118	0.5	6.9	0.16	32	7.5	17	2.8	0	49	79	23	0.2	4.9	205	324
60	110	0.5	6.7	0.09	32	7.3	14	3.1	0	53	73	18	0.2	3.8	195	313
51	112	0.4	6.8	0.08	31	7.9	15	3.2	0	56	69	19	0.3	2.5	192	308
57	117	0.4	7.9	0.06	33	7.7	15	3.6	0	63	69	19	0.5	2.0	194	311
14	107	0.4	7.5	0.10	31	5.5	5	1.8	0	109	17	6	0.2	2.6	136	215
55	131	0.3	6.8	0.18	35	7.3	13	2.9	0	85	56	18	0.3	2.7	203	308
60	112	0.1	5.9	0.12	33	7.8	15	3.1	0	63	66	20	0.4	3.0	191	319
68	120	0.1	5.7	0.17	35	6.7	15	3.1	0	64	71	20	0.3	2.3	202	327
50	130	0.3	5.8	0.06	36	8.3	16	3.1	0	75	65	22	0.3	2.3	209	338
50	132	0.4	6.4	0.04	37	7.3	14	3.4	0	76	62	21	0.4	2.5	204	329
51	131	0.3	6.6	0.04	37	7.9	14	3.3	0	80	62	20	0.4	2.3	202	328
* 40	199	0.1	7.8	0.05	50	17.0	10	2.8	3	180	50	14	0.4	1.5	257	418
44	134	<0.1	6.2	0.05	38	9.0	12	2.6	0	100	58	19	0.4	2.0	207	341
46	144	<0.1	5.9	0.05	40	9.5	13	2.4	0	94	60	20	0.3	2.0	201	345
47	142	<0.1	6.1	0.05	39	9.4	13	2.6	0	94	65	20	0.3	2.0	211	346
43	137	<0.1	6.0	0.05	39	8.4	13	2.6	0	92	58	18	0.4	2.0	202	327

ORSANCO

Table 3 -- Summary of Bacteriological

Ohio River Water Quality Survey -- Sept 1

	and the second	1			Colifor	rms in MPN
		1 2 2	Ave	erage for Surve	ey Period	C.S. Carlos
Sampling	States and the state of the states		Gas For	rmers		1
Station No.	Location		24-hr	48-hr	Confirmed	Median
A	Allegheny River		19.7	29.0	24.5	23.0
B	Monongahela River		83.9	98.7	88.6	8.4
ĩ	Sewickley		74.3	101.5	81.6	43.0
ĉ	Beaver River	0	9.7	14.0	14.4	10.6
2	0. R. Dam 7	•0	7.9	17.3	9.5	6.8
3	O. R. above Wheeling		8.7	10.7	8.0	4.6
4	0. R. Dam 13	0	28.4	28.5	15.4	4.6
5	0. R. Dam 17		5.1	7.4	4.4	0.9
6	0. R. Dam 18		7.8	8.7	6.3	4.2
D	L. Kanawha River		413.7	517.3	321.3	240.0
7	0. R. Dam 19		36.1	42.6	18.4	11.0
8	O. R. Pt. Pleasant		10.2	12.3	7.8	4.4
E	Kanawha River		5.5	6.0	3.8	3.3
9	O. R. Gallipolis		6.5	9.4	5.2	2.4
10	0. R. Dam 27	•	27.9	32.0	11.0	5.9
11	0. R. Dam 28		26.2	41.2	40.8	9,3
12	0. R. Dam 29	.0	35.9	46.0	39.9	12.2
13	0. R. Dam 30	0	49.6	70.6	69.7	43.0
F	Scioto River		73.7	166.0	161.8	43.0
14	0. R. Dam 31	0	31.0	42.6	40.9	29.0
15	0. R. Dam 36		19.5	75.9	75.9	5.8
G	Licking River		46.7	192.2	192.2	12.2
16	0. R. Dam 38	0	78.9	209.8	209.8	33.0
17	0. R. Dam 39	4	57.9	99.4	94.0	43.0
Н	Kentucky River		11.1	13.7	11.7	2.6
18	O. R. Madison		35.2	46.2	44.3	19.0
19	0. R. Louisville Int.	• 0	207.2	216.3	211.2	9.3
20	0. R. Dam 43		135.6	153.0	156.3	68.0
21	0. R. Dam 47		9.8	14.6	14.6	19.0
22	0. R. Dam 48	•0	17.4	27.9	27.9	23.0
23	0. R. Dam 49	00	7.3	12.0	12.0	7.5
I	Wabash River		20.6	29.5	29.4	19.0
24	0. R. Shawneetown		10.2	17.3	15.0	12.2
25	0. R. Dam 51	• 0	6.5	9.1	7.6	4.3
26	0. R. Dam 52	0	2.8	4.6	3.2	2.4
27	0. R. Dam 53	0	2.2	6.3	4.1	2.4

0. R. - Ohio River

• Indicates source of public water supply near sampling point -- no intermediate

⁰ Indicates source of public water supply near sampling point but with some inte:

Data

-29, 1950

Max. day	Ratio Max.to Avg.	Confirmed Avg less Max.day
75.0	3.1	
930.0	10.5	12.2
230.0	3.0	
43.0	3.0	
43.0	4.5	
23.0	2.9	
93.0	6.0	7.7
23.0	5.2	- Contraction
23.0	3.6	
930.0	2.9	
43.0	2.4	-
43.0	5.5	
9.3	2.4	
23.0	4.3	
43.0	3.9	
230.0	5.6	
159.0	3.8	
430.0	6.2	38.8
930.0	5.8	
230.0	5.6	
430.0	5.7	
930.0	4.9	-
930.0	4.4	
430.0	4.6	
75.0	6.4	5.3
230.0	5.2	
2,300.0	10.9	21.3
290.0	1.9	
43.0	2.9	
93.0	3.3	and a second
43.0	3.6	
93.0	3.2	
43.0	2.9	
23.0	3.0	
9.3	2.8	
23.0	5.6	
llution		
liste pollution		ORSANCO

Table 4 -- Comparison of Methods for Reporting Coliform Results

Sept. 13-30, 1950

No consistent agreement between 24 - 48 hr gas formers and confirmed coliforms; geometric means and medians of coliform densities indicate about one-half the pollution shown by arithmetic means -- an important consideration in public health evaluations. Interpretation:

Table 5 -- Cities Using Ohio River Directly as Source of Water Supply

		Quality	Indicated at:
Public Water	River Mile fro	m Samplir	ıg
Supply	Source	Station	Location
Midland, Pa.	36	2*	Dam No. 7
E. Liverpool, Ohio	40	2	Dam No. 7
Toronto, Ohio	59	-	
Weirton, W. Va.	63	~	
Steubenville, W. Va.	65	-	
Wheeling, W. Va.	87	3	Above Wheeling
Bellaire, Ohio	94	4*	Dam No. 13
Sistersville, W. Va.	137	-	
Pomeroy, Ohio	148	-	
Huntington, W. Va.	304	10	Dam No. 27
Ashland, Ky.	320	12	Dam No. 29
Ironton, Ohio	327	12*	Dam No. 29
Portsmouth, Ohio	351	13*	Dam No. 30
Maysville, Ky.	408	14*	Dam No. 31
Cincinnati, Ohio	463	15	Dam No. 36
Covington, Ky.	463	15	Dam No. 36
Newport, Ky.	464	15*	Dam No. 36
Aurora, Ind.	497	16*	Dam No. 38
Louisville, Ky.	601	19	Louisville Int
New Albany, Ind.	608	19*	Louisville Int
Evansville, Ind.	792	-	
Henderson, Ky.	803	22*	Dam No. 48
Mt. Vernon, Ind.	829	22	Dam No. 48
Uniontown, Ky.	840	23*	Dam No. 49
Morganfield, Ky.	844	23*	Dam No. 49
Rosiclare, Ill.	891	25*	Dam No. 51
Golconda, Ill.	903	25	Dam No. 51
Paducah, Ky.	934	26*	Dam No. 52
Cairo, Ky.	977	27*	Dam No. 53

* Physical and chemical quality only; bacterial quality influenced by pollution between sampling point and water intake.

Interpretation: 29 cities use Ohio River as source of water supply; 23 are in vicinity of survey sampling points.

Table 6 -- Average Coliforms (MFN) (1,000) Mid-depth and Surface Sampling

Source: Indiana State Board of Health

med Surface	27.5 18.7 22.9 23.7
Confir Mid-depth	29.4 14.7 28.0 12.1
r Surface	27.5 26.4 25.9 23.7
48-h Mid-depth	29.5 14.7 28.0 12.1
r Surface	19.4 12.2 17.4 10.0
24-h Mid-depth	20.6 9.9 7.4 7.4
je sp	
Sampling Station No.	1 a 8 8

Interpretation: See comment Table 7.

	Stat: Da	ion 21 m 47	Stati	10n 22 n 48	Stati	ion 23 n 49	Stat: Wabash	ion I River
Sept.	Mid depth	Surface	Mid depth	Surface	Mid depth	Surface	Mid depth	Surface
18	23.0	23.0	21.0	23.0	2.3	15.0	0.4	2.3
19	23.0	23.0	9.3	23.0	7.5	9.3	9.3	4.3
20	15.0	15.0	43.0	15.0	4.3	9.3	9.3	2.3
21	23.0	23.0	15.0	43.0	9.3	9.3	4.3	4.3
22	9.3	9.3	93.0	43.0	2.3	9.3	15.0	9.3
23	4.3	4.3	23.0	:	4.3	23.0	43.0	23.0
24	4.3	4.3	23.0	23.0	9.3	93.0	75.0	93.0
25	9.3	9.3	4.3	15.0	4.3	9.3	93.0	93.0
26	43.0	43.0	15.0	43.0	23.0	23.0	23.0	23.0
27	23.0	23.0	23.0	4.3	7.5	43.0	43.0	23.0
28	23.0	2.3	23.0	15.0	43.0	23.0	2.3	23.0
29	23.0	23.0	43.0	4.3	23.0	23.0	43.0	23.0
Total	222.2	178.0	335.6	251.6	140.1	167.1	381.3	346.5
Average	16.5	13.9	28.0	23.4	11.0	24.1	30.5	26.9
Maximum	43.0	43.0	93.0	43.0	43.0	93.0	93.0	93.0
Minimum	4.3	2.3	9.3	4.3	2.3	4.3	4.	•0
Median	23.0	9.3	23.0	23.0	8.4	19.0	23.0	23.0
Interpreta	tion: Except sampli	ing. At Sta	3, consistent a, 23, 4 days s	ly close a howed high	greement betw surface resu	cen mid-de lts.	pth and surfa	ce

Table 7 -- Daily Confirmed Coliforms (MPNs in 1,000s) Mid Depth and Surface Sampling

Sept 18 to 29, 1950 Source -- Indiana State Board of Health

Table 8 -- Confirmed Coliform-Enterococci Data (MPN/100 ml)

Source -- Illinois Department of Public Health

27	Enterococci		9	<4.5	9	230	240	240	240	700	700	130	2.400+	240	
. NO.	Coliform		2,400	930	2.400	230	930	4,300	2,400	2,400	4,300	2,400	24,000	4,300	
26	Enterococci		9	23	23	2,400+	620	2,400	9	62	240	130	240	240	
No.	Coliform		1,500	2,400	4,300	150	2,100	2,400	2,400	9,300	4,300	4,300	4,300	2,400	
25	Enterococci		23	<4.5	62	23	62	23	62	240	62	62	620	240	
No.	Coliform		4,300	2,400	2,400	2,400	4,300	4,300	9,300	7,500	4,300	24,000	4,300	24,000	
24	Enterococci		23	23	700	2,400+	7,000	2,400	002	240	1,300	200	2,400	620	
No.	Coliform		4,300	2,400	9,300	46,000	15,000	24,000	4,300	15,000	9,300	24,000	24,000	9,300	
Station:	046T	Date	9/18	61/6	9/20	12/6	9/22	9/23	9/24	9/25	9/56	12/6	9/28	62/6	

Only 6 of 48 samples had enterococci MPN less than 23/100 ml; no correlation between enterococci and coliform; high enterococci indicate coliforms to be of sewage origin. Interpretation:

Table 9 -- Summary -- Averages and Maxima or Minima of

Ohio River Water Quality Survey -- S

Sampling Station		D	0	BO	D D	Turbidit
No.	Location	Avg.	Min.	Avg.	Max.	Avg.
A	Allegheny River	8.7	8.1	0.6	1.10	19
B	Monongahela River	7.4	6.0	0.4	1.10	25
1	Sewickley	7.7	7.1	0.9	2.30	18
С	Beaver River	5.1	3.9	1.0	1.40	22
2	0. R Dam 7	9.1	8.3	1.0	1.60	15
3	O. R Above Wheelin	g 8.2	7.0	1.1	2.7	18
4	0. R Dam 13	18.0	7.4	1.3	3.25	39 2
5	0. R Dam 17	7.6	6.2	1.3	2.55	53 2
6	0. R Dam 18	7.8	6.0	1.6	2.85	36 1
D	L. Kanawha River	7.4	5.7	2.3	4.35	206 5
7	0. R Dam 19	7.8	6.6	2.0	4.6	66 2
8	O. R Pt. Pleasant	7.2	6.1	1.6	2.35	50 1
E	Kanawha River	5.6	2.1	1.5	3.6	131 4
9	O. R Gallipolis	6.5	5.3	1.0	2.05	102 3
10	0. R Dam 27	6.7	5.6	1.2	2.4	165 5
11	O. R Dam 28	6.9	5.8	1.4	2.6	204 6
12	0. R Dam 29	7.2	6.4	1.9	4.8	262 7
13	O. R Dam 30	6.9	5.9	1.6	2.5	264 7
F	Scioto River	7.1	4.7	3.5	6.7	273 7
14	0. R Dam 31	6.8	5.9	1.5	2.4	243 5
15	0. R Dam 36	7.9	6.5	2.9	5.0	498 1,1
G	Licking River	8.2	7.3	. 3.5	6.8	458 9
16	0. R Dam 38	7.4	6.1	4.6	6.8	465 1,1
17	0. R Dam 39	6.8	4.6	4.0	5.8	498 1,2
Н	Kentucky River	8.7	5.2	2.5	5.5	110 4
18 19	O. R Madison O. R Louisville	7.1	4.3	3.0	5.1	295 8
	Intake	4.3	2.1	1.0	1.6	157 4
20	0. R Dam 43	4.8	3.3	1.5	2.9	222 5
21	0. R Dam 47	7.3	3.1	1.3	2.0	218 6
22	0. R Dam 48	6.4	3.7	1.5	2.0	272 8
23	0. R Dam 49	6.3	3.5	1.2	2.2	209 4
I	Wabash River	7.4	5.2	2.9	4.8	156 2
24	0. R Shawneetown	7.0	4.2	1.3	1.7	118 4
25	0. R Dam 51	6.9	3.9	1.2	1.8	90 4
26	0. R Dam 52	7.5	5.1	1.3	2.1	82 3
27	0. R Dam 53	7.3	4.2	1.0	1.7	82 3

Significant Chemical Analyses

pt 18-29, 1950

Chlo	orides	Sulfat	es	Hardne	S S
Ave	Max	Ava ppm	Max	ppm	Mor
 Avg.	Max .	Avg.	Wetx.	Avg.	WHX.
22	35	101	128	110	140
7	11	141	220	113	135
17	27	121	136	118	140
23	26	143	172	154	172
14	21	132	184	129	156
15	22	136	192	133	160
13	19	131	172	128	150
20	24	146	192	135	154
66	113	130	182	181	216
3	9	25	57	38	40
49	77	147	259	160	186
36	49	142	250	156	184
8	17	30	48	56	84
25	42	109	153	115	158
25	39	97	149	122	156
24	37	92	132	114	144
17	38	62	120	84	145
17	40	64	135	87	146
13	23	42	67	174	265
19	40	68	120	95	140
26	49	60	121	118	197
25	43	60	107	110	144
25	42	51	103	112	173
24	40	57	121	117	162
7	19	14	29	107	313
21	40	55	110	131	285
44	65	60	82	112	142
47	67	68	98	120	157
28	46	50	95	130	145
25	31	50	89	132	158
25	34	51	89	131	147
18	35	40	58	199	241
20	25	44	70	134	158
21	27	46	70	144	160
20	24	47	65	142	154
19	26	43	72	137	158
				OR	SANCO

Sampling Station	Drainage Area (Square miles)	Source
1 2 3	19,500 22,980 24,650	Sewickley gaging station. Montgomery Isl. gag. sta. plus inflow (25) Bellaire gag. sta. minus inflow (520).
4	25,170	Bellaire gaging station.
5	26,950	St. Marys gaging sta. plus inflow (100).
7	37,940	Parkersburg gaging station. Parkersburg gag. sta. plus L. Kanawha R. plus inflow (25).
8	40,500	Pomeroy gaging station.
9	53,510	Pt. Pleasant gag. sta. plus Raccoon Creek plus inflow (65).
10 .	53,670	Sampling Sta. No. 9 plus inflow (160).
11	55,900	Huntington gaging station.
12	60,750	Ashland gaging station.
13	61,670	Ashland gag. sta. plus L. Sandy R. plus inflow (200).
14	68,910	Sampling Sta. No. 13 plus (Tygarts Cr., Scioto R.) plus inflow (390).
15	71,110	Cincinnati gag. sta. minus (Licking R. and L. Miami R.) minus inflow (45).
16	82,520	Cincinnati gag. sta. plus Miami R.
17	82.910	Sampling Sta. No. 16 plus inflow (390).
18	90.580	Madison gaging station.
19	91,170	Louisville gaging station.
20	94,510	Sampling Sta. No. 19 plus Salt R. plus inflow (405).
21	97,710	Owensboro gag. sta. plus inflow (510).
22	107,550	Evansville gag. sta. plus inflow (550).
23	107,940	Sampling Sta. No. 22 plus inflow (390).
24	141,160	Golconda gag. sta. minus (Saline R., Tradewater R.) minus inflow (500).
25	143,900	Golconda gaging station.
26	202,800	Metropolis gag. sta. minus inflow (200).
27	203,100	Metropolis gag. sta. plus inflow (150).

Table 10 -- Drainage Areas at Sampling Points on Main Stem Ohio River

Note: The drainage areas at gaging stations are those published in USGS water supply papers. The drainage areas for named tributary streams are those shown in the accompanying list of drainage areas for tributary streams. The drainage areas for inflow areæ (shown in parenthesis following "inflow") were determined by outlining the inflow areas on maps and approximately scaling the areas.

Table 11 -- Drainage Areas of Principal Tributary Streams

Drainage Area (Square miles)	Source
11,705	Corps of Engineers
7,340	Corps of Engineers
3,040	Corps of Engineers
8,040	USGS & C. of E.
2,320	Corps of Engineers
1,200	USGS
12,200	Corps of Engineers
684	USGS
1,670	Corps of Engineers
4,281	USGS
6,510	USGS & C. of E.
723	USGS
339	USGS
1,755	Corps of Engineers
3,655	USGS
5,385	USGS
6,949	USGS
2,938	USGS
9,222	USGS
33,100	Corps of Engineers
1,235	Corps of Engineers
1,008	USGS
18,080	USGS
40,900	USGS
	Drainage Area (Square miles) 11,705 7,340 3,040 8,040 2,320 1,200 12,200 684 1,670 4,281 6,510 723 339 1,755 3,655 5,385 6,949 2,938 9,222 33,100 1,235 1,008 18,080 40,900

Table	12	 Mean	Daily	Gage	Heights,	in	feet,	for	Ohio	River	gaging
		stati	ions		(1950)						

	June	Sewick July	ley, P Aug.	a. Sept.	Louis June	ville, Ky July	Aug.	gage) Sept.
Day 1 2 3 4 5	4.67 4.91 4.93 5.52 7.14	4.26 3.76 3.74 3.74 4.83	3.49 3.72 3.93 4.08 3.94	3.42 3.57 4.63 4.90 4.39	25.20 24.85 23.95 27.30 27.80	22.80 18.90 13.50 11.85 13.05	18.85 16.35 14.25 13.55 12.95	11.30 10.95 14.75 16.20 17.60
6	7.07	5.45	3.75	4.18	28.05	15.35	12.70	18.25
7	6.18	4.74	3.55	3.94	29.55	17.00	12.00	18.55
8	5.56	4.36	3.37	3.71	29.95	18.55	10.95	15.35
9	4.98	4.00	3.37	3.53	28.60	21.85	10.75	10.85
10	4.71	3.75	3.44	3.41	26.05	22.80	10.85	11.95
11	5.04	3.78	3.46	3.32	24.10	20.20	11.10	12.45
12	5.08	3.82	3.45	3.66	21.35	15.25	10.20	12.65
13	4.77	3.64	3.42	4.17	19.45	11.90	10.70	13.65
14	4.49	3.86	3.48	4.78	19.65	13.45	11.00	14.0
15	4.50	4.37	3.48	5.05	19.75	14.40	9.80	14.9
16	4.41	4.09	3.35	4.71	18.75	14.90	10.65	14.8
17	4.20	3.77	3.20	4.46	17.35	14.35	11.50	13.7
18	3.98	3.88	3.15	4.28	16.35	13.40	10.70	12.8
19	3.72	4.00	3.65	4.10	21.90	13.45	10.85	12.1
20	3.85	4.02	3.84	3.96	28.30	14.30	11.80	13.0
21,	3.96	4.14	3.61	4.03	31.20	15.90	12.20	16.0
22	3.98	4.86	3.48	5.56	32.50	16.45	11.35	22.2
23	3.82	5.03	3.32	5.82	33.55	17.45	10.85	29.3
24	3.97	4.34	3.26	5.25	33.15	18.60	10.55	33.9
25	4.88	4.21	3.20	4.50	30.90	19.25	9.75	35.1
26 27 28 29 30 31	5.88 5.85 5.08 4.81 4.63	4.46 4.51 4.20 4.00 3.70 3.55	3.23 3.19 3.10 3.10 3.26 3.30	4.11 3.93 3.83 3.75 3.62	27.65 24.35 22.95 24.20 24.10	18.60 18.25 19.55 19.75 21.15 21.00	10.10 9.95 10.50 10.60 10.90 11.55	33.9 30.3 24.9 17.4 11.6

Note: The locations of Sewickley and Louisville gaging stations correspond to Sampling Points Nos. 1 and 19, respectively. At Sewickley and Louisville discharge is related directly to gage height although rate of change of stage is also a factor at Louisville. For all other main stem Ohio River gaging stations the slope factor between gages enters into the computation of discharge. Table 13 -- Summary of Daily Discharges at Sampling Points

Sept. 13-30, 1950

Daily	dischar	ge, in	1,000 \$	second-f	eet, at	indicated	sampling	points	
Date	1	2	3	4	5	6	7	8	9
Sept.						1		Ser.	100
13	18.0	20.8	21.2	21.5	22.5	25.6	31.6	32.3	46.9
14	28.1	26.2	28.8	29.2	28.2	31.8	36.8	37.4	52.1
15	32.4	33.2	36.4	36.7	34.4	38.2	40.8	41.5	48.5
16	26.4	28.8	30.5	30.7	31.4	35.7	37.0	36.4	48.1
17	22.3	24.5	26.7	26.8	25.4	28.7	29.5	26.9	36.6
18	19.6	21.5	21.6	21.7	22.2	25.4	25.9	24.8	32.3
19	16.9	18.7	19.9	20.0	21.2	20.7	21.0	23.0	30.6
20	15.0	16.8	17.5	17.6	16.9	18.8	19.0	20.9	30.7
21	16.2	18.0	18.1	18.7	23.4	24.7	25.1	26.8	47.0
22	42.2	41.6	44.1	45.3	46.5	50.0	55.2	56.5	116.0
23	46.3	54.3	57.7	58.3	55.5	69.3	79.8	72.2	141.0
24	36.0	39.1	38.6	39.0	45.9	57.0	65.2	67.1	102.0
25	23.1	24.8	25.8	26.1	25.4	28.6	31.8	33.7	64.7
26	17.0	18.6	19.4	19.6	18.3	20.3	22.1	20.9	37.7
27	14.6	16.1	18.3	18.5	18.0	20.1	21.4	22.0	35.9
28	13.2	14.7	16.1	16.2	17.6	19.4	20.3	18.8	28.6
29	12.2	13.6	14.4	14.5	14.1	16.1	16.8	17.1	28.0
30	10.1	75.7	11.4	11.5	15.4	15.8	16.3	16.3	25.1
Daily	dischar	ge, in	1.000 \$	second -f	et at	indicated	sampling	nointe	
Date	10	11	12	13	14	15	16	17	18
Sept.					-			-1	10
13	45.6	46.6	48.4	48.0	48.0	38.1	47.6	47.8	55.0
14	52.3	56.8	58.0	57.5	57.0	53.2	55.3	55.1	63.5
15	49.4	53.9	55.9	56.5	59.0	58.1	64.8	64.6	70.5
16	48 2								
17	10.2	53.5	56.0	56.0	56.0	57.0	63.4	64.7	68.0
	38.5	53.5	56.0	56.0 47.0	56.0	57.0 48.3	63.4 52.9	64.7 54.4	68.0
18	38.5	55.5 41.1 35.1	56.0 44.7 34.9	56.0 47.0 37.0	56.0 45.0 37.0	57.0 48.3 38.7	63.4 52.9 42.9	64.7 54.4 43.1	68.0 57.0 45.0
18 19	38.5 32.9 30.6	55.5 41.1 35.1 31.2	56.0 44.7 34.9 31.2	56.0 47.0 37.0 32.0	56.0 45.0 37.0 37.0	57.0 48.3 38.7 38.1	63.4 52.9 42.9 37.5	64.7 54.4 43.1 37.5	68.0 57.0 45.0 40.0
18 19 20	38.5 32.9 30.6 31.7	55.5 41.1 35.1 31.2 36.2	56.0 44.7 34.9 31.2 46.7	56.0 47.0 37.0 32.0 42.0	56.0 45.0 37.0 37.0 52.0	57.0 48.3 38.7 38.1 45.0	63.4 52.9 42.9 37.5 56.9	64.7 54.4 43.1 37.5 54.2	68.0 57.0 45.0 40.0 60.0
18 19 20 21	38.5 32.9 30.6 31.7 41.4	55.5 41.1 35.1 31.2 36.2 63.2	56.0 44.7 34.9 31.2 46.7 80.0	56.0 47.0 37.0 32.0 42.0 86.0	56.0 45.0 37.0 37.0 52.0 95.0	57.0 48.3 38.7 38.1 45.0 76.0	63.4 52.9 42.9 37.5 56.9 88.4	64.7 54.4 43.1 37.5 54.2 84.9	68.0 57.0 45.0 40.0 60.0 90.0
18 19 20 21 22	38.5 32.9 30.6 31.7 41.4 105.0	55.5 41.1 35.1 31.2 36.2 63.2 142.0	56.0 44.7 34.9 31.2 46.7 80.0 170.0	56.0 47.0 37.0 32.0 42.0 86.0 190.0	56.0 45.0 37.0 37.0 52.0 95.0 178.0	57.0 48.3 38.7 38.1 45.0 76.0 122.0	63.4 52.9 42.9 37.5 56.9 88.4 125.0	64.7 54.4 43.1 37.5 54.2 84.9 L22.0	68.0 57.0 45.0 40.0 60.0 90.0 133.0
18 19 20 21 22 23 23	38.5 32.9 30.6 31.7 41.4 105.0 147.0	55.5 41.1 35.1 31.2 36.2 63.2 142.0 172.0	56.0 44.7 34.9 31.2 46.7 80.0 170.0 201.0	56.0 47.0 37.0 32.0 42.0 86.0 190.0 234.0	56.0 45.0 37.0 37.0 52.0 95.0 178.0 239.0	57.0 48.3 38.7 38.1 45.0 76.0 122.0 193.0	63.4 52.9 42.9 37.5 56.9 88.4 125.0 215.0	64.7 54.4 43.1 37.5 54.2 84.9 L22.0 209.0	68.0 57.0 45.0 40.0 60.0 90.0 133.0 223.0
18 19 20 21 22 23 24	38.5 32.9 30.6 31.7 41.4 105.0 147.0 111.0	55.5 41.1 35.1 31.2 36.2 63.2 142.0 172.0 131.0	56.0 44.7 34.9 31.2 46.7 80.0 170.0 201.0 158.0	56.0 47.0 37.0 32.0 42.0 86.0 190.0 234.0 180.0	56.0 45.0 37.0 52.0 95.0 178.0 239.0 221.0	57.0 48.3 38.7 38.1 45.0 76.0 122.0 193.0 228.0	63.4 52.9 42.9 37.5 56.9 88.4 125.0 215.0 254.0	64.7 54.4 43.1 37.5 54.2 84.9 122.0 209.0 252.0	68.0 57.0 45.0 40.0 60.0 90.0 133.0 223.0 264.0
18 19 20 21 22 23 24 25 26	38.5 32.9 30.6 31.7 41.4 105.0 147.0 111.0 71.2 38.6	53.5 41.1 35.1 31.2 36.2 63.2 142.0 172.0 131.0 90.6	56.0 44.7 34.9 31.2 46.7 80.0 170.0 201.0 158.0 106.0	56.0 47.0 37.0 42.0 86.0 190.0 234.0 180.0 119.0	56.0 45.0 37.0 52.0 95.0 178.0 239.0 221.0 161.0	57.0 48.3 38.7 38.1 45.0 76.0 122.0 193.0 228.0 203.0	63.4 52.9 42.9 37.5 56.9 88.4 125.0 215.0 254.0 247.0	64.7 54.4 43.1 37.5 54.2 84.9 122.0 209.0 252.0	68.0 57.0 45.0 40.0 60.0 90.0 133.0 223.0 264.0 257.0
18 19 20 21 22 23 24 25 24 25 26	38.5 32.9 30.6 31.7 41.4 105.0 147.0 111.0 71.2 38.6 36	55.5 41.1 35.1 31.2 36.2 142.0 172.0 131.0 90.6 42.4	56.0 44.7 34.9 31.2 46.7 80.0 170.0 201.0 158.0 106.0 54.0	56.0 47.0 37.0 32.0 42.0 86.0 190.0 234.0 180.0 119.0 67.0	56.0 45.0 37.0 52.0 95.0 178.0 239.0 221.0 161.0	57.0 48.3 38.7 38.1 45.0 76.0 122.0 193.0 203.0 154.0	63.4 52.9 42.9 37.5 56.9 88.4 125.0 215.0 254.0 2247.0 208.0	64.7 54.4 43.1 37.5 54.2 84.9 L22.0 209.0 252.0 252.0 252.0 216.0	68.0 57.0 45.0 40.0 90.0 133.0 223.0 264.0 257.0 218.0
18 19 20 21 22 23 24 25 26 27 28	38.5 32.9 30.6 31.7 41.4 105.0 147.0 111.0 71.2 38.6 36.4 20 6	55.5 41.1 35.1 31.2 36.2 142.0 172.0 131.0 90.6 42.4 37.1	56.0 44.7 34.9 31.2 46.7 80.0 170.0 201.0 158.0 106.0 54.0 38.9	56.0 47.0 37.0 32.0 42.0 86.0 190.0 234.0 180.0 119.0 67.0 42.0	56.0 45.0 37.0 52.0 95.0 178.0 239.0 221.0 161.0 100.0 56.0	57.0 48.3 38.7 38.1 45.0 76.0 122.0 193.0 228.0 203.0 154.0 100.0	63.4 52.9 42.9 37.5 56.9 88.4 125.0 215.0 254.0 2254.0 208.0 172.0	64.7 54.4 43.1 37.5 54.2 84.9 122.0 209.0 252.0 252.0 252.0 252.0 252.0	68.0 57.0 45.0 40.0 90.0 133.0 223.0 264.0 257.0 218.0 178.0
18 19 20 21 22 23 24 25 26 27 28 29	38.5 32.9 30.6 31.7 41.4 105.0 147.0 111.0 71.2 38.6 36.4 29.6 28.1	55.5 41.1 35.1 35.2 36.2 63.2 142.0 172.0 131.0 90.6 42.4 37.1 31.9	56.0 44.7 34.9 31.2 46.7 80.0 170.0 201.0 158.0 106.0 54.0 38.9 35.3	56.0 47.0 37.0 32.0 42.0 86.0 190.0 234.0 180.0 119.0 67.0 42.0 37.0	56.0 45.0 37.0 52.0 95.0 178.0 239.0 221.0 161.0 100.0 56.0 40.0	57.0 48.3 38.7 38.1 45.0 76.0 122.0 193.0 228.0 203.0 154.0 100.0 49.8	63.4 52.9 42.9 37.5 56.9 88.4 125.0 215.0 254.0 254.0 208.0 172.0 122.0	64.7 54.4 43.1 37.5 54.2 84.9 122.0 209.0 252.0 252.0 252.0 216.0 177.0 26.0	68.0 57.0 45.0 40.0 60.0 90.0 133.0 223.0 264.0 257.0 218.0 178.0 124.0
18 19 20 21 22 23 24 25 26 27 28 29 30	38.5 32.9 30.6 31.7 41.4 105.0 147.0 147.0 147.0 147.0 147.0 147.0 28.6 36.4 29.6 28.1 26.3	55.5 41.1 35.1 35.2 36.2 142.0 172.0 131.0 90.6 42.4 37.1 31.9 30.1 22.6	56.0 44.7 34.9 31.2 46.7 80.0 170.0 201.0 158.0 106.0 54.0 38.9 35.3 31.1	56.0 47.0 37.0 32.0 42.0 86.0 190.0 234.0 180.0 119.0 67.0 32.5 32.5	56.0 45.0 37.0 52.0 95.0 178.0 239.0 221.0 161.0 100.0 56.0 40.0 32.0	57.0 48.3 38.7 38.1 45.0 76.0 122.0 193.0 228.0 203.0 154.0 100.0 49.8 35.8	63.4 52.9 42.9 37.5 56.9 88.4 125.0 215.0 254.0 2254.0 208.0 172.0 122.0 122.0 122.0	64.7 54.4 43.1 37.5 54.2 84.9 122.0 252.0 252.0 252.0 252.0 252.0 252.0 252.0 252.0 252.0 252.0 252.0 252.0 252.0 252.0 252.0 256.0	68.0 57.0 45.0 40.0 60.0 90.0 133.0 223.0 264.0 257.0 218.0 178.0 124.0 80.0

Table	13	(Cont)	 Summary	of	Daily	Discharges	at	Sampling	Points
	2		5	Sept	. 13-3	30, 1950			

ų

	Daily dis	charge,	in 1,00	00 secon	d-feet,	at indic	ated san	pling po	oints
Date	19	20	21	22	23	24	25	26	27
13 14 15 16 17 8 90 12 23 4 56 78 90 22 23 20 20	57.0 61.0 70.0 69.0 58.0 49.0 49.0 42.0 51.0 214.0 254.0 254.0 255.0 226.0 186.0 144.0 89.3 37.0	59.0 64.0 64.0 53.0 46.0 46.0 46.0 16.0 197.0 258.0 258.0 201.0 161.0 12.0 56.0	60.0 64.0 72.0 77.0 78.0 66.0 54.0 57.0 80.0 105.0 105.0 255.0 255.0 233.0 175.0 105.0	102.0 102.0 107.0 109.0 103.0 83.0 67.0 64.0 78.0 96.0 112.0 156.0 200.0 242.0 252.0 252.0 237.0 202.0 162.0	103.0 105.0 109.0 107.0 93.0 74.0 65.0 70.0 91.0 107.0 129.0 129.0 182.0 230.0 252.0 248.0 222.0 187.0	117.0 117.0 122.0 120.0 107.0 83.0 73.0 89.0 112.0 128.0 160.0 215.0 268.0 293.0 289.0 260.0 220.0	134.0 129.0 124.0 125.0 117.0 87.0 68.0 90.0 106.0 113.0 136.0 136.0 136.0 238.0 276.0 289.0 273.0 242.0	312.0 278.0 246.0 237.0 233.0 223.0 168.0 147.0 162.0 185.0 200.0 234.0 294.0 339.0 364.0 365.0 343.0	328.0 295.0 242.0 237.0 231.0 200.0 152.0 150.0 150.0 150.0 185,0 187.0 220.0 264.0 318.0 354.0 366.0 355.0
Date	Daily dis A	charge, B	in 1,00 C	00 secon D	d-feet, E	at indio F	cated sar G	mpling p H	oints I
13 14 15 16 78 90 12 22 24 56 78 90	7.0 10.4 15.5 15.5 15.9 14.5 10.1 8.6 7.8 6.1 5.1 4.0	9.10 16.00 13.40 9.32 5.26 3.54 3.28 3.58 5.81 32.00 36.70 25.10 13.90 9.54 7.78 7.54 6.82 6.13	2.04 3.12 2.75 2.25 2.04 1.70 1.66 1.68 1.68 1.68 1.40 1.34 1.34 1.34	5.98 5.05 2.60 1.35 .83 .50 .33 .25 .40 5.20 5.20 10.50 8.20 1.83 1.25 .87 .65 .50	12.6 14.6 13.7 10.0 6.8 5.7 25.2 62.6 51.0 17.5 12.7 9.0 8.4 7.0 6.1	1.18 1.14 .87 .77 .82 .85 .87 1.70 3.80 18.00 7.75 5.90 3.65 2.60 2.12 1.74 1.47 1.29	5.7 5.5 4.2 1.6 1.6 5.5 5.5 1.0 1.1 1.5 5.5 1.0 1.1 1.1 1.1 1.1 1.1	6.1 7.5.4 3.2.2.2.7 11.0 7.5.4 3.2.2.2.7 11.0 7.5.4 3.5.2.7 11.0 7.5.4 3.5.2.7	17.5 16.2 15.3 14.3 12.5 12.5 16.0 25.0 34.0 47.0 46.0 41.0 35.0

Summarized by USGS - Louisville District

	Samp	ling Sta	ation	No: A I	locatio	on:Alle	gheny River -	- Locl	N		Analyze	ed by: Penr	ısylvania		
Date 1950	mdd D O	B O D Ppm	Temp oF	Confirmed M P N (1,000)	Ac:	idity phen ppm	M O Alkalinity ppm	pH	Total Solids ppm	Turbidity ppm	Chlorides ppm	Sulphates ppm	Hardness ppm	ppm	Dischar cfs (1,000
Sept 18	8.1	0.44	. 67	15.0	0.0	4.0	τo	6.7	212	25	22	88	92	0.7	14.
19	8.6	0.60	68	43.0	0.0	6.0	35	6.6	252	20	22	418	100	1.3	12.
20	8.6	0.30	68	15.0	0.0	4.0	26	6.2	218	15	35	80	100	1.2	10.
21	8.5	0.20	68	23.0	0.0	2.0	52	7.0	223	20	27	84	100	1.4	9.
22	8.5	0.20	67	23.0	0.0	6.0	33	6.4	195	25	20	80	94	0.7	00
23	9.2	1.10	65	75.0	0.0	4.0	40	6.6	012	20	20	100	98	1.2	8.
24	9.3	0.90	60	15.0	0.0	6.0	35	6.6	210	15	19	96	100	0.6	7.
25	8.8	0.30	50	23.0	0.0	4.0	28	6.5	244	20	22	96	120	1.3	6.
26	9.0	1.00	60	1.5	0.0	4.0	28	6.3	275	10	21	125	130	1.2	6.
27	8.7	1.00	62	23.0	0.0	6.0	23	6.6	280	20	21	124	140	0.6	5.
28	8.4	0.50	62	15.0	0.0	2.0	22	6.4	295	20	17	126	120	0.6	5
29	9.2	0.90	62	23.0	0.0	2.0	-: 24	6.3	285	15	61	128	124	0.5	4.(
NOLE	: San	pling p	oint	"A" is on Al	lechen	w Divor	· Taal O Joa	+							

DAILY ANALYSIS REPORT -- OHIO RIVER WATER QUALITY SURVEY

SURVEY
QUALITY
WATER
RIVER
OHIO
- 1
REPORT
ANALYSIS
AILY

Table 15

	Sampli	ing Sta	ation 1	Vo: B		Locatic	m:Hayes Sta	tion o	n Monon	gahela Ri	ver	Analyzed by	: Pennsylv	rania	
Date 1950	0 d 0 B	B 0 D ppm	Temp	Confirmed M P N (1,000)	Aci to P	dity phen pm Cold	M O Alkalinity ppm	Hd	Total Solids ppm	Turbidit	y Chloride ppm	s Sulphates ppm	Hardness ppm	bpm	Dischar ₍ cfs (1,000)
Sept. 18	6.8	0.2	12	9.3	8.0	12.0	13	4.9	308	15	8	144	120	0.6	3.5
19	6.2	0.2	74	4.3	4.0	10.0	15	5.3	344	20		136	124	1.1	3.3
20	6.2	0.4	72	4.3	6.0	6.0	18	5.5	380	20	10	160	135	1.6	3.6
21	6.0	0.3	73	7.5	6.0	6.0	25	5.7	300	20	8	344	125	1.0	5.8
55	6.8	0.3	67	4.3	8.0	8.0	14	5.5	335	0†	7	152	122	2.0	32.
53	6.7	0.3	67	43.0	4.0	4.0	18	6.1	310	60	5	211	60	5.0	36.
24	8.0	0.2	58	15.0	2.0	10.0	14	5.9	340	35	5	220	100	2.5	25.
52	8.8	0.4	58	15.0	0.0	2.0	15	5.8	215	25	5	104	100	1.2	13.
56	9.2	0.4	60	4.3	0.0	2.0	13	5.7	256	15	9	144	100	1.6	9.5
27	8.3	1.1	49	23.0	2.0	4.0	TO	5.4	258	15	7	120	211	2.0	7.8
28	7.6	0.6	65	1,100.0	2.0	2.0	20	6.2	250	15	7	128	OTT	1.2	7.5
59	8.2	0.6	62	4.3	8.0	2.0	17	6.0	265	15	7	125	120	1.2	6.0
NOTE	res) :	pling	point	"B" is on Mc	ononga	hela Ri	ver at Home	stead. 1	High Bri	dre abou	t one mile	above Hayes St	ation).		

					DAILY AN	VALASIS REPOR		DHIO RIV	TER WATER QI	JALITY SURV	Ϋ́Ξ			
	Table	16					2	*:						
	Sampl	ing Sta	ation N	ю : Г	Loca	ation:Highway	Brid	ge, Sewic	:kley		Analyzed by	: Pennsylv	rania	
Date 1950	D O Ppm	B O D Ppm	Temp oF	Confirmed M P N (1,000)	Acidity to phen ppm Hot Cold	M O Alkalinity ppm	ΡĦ	Total Solids ppm	Turbidity ppm	Chlorides ppm	Sulphates ppm	Hardness ppm	Iron ppm	Discharge cfs (1,000)
Sept 18	7.7.	C.4	70	23.0	1.0 4.0	24	6.3	260	15	19	120	116	0.4	19.6
19	7.7	0.6	70	93.0	0.0 8.0	21	6.1	254	20	22	112	118	0.6	16.9
20	7.4	0.6	70	43.0	8.0 12.0	21	5.9	310	20	25	132	138	1.0	15.0
21	7.5	1.3	70	21.0	12.0 10.0	10	5.0	305	15	27	136	140	0.6	16.2
22	7.3	2.3	71	43.0	12.0 10.0	26	6.0	278	20	22	124	122	1.2	42.2
23	7.1	1.3	69	75.0	0.0 4.0	20	5.9	250	25	11	116	120	0.8	46.3
24	7.3	0.2	61	43.0	0.0 6.0	27	6.2	225	25	8	301	104	0.6	36.0
25	8.4	9.0	60	240.0	2.0 2.0	28	6.3	240	15	12	100	112	0.8	23.1
26	8.5	0.7	62	240.0	2.0 2.0	13	5.6	245	20	14	120	110	1.5	17.0
27	8.0	1.0	63	93.0	0.0 4.0	11	5.4	235	15	12	120	94	2.0	14.6
28	8.0	1.2	63	43.0	4.0 4.0	38	6.5	258	15	20	120	122	1.0	13.2
29	7.7	0.9	65	43.0	4.0 2.0	30	6.3	290	10	17	140	136	0.8	12.2
NOTE:	(Sam	pling]	point."	l" is on Of	nio River at	highway brid	ere at	Sewickl	ey).					

......

(-

					THAT	ANALI	- האטלאא כדכ	THO	MATH O	WATER QUA	THANG TILL				
H	able	17													
ŝ	amplir	lg Stat	ion No:	IJ		Locatio	n: Eastvale	on B	eaver Ri	ver	A	nalyzed by:	Pennsylve	nia	(in)
Date 1950	D Q	B O D ppm	Temp	Confirmed M P N (1,000)	Aci(to] p] Hot:	lity phen Cold	M O Alkalinity ppm	Hď	Total Solids 1 ppm	urbidity ppm	Chlorides ppm	Sulphates ppm	Hardness ppm	Iron ppm	Discharge cfs (1,000)
ept 18	5.5	1.0	02	23.0	1.0	6.0	36	6.4	260	25	19	911	124	2.0	1.8
19	5.1	1.1	02	4.3	0*0	8.0	38	6.5	366	25	23	120	140	2.0	1.7
20	4.3	0.6	70	4.3	4.0	8.0	24	6.5	300	25	26	132	144	2.0	1.7
51	3.9	0.5	70	4.3	0.0	4.0	46	6.7	290	25	20	132	136	1.2	1.6
52	4.3	0.7	02	12,0	0.0	8.0	40	6.3	285	15	21	124	142	1.1	1.6
53	4.3	0.6	69	9.3	0.0	2.0	35	6.7	310	30	25	148	150	1.2	1.7
24	4.9	1.4	62	2.3	0.0	6.0	43	6.5	350	15	22	168	170	0.8	1.6
52	5.4	1.4	63	15.0	0.0	2.0	38	6.2	330	20	24	144	170	1.1	1.5
56	6.0	1.2	62	43.0	0.0	4.0	35	6.0	380	25	25	172	160	2.5	1.4
27	6.0	1.2	19	23.0	2.0	6.0	35	6.1	345	20	24	150	172	0.8	1.3
28	5.9	1.4	65	9.3	6.0	4.0	0†	6.6	370	20	23	160	170	0.6	1.3
53	5.2	1.1	67	23.0	4.0	4.0	38	6.5	345	20	24	155	166	0.6	1.3
NOTE:	(Samp	y guif	olut "G	. is on Rea	CH ADA	twen at 1	الم المالية والمعالية الم	+0 '02	Tastva	Townser 2	1	 - 			

STRUEV OHTO RIVER MATER OILAT TATT V ANAT VETS PEPOPER

4 0

63		28	27	26	25	42	23	22	21	20	61	Sept 18	Date D 1950 p	Sa
9.1	5	9.6	9.5	9.8	9.7	9.1	ω. υ	8.7	8.6	8.7	8.6	8.4	pm I	mplin
	1.3	1.3	1.1	1.4	1.1	0.8	1.6	0.9	0.7	0.5	0.3	0.4	ppm	ng Stat
	67	66	65	65	62	63	71	86	70	70	71	71	Temp ^O F	ion N
	9.3	4.3	9.3	4.3	2.3	15.0	43.0	9-3	4.3	2.1	9.3	2.3	Confirmed M P N (1,000)	0:2
	4.0	6.0	2.0	0.0	2.0	2.0	2.0	2.0	0.0	6.0	1.0	2.0	Aci to pp Hot	
	4.0	2.0	6.0	4.0	4.0	4.0	4.0	8.0	4.0	4.0	6.0	10.0	dity phen m Cold	Locat
	25	22	15	18	23	20	24	23	24	18	14	91	M O Alkalinity ppm	ion: Dam 7
	6.4	6.3	5.8	6.0	6.4	5.7	5.9	5.9	6.4	6.0	5.7	5.9	ΡĦ	
	258	225	260	240	225	270	280	276	310	330	340	365	Total Solids Ppm	
	10	15	15	15	15	20	20	20	15	15	10	15	Turbidity ppm	
	12	œ	11	11	10	10	17	21	19	61	19	91	Chlorides ppm	P
	120	811	120	112	104	128	136	128	120	144	164	184	Sulphates ppm	nalyzed by:
	120	122	120	112	108	124	126	128	134	138	156	156	Hardness ppm	Pennsylv
	0.5	0.8	0.6	0.8	0.5	0.4	0.6	1.2	0.4	0.6	0.4	0.5	Iron ppm	ania
	13.6	14.7	16.1	18.6	24.8	39.1	54.3	41.6	18.0	16.8	18.7	21.5	Lischarge cfs (1,000)	

DAILY ANALYSIS REPORT -- OHIO RIVER WATER QUALITY SURVEY

Table, 18

	Table	19			DAILY AN	ALYSIS REPORT	0 	HIO RIVE	R QUALITY	LEVEL				
	Sampli	ng Ste	ation N	lo:3	Loca	tion:Short Cr	eek F	erry	,	Analyze	d by: West 1	Virginia		
Date 1950	D O ppm	B O D Ppm	Pemp	Confirmed M P N (1,000)	Acidity to phen ppm Hot Cold	M O Alkalinity ppm	Hd	Total Solids ppm	Turbidity ppm	Chlorides ppm	Sulphates ppm	Hardness ppm	Iron ppm	Discharge cfs (1,000)
Sept. 18	7.7	0.2	23	2 . 4	1.5 4.0	5	6.6	309	15	91	COL	cir.	0	
19	8.1	0.2	23	h.6	1.0 3.0	7	6.6	327		19	154	142 11,8	0.0	21.6
20	8.2	0.6	22	2.4	1.5 2.0	5	6.3	339	TO	18	180	047		1. LT
51	7.9	0.3	23	2.4	3.0 3.0	4	6.2	36	5	18	173	120	б. С Г	C.14
22	6.7	1.8	51	23.0	1.5 1.0	8	7.0	342	06	18	134	132		T-07
53	6.5	2.7	20	6.3	- 1 2.5	TT	1.7	335	38	55	90T	120	9.0	7.7 72
54	7.0	1.0	19	5.6	- 1 2.5	10	6.9	262	29	14	125	061	Lin	38.6
52	8.7	0.8	18	9.3	-0.5 3	6	6.8	146	15	21	OLL	OGL		0. U. U
56	9.1	2.0	17	2.4	- 1 3	IO	6.8	251	5	4	124	4L1	L.0	101
27	9.3	1.9	20	4.6	-1 2.5		7.0	547	ŝ	9	125	152	0.1	18.3
82	0.5	5.0	19	4.6	- 1 2.0	6	7.3	257	5	. 1	106	128	1.0	1.6.1
6	8.9 (N	1.0	20 Samp11	23.0 "	-0.5 3	ll River at Sho	6.7 ert Cr	227 eek, W.	3 Va., 6 mile	Il s above Too	106 Sk and Dam	112	1.0	14 4
													-	1.1.1

7.4 0.2 23 2.4 4 3 7.8 0.1 23 2.4 1.5 3 8.0 0.9 22 4.6 -0.5 2.5 7.4 2.6 21 723.0 -1 1.5 6.6 3.3 20 110.0 -3 2.5 7.5 2.4 18 24.0 -2 2 8.1 1.0 19 4.5 -1 2 9.0 1.1 19 4.6 -1 1.5 8.8 1.4 20 2.4 -2.5 2.5 8.9 1.2 20 11.0 -0.5 3	Date	· Samj	pling St B O D ppm	Temp OC	No: 4 Confirmed M P N (1,000)	Acid to pl Hot (Locati ity hen ©old	on: Lock & M O Alkalinity ppm	1 1 1	Dam pH	Dam 13 Tiotal pH Solids ppm	Dam 13 Tiotal Turbidity pH Solids ppm ppm	Dam 13 Aı Aı "Total Turbidity Chlorides pH Solids ppm ppm ppm	Dam 13 Analyzed by: "Total Turbidity Chlorides Sulphates pH Solids ppm ppm ppm ppm	Dam 13 Analyzed by: West Vir Viotal Turbidity Chlorides Sulphates Hardness pH Solids ppm ppm ppm ppm	Dam 13 Analyzed by: West Virginia Iotal Turbidity Chlorides Sulphates Hardness Iron pH Solids ppm ppm ppm ppm ppm
0.1 23 2.4 1.5 3 0.9 22 4.6 -0.5 2.5 2.6 21 723.0 -1 1.5 3.3 20 110.0 -3 2.5 2.4 18 24.0 -2 2 1.0 19 4.3 -1 2 1.1 19 4.6 -1.5 2.5 1.4 20 2.4 -2.5 2.5 1.2 20 11.0 -0.5 3	7.4	+	0.2	23	2.4	4	ω		6	6 6.7	6 6.7 292	6 6.7 292 20	6 6.7 292 20 15.5	6 6.7 292 20 15.5 163.2	6 6.7 292 20 15.5 163.2 135	6 6.7 292 20 15.5 163.2 135 1.0
2.6 21 723.0 -1 1.5 3.3 20 110.0 -3 2.5 2.4 18 24.0 -2 2 1.0 19 4.3 -1 2 2 0.8 16 2.4 -1.5 2.5 1.1 19 4.6 -1.5 2.5 1.4 20 2.4 -2.5 2.5 1.2 20 11.0 -0.5 3	7.8	0 0	0.1	22 23	4.6	-0.5	5		6 4	4 6.5 6	4 6.5 306 6 6.6 355	4 6.5 306 7 6 6.6 355 5	4 6.5 306 7 18.5 6 6.6 355 5 19	4 6.5 306 7 18.5 168 6 6.6 355 5 19 172.8	4 6.5 306 7 18.5 168 148 6 6.6 355 5 19 172.8 150	4 6.5 306 7 18.5 168 148 1.0 6 6.6 355 5 19 172.8 150 0.8
.4 2.6 21 723.0 -1 1.5 .6 3.3 20 110.0 -3 2.5 .5 2.4 18 24.0 -2 2 .1 1.0 19 4*3 -1 2 .0 0.8 16 2.4 -1.5 2.5 .0 1.1 19 4*5 -1 2 .0 1.1 19 4*6 -1 1.5 .0 1.1 19 4*6 -1 1.5 .0 1.1 19 4*6 -1 1.5 .0 1.1 20 2.4 -2.5 2.5 .9 1.2 20 11.0 -0.5 3							No	70	amples Co	amples Collect	amples Collected	amples Collected	amples Collected	amples Collected	amples Collected	amples Collected
6.63.320110.0-32.57.52.41824.0-228.11.0194.3-129.00.8162.4-1.52.59.01.1194.6-11.59.01.1202.4-2.52.58.81.4202.4-2.52.58.91.22011.0-0.53	-	7.1	2.6	21	723.0	-1	1.5	سر	7	.7 7.3	7 7.3 529	7 7.3 529 250	7 7.3 529 250 13.5	7 7.3 529 250 13.5 134.4	7 7.3 529 250 13.5 134.4 148	7 7.3 529 250 13.5 134.4 148 0.7
7.5 2.4 18 24.0 -2 2 8.1 1.0 19 4	ω.	6.6	ω ω	20	110.0	3	0.5	14		7.1	7.1 327	7.1 327 65	7.1 327 65 18.5	7.1 327 65 18.5 105.6	7.1 327 65 18.5 105.6 124	7.1 327 65 18.5 105.6 124 0.3
8.1 1.0 19 4.3 -1 2 9.0 0.8 16 2.4 -1.5 2.5 9.0 1.1 19 4.6 -1 1.5 8.8 1.4 20 2.4 -2.5 2.5 8.9 1.2 20 11.0 -0.5 3	4	7.5	2.4	18	24.0	N	10	14		7.0	7.0 282	7.0 282 43	7.0 282 43 22	7.0 282 43 22 124.8	7.0 282 43 22 124.8 132	7.0 282 43 22 124.8 132 Nil
9.0 0.8 16 2.4 -1.5 2.5 9.0 1.1 19 4.6 -1 1.5 8.8 1.4 20 2.4 -2.5 2.5 8.9 1.2 20 11.0 -0.5 3	U.	8.1	1.0	19	4-3	-1-2	10	H		6.8	6.8 192	6.8 192 30	6.8 192 30 11	6.8 192 30 11 115.2	6.8 192 30 11 115.2 120	6.8 192 30 11 115.2 120 1.4
9.0 1.1 19 4.6 -1 1.5 8.8 1.4 20 2.4 -2.5 2.5 8.9 1.2 20 11.0 -0.5 3	6	9.0	0.8	16	2.4	-1.5 2	5	0T		7.0	7.0 272	7.0 272 5	7.0 272 5 4.5	7.0 272 5 4.5 124.8	7.0 272 5 4.5 124.8 120	7.0 272 5 4.5 124.8 120 0.8
8.8 1.4 20 2.4 -2.5 2.5 8.9 1.2 20 11.0 -0.5 3	72	9.0	1.1	6T	4.6	-1 1	1.5	11		7.2	7.2 343	7.2 343 5	7.2 343 5 4.5	7.2 343 5 4.5 134.4	7.2 343 5 4.5 134.4 108	7.2 343 5 4.5 134.4 108 0.8
8.9 1.2 20 11.0 -0.5 3	28	8.8	1.4	20	2.4	-2.5 2	.5	13		7.3	7.3 273	7-3 273 3	7.3 273 3 10.0	7.3 273 3 10.0 96.0	7-3 273 3 10-0 96-0 114	7-3 273 3 10.0 96.0 114 0.8
	9	8.9	1.2	20	11.0	-0.5 3		11		6.9	6.9 249	6.9 249 5	6.9 249 5 10.5	6.9 249 5 10.5 106.0	6.9 249 5 10.5 106.0 118	6.9 249 5 10.5 106.0 118 1.0

DAILY AMALYSIS REPORT -- OHIO RIVER WATER QUALITY SURVEY

Table 20

Table 21

	Sampli	ng Sta	tion 1	Vo: 5		Loca	tion: Lock &	Dam	17			Analyzed by	r: West V.	irgini	
Date 1950	D O ppm	B O D ppm	Temp oc	Confirmed M P N (1,000)	l Aci to P	dity phen pm Cold	M O Alkalinity ppm	Ηđ	Total Solids ppm	Turbidity ppm	Chlorides ppm	Sulphates ppm	Hardness ppm	Iron ppm	Discharge cfs (1,000)
Sept 18	6.9	1.4	24	0.4	1	2.5	9	6.7	319	20	21	163.2	146	0.8	22.2
19	7.5	0.7	22	0.4	-0-5	2.5	7	.9.9	328	2	23	192.0	148	0.6	21.2
20	7.8	0.5	22	6.0	Q.	2.0	8	6.8	330	5	22	0.441	148	0.3	16.9
51	7.8	1.0	23	4*0	1-	S	7	6.8	194	IO	20	182.4	130	0.6	23.4
52	7.4	2.6	23	0.11	1.5	1.5	9	6.9	451	105	52	168.0	144	0.2	46.5
23	7.4	1.7	20	24.0	5	2.5	11	7.1	169	250	J f	158.4	154	0.2	55.5
54	6.2	4.3	19	4.3	Į.	2.0	12	7.1	Tth	150	20	115.2	811	LIN	45.9
52	7.2	6.0	19	6.0	-1.5	2.0	13	7.2	251	20	54	110.4	130	0.8	25.4

18.3

-

1

1

-

-

-

-

111

0.4

20

0.7

2.9

26

18.0

0.6

120

129.6

23

5

638

4.7

14

1.5

cy.

4.6

50

1.4

8.7

27 28

9.71

0.4

130

124.8

18

3

312

7.3

Ц

-3.5 1.5

· 0.4

23

1.0

8.7

14.1

0.6

122

115.0

14 ...

3

247

7.0

10

-1.5 2.0

4.6

51

0.3

8.3

59

29	28	727	26	3	24	2 23	22	13	20	61	18	Date	
8.4	9.2	8.8	8.4	7.9	7.1	6.0	7.4	8.0	7.8	7.7	7.4	D O	Tabl
8.0	2.3	1.5	1.4	1.3	2.9	2.1	2.3	1.2	1.2	1.2	1.6	ВОД ррт	e 22 ling St
24	22	20	6T	19	20	20	23	23	23	23	24	Temp oc	tation
4.6	2.4	2.4	4.6	0.3	3.9	24.0	>23.0	2.4	11.0	0.9	4.6	Confirmed M P N (1,000)	No: 6
-6 1.5	-3 2	-2.5 3	-4 2.5	-5.5 1.5	-7.5 2	-5.5 2	-3.5 2	-3 1.0	-2 2.5	-1.5 2	-2 1.5	Acidity to phen ppm Hot Cold	DATLY A
17.0	17.0	16.0	20.0	22.5	30.5	23.5	22.0	15.0	11.0	10.0	12.0	M O Alkalinity ppm	NALYSIS REPO
1.3	7.4	7.4	7.3	7.3	7.5	7.4	7.4	7.2	7.1	7.0	1.2	PH	Dam 1
349	755	843	461	462	523	537	458	295	444	399	401	Total Solids J ppm	OHIO RIV
Л	ې ب	ω	10	26	125	105	105	ω	J	25	20	furbidity ppm	ER WATTER 6
48.0	57.5	65.0	90.5	113.5	85.5	64.0	65.0	40.5	44.5	53.0	67.0	Chlorides prm	UALITY SUR
115.0	100.8	115.2	134.4	110.4	115-2	134.4	144.0	135.2	124.8	153.6	182.4	Sulphates Fipm	VEY Analyzed by
158	160	162	180	216	200	210	196	158	162	178	194	Hardness ppm	r: West V
0.6	0.3	0.5	0.6	0.6	Nil	0.2	0.4	0.2	0.2	0.4	0.6	s Iron Ppm	irginia
16.1	19.4	20.1	20.3	28.6	57.0	69.3	50.0	24.7	18.8	20.7	25.4	Discharge cfs (1,000)	

Table 23

	Sampli	ng Sta	tion]	No: D		Locatic	on:Little Ka	unawha	River - 1	Wear Mout	h	nalyzed by:	West Vir	ginia	
Date 1950	D D D	B O L Ppm	Temp	Confirmed M P N (1,000)	Ac: to Hot	ldity phen ppm Cold	M O Alkalinity ppm	Hd	Total Solids Tu ppm	urbidity ppm	Chlorides	Sulphates ppm	Hardness	Iron ppm	Dischard cfs (1,000
Sept.				Alderhause - 1							and a		jaan Berley Gaar Berley		
18	6.2	2.5	23	230.0	C ^V	Q	14	7.2	190	160	7.0	24	34	0.6	0.5
61	2.2	2.7	22	460.0	-0-5	2.5	15	1.2	412	185	3.0	43.2	37	0.2	0.3
50	6.6	5.0	22	1,100.0	-1.5	3.0	13	7.1	181	142	4.0	57.6	38	0.3	0.3
T	6.3	1.7	21	1,100.0	Ŷ	2.5	14	7.4		OTT	1.5	4.8	39	0.6	0.4
Ņ	7.0	4.4	20	230.0	7	2.0	16	7.6	513	500	3.5	28.8	8	0.8	5.2
33	9.2	2.0	20	93.0	-1-	1.5	17	7.5	397	330	9.0	19.2	1.0	0.8	10.5
17:	8.6	1.7	18	24.0	1	ŝ	16	7.6	264	260	1.0	33.6	38	0.4	8.2
ŝ	8.9	3.8	18	7.5	7	2.5	16	7.3	79	150	2.0	16.0	140	1.0	3.2
9	8.5	7.7	19	0.011	Ŷ	3.5	14	7.2	256	175	2.0	28.8	38	1.0	1.8
2	8.5	2.0	20	240.0	-1.5	e	14	4.7	Broken- Dish	170	1.0	19.2	38	0.8	1.3
8	7.6	1.9	20	1460.0	7	e	14	7.5	196	160	2.0	9.6	38	0.8	6.0
01	7.2 (Not	нс. 	19 1. I.	240.0 1g point "D" Le above mout	-3 is or th of	3 I Little river.)	14 Kanawha Riv	7.1 er, Ea	191 ast St. Br	120 ridge, Par	5.5 rkersburg, V	. Va. Alt	. ³⁵ s. ro	1.4 ute 21,	7.0

•

				in the second second	A REAL PROPERTY OF A REA	and the second se		and the second s	the second s					
Date 1950	षात्तेत 0 G	BOD ppm	Temp oC	Confirmed M P N (1,000)	Acidity to phen ppm Hot. Cold	M O Alkalinity ppm	Ħđ	Total Solids ppm	Turbidity ppm	Chlorides ppm	Sulphates ppm	Hardness ppm	Iron ppm	Discharg cfs (1,000)
Sept. 18	7.5	2.3	24	9*4	-2 2	11.0	7.2	382	25	43.0	163.2	174	0.8	25.9
19.	7.6	.2.7	24	46.0	-0.5 2.5	8.5	6.9	495	50	44.5	153.6	170	0.9	21.0
20										•				19.0
21	7.9	1.4	24	46.0	-0.5 1.5	11.0	7.3	327	20	41.0	163.2	162	0.6	25.1
22	7.1	2.4	23	46.0	-2 1.5	15.0	7.4	491	295	24.0	105.6	132	0.2	55.2
23	6.7	2.3	22	7.3	-2 2.0	15.0	7.4	477	011	42.0	163.2	164	0.2	79.8
24 .	6.6	4.6	20	4.3	-3.5 2.0	20.0	7.4	439	105	51.5	115.2	186	Nil	65.2
25	8.0	2.0	20	0.3	-4 -2	17.0	7.3	311	5	47.0	135.2	152	0.6	31.8
26	7.8	0.9	20	4.6	-2.5 3	16.5	7.3	389	34	62.5	115.2	166	0.6	22.1
27	8.7	1.1	20	11.0	-2 2.5	19.5	7.5	484	33	77.0	120.0	168	0.6	21.4
28	8.6	0.9	20	21.0	-3.5 2	17.5	7.5	759	38	63.0	259.2	154	1.0	20.3
29	9.2	2.0	24	24.0	-4 2	17.5	7.3	348	15	45.5	120.0	136	0.6	16.8
19								2 50 5 1 1 2						

DAILY ANALYSIS REPORT -- OHIO RIVER WATER QUALITY SURVEY

Table 24

Table 25

	Discharge cfs (1,000)	24.8	23.0	20.9	26.8	56.5	72.2	. 67.1	33.7	. 20.9
ginia	Iron ppm	0.7	0.2	0.1	0.2	0.1	1.0	LIN	1.0.	0.7
West Virg	Hardness ppm	180	180	184	180	160	132	124	148	140
nalyzed by	Sulphates ppm	182.4	172.8	250.0	172.8	153.6	124.8	105.6.	115.2	124.8
Ą	Chlorides ppm	45.0	49.0	46.0	0.44	44.5	30.0	26.0	24.0	26.5
	Turbidity ppm	20	25	25	25	80	120	100	60	42
Bridge	Total Solids ppm	378	044	384	229	377	313	354	250	358
asant	μđ	7.2	7.1	7.2	7.3	7.3	7.3	7.3	7.05	7.25
ion: Pt. Ple	M O Alkalinity ppm	Ø	12.5	12.0	12.0	9.0	12.0	12.0	12.5	16.5
Locat	Acidity to phen ppm Hot Cold	-1 2.5	-1.5 2.5	-3 0.5	-1.5 1.5	-1 1.5	-2 1.5	5	-1.5 2	-2 3.5
Ø	Confirmed M P N (1,000)	0.11	4.6	0.11	4.6	11.0	46.0	4.3	2.1	1.5
on No:	Temp oC	24	23	24	23	23	22	20	19	19
Stati	B O D ppm	2.4	1.2	1.4	1.3	2.3	1.8	1.9	0.5	L.3
mpling	D O Ppm	7.3	7.6	7.7	7.8	7.8	6.3	6.3	6.1	6.5
S	Date	L8 L8	6	0	T	N	e.	4	5	

22.0

0.6.

136

115.2

21.5

32

394

7.45

16.5

2.5

7

2.4

20

2.1

7.8

51

18.8

0.6.

170

91.2

30.5

41

746

7.55

15.5

-2.5 2.0

2.4

20

2.0

7.4

8

17.1

0.4.

140

91.0

38.5

31

278

4.7

17

2

+-

2.4

23

0.7

.8.3

0

50	Sampli	ng Stat	ion No			T.oca	tion. Kanawha	Divid	Moo	n Manth					
entropy of the		(TIT *	21 - Mca	TUNCIA	and the second sec	Analyzed by	: West Vir	ginia	
Date 1950	D O D D	BOD PPm	Temp ^O C	Confirmed M P N (1,000)	Ac tc	phen ppm Cold	M O Alkalinity ppm	ЪĤ	Total Solids ppm	Turbidity ppm	Chlorides Ppm	Sulphates ppm	Hardness	Iron ppm	Discharg cfs (1,000
18 18	4.5	1.5	23	0.09	5	3.0	22	7.4	186	78	εt	38.4	76	0.7	6.3
19	3.5	2.9	23	0.23	-6	2.0	26	7.4	176	33	15	14.4	84	0.2	5.7
20	2.8	0.5	23	0.43	å	2.0	28	7.6	134	27	14	28.8	80	0.1	6.7
12	3.6	0:9	23	4.6	-7	1.5	25	7.6	57	32	14	38.4	82	0.2	25.2
22	3.6	3.6	22	11.0	-1.5	2.0	19	7.6	349	320	18	48.0	70	0.4	62.6
Ň	6.0	4.1	20	9.3	ŝ	.1.5	9	7.5	417	410	N	19.2	50	0.8	51.0
43.	7.2	1.1	19	9.3	-1.5	2.0	13	7.4	237	275	N	28.8	40	0.1	30.4
25	8.0	0.8	17	4.3	N	1.0	10	7.1	201	135	Ч	14.4	36	1.0	17.5
26	7.7	1.1	19	0.23	Ļ	2.5	11	7.2	156	95	ω	48.0	39	8.0	12.7
27	6.5	0.1	19	4.6	н	2.0	9	7.3	158	68	Ŋ	48.0	40	8.0	9.1
28	7.4	0.9	20	2.4	Ļ	2.5	9	7.3	254	57	4	14.4	36	0.7	8.4
62	6.8	0.8	22	2.1	N	2.0	10 	7.3	106	42	9.7	14.4	39	0.2	7.0
NOTE:	(Samp	ling no.													

Table:27

Sampling Station No:9

Location: Gallipolis Dam

Analyzed by: West Virginia

	charge cfs 1,000)	32.3	30.6	30.7	47.0	0.911	141.0	102.0	64.7	37.7	35.9	28.6	28.0
	Dis)											•	
	Iron ppm	1.0	0.2	0.2	0.2	Lin	0.8	Nil	1.0	0.7	0.6	0.4	0.6
	Hardness ppm	154	158	152	144	108	90	92	100	96	94	84	103
	Sulphates ppm	153.6	153.6	153.6	124.8	76.8	4.98	86.4	100.8	96.0	96.0	0.96	86.4
and some of some of some state of the source	Chlorides ppm	33.0	38.5	42.0	34.5	27.5	19.0	14.5	16.5	16.0	17.5	19.0	22.5
	Turbidity ppm	100	33	IO	27	200	390	165	95	62	48	6.11	40
	Total Solids ppm	442	288	339	297	365	502	253	317	268	267	308	192
	Hď	4.7	7.2	4°L	7.5	7.6	7.4	7.2	7.1	7.2	4°L	7.4	4.7
	M O Alkalinity ppm	11	11	15	18	16	12	13	12	75	13	13	13
	Acidity to phen ppm Hot Cold	-1 1.0	-1.5 2.0	-3 2.0	-4 1.5	-2.5 1.5	-1 2.0	-1.5	-2 2.0	-1.5 3.0	-1.5 2.5	-2 2.0	-3.5 1.5
	Confirmed M P N (1,000)	2.4	4.6	4.6	2.4	4.6	24.0	15.0	016	930	1.5	1.5	2.4
	Temp oc	24	24	23	52	23	21	20	19	20	20	51	23
	B O D ppm	1.6	1.0	1.2	1.2	1.8	2.1	1.3	0.1	9.0	0.2	0.5	0.4
	D O ppm	6.5	6.5	6.9	6.2	5.3	6.0	6.3	6.3	7.7	6.9	6.9	7.2
	ate 950	ept.	0	0	Ц	Q	e	4	5	5	L	8	6

Table 28

•

7 63	28 7	7 72	26 7	25 6	24 6	23 5	22 5	2I 6	20 6	9 6T	Sept 18 6	I Date I 1950		
œ	0	.7	N	ŝ	.0	6	6	.0	.7	.7	.0	o o I		
0.9	0.9	1.4	0.8	1.1	1.4	2.4	1.7	0.8	0.9	1.2	1.4	maid D 9		
61	19	19	-	20	20	21	22	23	24	23	24	Temp oc		
43.0	9.3	7.5	4.3	4.3	24.0	9.3	4.3	24.0	2.3	3.4	0.9	Confirmed M P N (1,000)		
-12	-14	10	-9	-10	-6	Å	4	÷	占	1	F	Hot		
1	N	1	1	1	Ч	1	Ļ	1	· س	3	4	phen phen prm Cold		
30	30	28	33	29	31	31	36	33	25	28	33	M O Alkalinity ppm		
6.9	6.9	6.9	6.6	6.6	7.0	6.9	6.9	6.9	7.0	6.9	6.9	рĦ		
207	208	257	333	373	363	572	331	383	345	1	1 1	Total Solids ppm		
.70	65	75	120	500	300	500	150	100	30	45	25	Turbidity ppm		
14	14	91	17	61	61	25	27	39	39	37	36	Chlorides ppm		
70	77	80	79	86	72	72	83	130	135	149	132	Sulphates ppm		
nor	100	114	TOL	110	96	103	112	147	154	156	145	Hardne		
5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	ss Iro ppm		
L BC	29.6	36.4	38.6	71.2	111.0	147.0	105.0	41.4	31.7	30.6	32.9	n Discharge cfs (1,000)		
	0 -	1.6												
------------	-------------------------------	----------	------	------	-------	-------	-------	-------	------	------	------	------	-------	--
	Discharg cfs (1,000	35.1	31.2	36.2	63.2	142.0	172.0	131.0	90.6	42.4	37.1	31.9	30.1	
	s Iron	<0.1	€0.1	<0.1	<0.1	₹0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	1.0	
Ohio	Hardnes ppm	144	140	144	143	108	88	84	96	76	104	104	OTT	
alyzed by:	Sulphates ppm	130	132	T27	122	72	60	58	81	81	81	62	74	
An	Chlorides ppm	37	37	35	37	24	22	16	77	16	14	15	76	
	Turbidity ppm	30	45	270	175	600	1400	250	300	150	100	65	60	
. 28	Total Solids ppm	1	1	533	644	164	394	290	419	317	252	234	240	
Dam No	/ pH	6.9	6.9	6.9	6.9	1.1	6.8	6.8	6.6	6.7	6.9	7.0	7.0	
Location:	M O Alkalinit; PPm	30	30	54	31	04	26	25	23	23	26	30	30	
	lity phen pm Cold	4	4	4	Ч	Ч	Ч	ч	Ч	Ч	н	Т	Т	
	Aci to 1 P	4	4	ñ	9-	9-	6-	9	6-	ထု	9-	-10	-10	
LL :ON D	Confirmed M P N (1,000)	0.9	2.3	9.3	0.011	9.3	4.3	2.3	24.0	21.0	93.0	1.2	240.0	
Statio	Temp	26	25	54	53	55	55	19	19	1	20	20	18	
pling	B O D ppm	1.0	1.3	1.7	1.0	5.6	2.2	2.5	1.3	1.1	0.8	1.0	0.8	
San	D O D O	t 7.1	7.2	6.9	7.0	6.5	5.8	6.5	6.5	6.9	7.5	7.2	7.5	
	at. 95(8 ep	0	0	H	Q	5	4	5	9	~	0	0	

	Sampl D O B	O D	ation	No: 12 Confirmed	Aci	Lo dity	ocation: Dam M O	No.	29 Total	Turbidity	Chlor	Analy ides	Analyzed by: (ides Sulphates	Analyzed by: Ohio ides Sulphates Hardnes	Analyzed by: Ohio ides Sulphates Hardness Iron
00	DOB	O D	Do CureIL	Confirmed M P W (1,000)	Aci to PP Hot	dity phen m Cold	M O Alkalinity ppm	Ρđ	Total Solids ppm	Turbidity ppm	Chlorides ppm	01	s Sulphates ppm	s Sulphates Hardnes ppm ppm	s Sulphates Hardness Iron ppm ppm ppm
W.ot	7.2	1.6	24	43.0	-1-	δ	32	6.9	ł	35	38		120	120 145	120 145 <0.1
0	7.1	1.3	42	9.3	4	S	32	7.1	1	30	35		120	120 140	120 140 <0.1
õ	7.0	2.5	23	110.0	1	1	30	7.1	1	570	27		99	0TT 66	99 110 <0.1
Ĕ	6.6	8.4	2	150.0	5	N	31	6.7	210	700	20		4747	4th 67	44 67 <0.1
N	6.4	2.4	20	15.0	5	۲	23	6.7	604	600	10		1/1	Tt ₁ t ₁	14 41 <0.1
UN I	6.9	2.9	20	9.3	-12	Ч	22	6.8	243	200	10	•	22	9 22 49	9 22 49 <0.1
24	7.1	1.3	6T	2.3	-9	Ч	23	6.7	363	300		8	8 36	8 36 58	8 36 58 <0.1
G	6.8	0.5	6T	9.3	-10	l	23	6.7	384	275		10	LO 47	LO 47 68	LO 47 68 CO.1
6	7.8	1.6	1	9.3	-9	Ľ	26	6.7	372	200		TO	64 OT	69 6th OT	10 49 69 <0.1
79	8.2	1.6	19	3.9	-7	T	29	7.1	245	95		9	61	97 t9 6	9 61 76 0.1
8	7.9	1.2	19	43.0	-10	1	33	7.0	219	65		12	12 67	12 67 94	12 67 94 ≪0.1
10	7.4	8.0	19	93.0	-7	۲	29	7.0	210	70	L.	5	13 67	13 67 96	13 67 96 <0.1

	zed by: Ohio	tes Hardness Iron Disch ppm ppm cfs (1,0	146 <0.1 37	138 <0.1 32.	142 20.1 42.	57 <0.1 86.	40 <0.1 190.	47 <0.1 234.	46 20.1 180.	68 <0.1 119.	82 <0.1 67.	84 <0.1 42.	
	Analy	des Sulpha ppm	130	115	135	31	5	19	19	47	66	67	
		urbidity Chlori ppm ppm	70 440	35 35	75 33	700 13	600 8	500 10	500 7	250 10	150 13	11 0 <u>5</u> 1	
	30	Tobal. T Solids ppm		1	361	914	626	194	389	390	377	308	•
	.oN me	H pH	6.9	7.1	1.7	6.7	6.7	6.8	6.6	6.5	6.7	6.8	
	cation: Da	M O Alkalinity Ppm	35	34	27	30	53	51	เป	23	54	26	
	Io	ity hen m Cold	4	ŝ	m	CJ	Ч	Ч	Ч	Ч	Ч	Ч	
		Acid to p pp Hot	- 4	- 4	£ -	- 5	5	-10	9	-10	6	6 -	
	n No: 13	Confirmed M P N (1,000)	9.3	5.9	46.0	1+60.0	23.0	24.0	0.011	46.0	23.0	43.0	
	Statio	Temp oC	23.5	23.5	23.5	21.0	20.0	20.0	17.5	19.5	1	19.0	
тс это	Inpling	B O D Ppm	1.7	1.5	1.8	1.8	2.5	1.5	1.2	1.3	1.4	1.8	1
19 T	Sa	D O Q	T.7	7.3	6.8	6.5	6.3	6.5	6.4	9.9	7.0	7.6	. 4 4
		0ate 1950	lept 18	19	20	な	g	53	24	52	56	27	28

27 C L L D M

. . .

.

•

57 0	200	28 6	27 6	26 5	25 5	24 5	23 4	22 6	21 6	20 7	2 61	Sept 18 14	D Date pp 1950	
	.3 1.9	.6 2.0	.8 3.3	.9 3.8	.5 3.2	.4 1.6	.7 3.5	.6 4.1	.3 4.6	.1 3.6	.0 3.8	.5 6.7	O B O D m ppm	Sampling
	17.0	19.0	19.0	1	17.0	18.0	19.0	19.5	12	12	12	24	Temp o _C	3 Stati
	43.0	43.0	23.0	230.0	43.0	75.0	1,100.0	240.0	43.0	240.0	9.3	43.0	Confirmed M P N (1,000)	on No: F
	-10	19	-10	-14	-31	-24	-27	-17	-35	-28	-28	-30	Acid to I ppm Hot	
	۲	1	1	Ч	L	N	ч	Ч	0	N	N	- 4	lity bhen 1 Cold	
	154	156	148	128	107	71	66	52	87	191	214	212	M O Alkalinit PPm	Location:
	7.8	7.8	7.8	7.6	7.6	7.7	7.6	7.5	7.4	8.1	8.1	8.3	у pH	Sciot
	376	357	475	571	380	307	685	426	756	466	1	1	Total Solids ppm	o River
	120	100	175	250	130	400	600	700	500	170	75	50	Turbidity ppm	near mouth
	9	9	11	12	Ц	6	J	9	19	19	23	22	Chlorides ppm	
	55	48	48	45	54	14	Ю	S	48	61	65	67	Sulphates ppm –	Analyz
	204	216	200	163	150	96	82	72	135	236	265	264	Hardne	ed by:
	<0.1	60.1	0.1	<0.1	<0.1	40.1	<0.1	0.1	<0.1	0.1	40.1	40.1	ess Iron ppm	Ohio
	1.5	1.7	2.1	2.6	3.7	5.9	7.8	18.0	3.8	1.7	0.9	0.9	Dischar cfs (1,000	

Table 32

02 010

SURVEY
QUALITY
WATER
RIVER
OHIO
ł
REPORT
ANALYSIS
XIIX(

	6 %	N.									T		
	Dischar(cfs (1,000	37.0	37.0	52.0	95.0	178.0	239.0	221.0	0.161	100.0	56.0	0.04	32.0
oid	is Iron ppm	Ø.1	<0.1	1.05	<0.1	<0.1	L.0>	1.0>	<0.1	0.1	0.1	<0.1	<0.1
by: 0]	Hardnes ppm	140	140	137	102	55	59	59	17	87	90	46	TOH
Analyzed	Sulphates ppm	OLL	120	511	62	26	33	32	46	67	69	67	58
	Chlorides ppm	017	36	33	24	12	10	10	12	15	Ц	12	13
	Turbidity ppm	80	30	50	500	500	1400	500	300	J75	200	90	90
31	Total Solids ppm	1	ł	335	757	489	331	321	388	406	614	232	549
Dam No.	Hd /	6.9	7.1	7.2	6.9	T.7	6.9	6.9	6.6	6.7	6.9	0.7	6.9
ocation:	M O Alkalinity ppm	35	35	30	31	25	26	22	23	24	25	29	27
	lity phen cold	ñ	3	5	CU.	ч	ч	Ч	Ч	Ч	Т	г	Ч
	Acid to J Ppr Hot	- 3	8	- 4	8	2 -	-12	2 -	- 9	- 8	8	-12	8
No: 14	Confirmed M P N (1,000)	2.3	7.5	46.0	240.0	43.0	4.3	7.5	46.0	43.0	93	43.0	15.0
tation	Jemo oC	22.0	22.0	23.5	22.0	19.5	20.0	19.0	19.0	1	19.0	21.0	19.0
gling S	B O D	2.0	1.4	1.0	2.4	2.1	J.6	6.0	1.2	1.5	1.9	1.3	0.9
Sam	D O C	6.5	7.4	T.7	6.4	6.3	5.9	6.3	6.4	6.7	7.0	7.8	7.7
	Date 195	Sep 18	19	20	21	22	53	54	25	56	22	28	6

	DAILY	
	ANALYSIS	
	REPORT	
	1	
	OHIO	•
	RIVER	
4.	WATER	15 A
	QUALITY	
	SURVEY	

29 9	28	27 8	26 6	25	24 6	23 6	22	21 8	20 8	3 61	Sept 18 8	I Date I 1950	
9.0	in	.0	5	.9	.7	.7	5	5	6.6	3.4	2	o o	Sam
3.7	2.8	2.6	2.4	3.2	5.0	4.3	2.7	4.0	1.1	2.3	1.2	ВОД ррт	pling S
22	20	21	15	15	20	12	23	24	42	23	23	Temp o _C	tation
2.3	4.3	15.0	2.3	2.3	9.3	460.0	150.0	246.0	93.0	1.5	.9	Confirmed M P N (1,000)	No: 15
1.9	1.3	0.8	0.1	0	0	0.8	1.2	0.8	0.3	1.7	ŝ	Aci to pp Hot	
4.8	2.5	2.5	1.8	2.0	1.7	2.3	2.1	1.8	0.8	2.8	1.8	dity phen m Cold	
54	18	35	13	35	94	56	48	419	38	41	63	M O Alkalinit PPm	Location:
7.3	7.3	7.1	7.3	7.1	7.3	7.3	7.7	7.5	7.5	7.3	7.8	су рН	Dam No
315	553	462	573	460	792	1,537	680	1,293	511	371	463	Tctal Solids ppm	. 36
150	270	500	552	670	1,070	1,100	650	725	150	70	75	Turbidity ppm	
20	18	13	16	22	71	18	25	28	54	141	49	Chlorides PPm	n A sea a se
20	20	23	45	46	£4	39	57	446	111	101	121	Sulphates ppm	Analyze
97	102	74	74	166	92	100	109	115	143	145	197	Hardne ppm	d by:
0.3	0.1	0.2	0.7	0.5	0.8	1.4	8.0	0.4	0.9	0.1	0.1	ss Iron ppm	Kentucky
35.8	8.64	100.0	154.0	203.0	228.0	193.0	122.0	76.0	45.0	38.1	38.7	Discharg cfs (1,000)	1

No: G			Locatio	n: L	icking Ri	iver near m	outh	Analyzed	t by: Ke	ntucky	
rmed f N t 00) Ho	Acidit to pher ppm ot Co.	n l	M 0 Alkalinity ppm	ΒI	Total Solids ppm	Turbidity ppm	Chlorides ppm	Sulphates	Hardnes ppm	ppm	Discharg cfs (1,000)
.4 1.	0 5	0.	76	7.9	400	53	33	17	126	0.3	1.6
23.0 0.	3 5	5	38	1.1	376	50	39	LOT	138	0.2	31.2
23.0 0.	.6 1	0.	43	7.5	603	105	43	108	145	0.6	L.I
00.00 3.	.7 h.	0.	54	7.4	1,353	438	34	89	133	0.4	1. 6
50.0 0	3	CJ.	68	7.6	1,497	066	55	85	SIL	0.8	14.5
00.00 1.	0 3.	0.	64	7.3	891	875	18	63	76	0.5	31.5
4.3 0.	3	0	81	7.1	822	933	51	83	103	1.0	33.5
9.3 0	N	0	26	7.2	595	800	31	25	133	7.0	26.5
15.0 0.	4 4.	0	52	7.3	370	380	19	31	74	0.2	21.5
1.5 0.	З 1.	8	48	7.5	4T5	475	£1.	16	81	0.1	18.0
40.0 0.4	8 1.	8	76	7.2	414	235	19	13	93	0.5	3.11.5
9.3 2.	5 5.	8	39	7.1	375	165	23	5	102	0.2	4.1
ng point "	G" is pstrea	on Li	cking Rive m Ohio Riv	er at	bridge on	n route 28,	in built-	up area, eat	st of Cov	rington,	Ky.
	No: G Confirmed M P N M P N (1,000) H 23.0 0 23.0 0 23.0 0 1,100.0 3 150.0 0 1,100.0 1. 1,100.0 1. 1,100.0 0. 15.0 0. 15.0 0. 240.0 0. 240.0 0.	Mo: G Confirmed Acidit M P N to phe M P N to phe (1,000) Hot Co .4 1.0 2 23.0 0.3 5 23.0 0.8 1 1,100.0 0.8 1 1,100.0 0.8 1 1,100.0 0.8 1 1,100.0 0.3 2 1,100.0 1.0 3 1,0 3 1,100.0 1.0 3 1,10 2 1,0 0.1 4 1,0 1.5 0.3 1 1,0 0.4 4 1,0 1.5 0.3 1 240.0 0.8 1 240.0 0.8 1 240.0 0.8 1 1.5 0.3 1 240.0 0.8 1 1.5 0.3 1 1.5 0.3 1 1.5 0.3 1 1.5 0.3 1 240.0 0.8 1 1.5 0.3 1 240.0 0.8 1 1.5 0.3 1 1.5 0.3 1 1.5 0.3 1 1.5 0.5 1 240.0 0.6 1 1.5 0.5 1 1.5 0.5 1 2.5 5 mpling point "G" is nut one mile upstream	<pre>Mo: G Confirmed Acidity M P N to phen (1,000) ppm Eot Cold .4 1.0 2.0 23.0 0.5 5.3 23.0 0.8 1.0 1,100.0 3.7 4.0 1,100.0 3.7 4.0 1,100.0 3.7 4.0 1,100.0 2.0 2.0 2.0 1,100.0 1.0 3.0 4.3 0.3 2.0 1.5 0.4 4.0 1.5 0.3 1.8 240.0 0.8 1.8 240.0 0.8 1.8</pre>	Mo: G Iocatio Confirmed Acidity M 0 M P N to phen Alkalinity (1,000) ppm ppm .4 1.0 2.0 76 .4 1.0 2.0 76 .25.0 0.3 5.3 38 27.0 0.3 5.3 38 27.0 0.3 1.0 43 1,100.0 3.7 4.0 76 1,100.0 3.7 4.0 54 1,100.0 1.0 5.0 68 1,100.0 1.0 5.0 64 1,100.0 1.0 5.0 64 1,100.0 1.0 2.0 26 1,50.0 0.3 2.0 26 1,50 0.4 4.0 26 1.5 0.3 1.8 48 1.5 0.3 1.8 76 240.0 0.8 1.8 76 <tr td=""> <td< td=""><td>No: G Location: I M P N to phen Alkalinity pH M P N to phen Alkalinity pH M P N to phen Alkalinity pH (1,000) Hot Cold Y .4 1.0 2.0 7.9 27.0 0.3 5.3 38 7.1 27.0 0.3 1.0 4.3 7.5 27.0 0.3 1.0 4.3 7.5 1,100.0 3.7 4.0 54 7.4 1,50.0 0 3.0 64 7.5 1,100.0 1.0 3.0 64 7.5 1,100.0 1.0 2.0 68 7.6 1,100.0 1.0 3.0 64 7.5 1,100.0 1.0 2.0 68 7.6 1,100.0 0.3 2.0 64 7.5 1,200.0 1.0 2.0 64 7.5 1.5 0.3</td><td>Mo: G Location: Licking R: Confirmed Acidity M Total M P M to phen Alkalinity PH Solids M P M to phen Alkalinity PH Solids (1,000) ppm ppm ppm ppm .4 1.0 2.0 76 7.9 400 25.0 0.5 5.3 58 7.1 376 25.0 0.5 1.0 47.6 1,497 376 25.0 0.5 1.0 47.6 1,497 376 25.0 0.5 4.0 7.6 1,497 376 1,100.0 3.7 4.0 7.4 1,553 376 1,50.0 0 3.0 64 7.6 1,497 1,100.0 1.0 3.0 64 7.1 822 4.3 0.3 2.0 2.6 7.5 414 1.5 0.3 2.0 <</td><td>No: G Location: Licking River near near near near near near near ne</td><td>No.: G Location: Licting River near mouth No.: Acidity M O Poten Total Turbidity Chlorides M P M to phen Acidity M O Total Turbidity Chlorides M P M to phen Alkalinity pH Solids ppm ppm ppm M JOO D Cold To P P P P M DO D Cold To P P P P M DO D D P P P P P P Jond P P P P P P P P P D P P P P P P P JONO D J L T J J P P P JONO D J L T L J S <</td><td>No. 6 Iccation: Itching River near month Analyzed Confirmed Acidity MO Total Turbidity Analyzed Confirmed to phen Allacinity PH Solids ppm <t< td=""><td>Mo: G Iccation: Itching River near mouth Analysed by: Ke Confirmed Aridity M Potal Turbidity Tubbides Sulphates Hardnes M P M to phen Anialinity Tabin Turbidity Thorides Sulphates Hardnes M P M to phen Anialinity To Solids Tym Ty</td><td>Mo. Gontinued Incrition Incrition Analyzed by: Kentucky Continued Activity MO Total Turbidity Onlocation: Sulphates Bardness Tron Continued to phen Allealinity Pin Ppn Ppn</td></t<></td></td<></tr>	No: G Location: I M P N to phen Alkalinity pH M P N to phen Alkalinity pH M P N to phen Alkalinity pH (1,000) Hot Cold Y .4 1.0 2.0 7.9 27.0 0.3 5.3 38 7.1 27.0 0.3 1.0 4.3 7.5 27.0 0.3 1.0 4.3 7.5 1,100.0 3.7 4.0 54 7.4 1,50.0 0 3.0 64 7.5 1,100.0 1.0 3.0 64 7.5 1,100.0 1.0 2.0 68 7.6 1,100.0 1.0 3.0 64 7.5 1,100.0 1.0 2.0 68 7.6 1,100.0 0.3 2.0 64 7.5 1,200.0 1.0 2.0 64 7.5 1.5 0.3	Mo: G Location: Licking R: Confirmed Acidity M Total M P M to phen Alkalinity PH Solids M P M to phen Alkalinity PH Solids (1,000) ppm ppm ppm ppm .4 1.0 2.0 76 7.9 400 25.0 0.5 5.3 58 7.1 376 25.0 0.5 1.0 47.6 1,497 376 25.0 0.5 1.0 47.6 1,497 376 25.0 0.5 4.0 7.6 1,497 376 1,100.0 3.7 4.0 7.4 1,553 376 1,50.0 0 3.0 64 7.6 1,497 1,100.0 1.0 3.0 64 7.1 822 4.3 0.3 2.0 2.6 7.5 414 1.5 0.3 2.0 <	No: G Location: Licking River near near near near near near near ne	No.: G Location: Licting River near mouth No.: Acidity M O Poten Total Turbidity Chlorides M P M to phen Acidity M O Total Turbidity Chlorides M P M to phen Alkalinity pH Solids ppm ppm ppm M JOO D Cold To P P P P M DO D Cold To P P P P M DO D D P P P P P P Jond P P P P P P P P P D P P P P P P P JONO D J L T J J P P P JONO D J L T L J S <	No. 6 Iccation: Itching River near month Analyzed Confirmed Acidity MO Total Turbidity Analyzed Confirmed to phen Allacinity PH Solids ppm ppm <t< td=""><td>Mo: G Iccation: Itching River near mouth Analysed by: Ke Confirmed Aridity M Potal Turbidity Tubbides Sulphates Hardnes M P M to phen Anialinity Tabin Turbidity Thorides Sulphates Hardnes M P M to phen Anialinity To Solids Tym Ty</td><td>Mo. Gontinued Incrition Incrition Analyzed by: Kentucky Continued Activity MO Total Turbidity Onlocation: Sulphates Bardness Tron Continued to phen Allealinity Pin Ppn Ppn</td></t<>	Mo: G Iccation: Itching River near mouth Analysed by: Ke Confirmed Aridity M Potal Turbidity Tubbides Sulphates Hardnes M P M to phen Anialinity Tabin Turbidity Thorides Sulphates Hardnes M P M to phen Anialinity To Solids Tym Ty	Mo. Gontinued Incrition Incrition Analyzed by: Kentucky Continued Activity MO Total Turbidity Onlocation: Sulphates Bardness Tron Continued to phen Allealinity Pin Ppn Ppn
No: G Location: I M P N to phen Alkalinity pH M P N to phen Alkalinity pH M P N to phen Alkalinity pH (1,000) Hot Cold Y .4 1.0 2.0 7.9 27.0 0.3 5.3 38 7.1 27.0 0.3 1.0 4.3 7.5 27.0 0.3 1.0 4.3 7.5 1,100.0 3.7 4.0 54 7.4 1,50.0 0 3.0 64 7.5 1,100.0 1.0 3.0 64 7.5 1,100.0 1.0 2.0 68 7.6 1,100.0 1.0 3.0 64 7.5 1,100.0 1.0 2.0 68 7.6 1,100.0 0.3 2.0 64 7.5 1,200.0 1.0 2.0 64 7.5 1.5 0.3	Mo: G Location: Licking R: Confirmed Acidity M Total M P M to phen Alkalinity PH Solids M P M to phen Alkalinity PH Solids (1,000) ppm ppm ppm ppm .4 1.0 2.0 76 7.9 400 25.0 0.5 5.3 58 7.1 376 25.0 0.5 1.0 47.6 1,497 376 25.0 0.5 1.0 47.6 1,497 376 25.0 0.5 4.0 7.6 1,497 376 1,100.0 3.7 4.0 7.4 1,553 376 1,50.0 0 3.0 64 7.6 1,497 1,100.0 1.0 3.0 64 7.1 822 4.3 0.3 2.0 2.6 7.5 414 1.5 0.3 2.0 <	No: G Location: Licking River near near near near near near near ne	No.: G Location: Licting River near mouth No.: Acidity M O Poten Total Turbidity Chlorides M P M to phen Acidity M O Total Turbidity Chlorides M P M to phen Alkalinity pH Solids ppm ppm ppm M JOO D Cold To P P P P M DO D Cold To P P P P M DO D D P P P P P P Jond P P P P P P P P P D P P P P P P P JONO D J L T J J P P P JONO D J L T L J S <	No. 6 Iccation: Itching River near month Analyzed Confirmed Acidity MO Total Turbidity Analyzed Confirmed to phen Allacinity PH Solids ppm ppm <t< td=""><td>Mo: G Iccation: Itching River near mouth Analysed by: Ke Confirmed Aridity M Potal Turbidity Tubbides Sulphates Hardnes M P M to phen Anialinity Tabin Turbidity Thorides Sulphates Hardnes M P M to phen Anialinity To Solids Tym Ty</td><td>Mo. Gontinued Incrition Incrition Analyzed by: Kentucky Continued Activity MO Total Turbidity Onlocation: Sulphates Bardness Tron Continued to phen Allealinity Pin Ppn Ppn</td></t<>	Mo: G Iccation: Itching River near mouth Analysed by: Ke Confirmed Aridity M Potal Turbidity Tubbides Sulphates Hardnes M P M to phen Anialinity Tabin Turbidity Thorides Sulphates Hardnes M P M to phen Anialinity To Solids Tym Ty	Mo. Gontinued Incrition Incrition Analyzed by: Kentucky Continued Activity MO Total Turbidity Onlocation: Sulphates Bardness Tron Continued to phen Allealinity Pin Ppn Ppn					

DAILY
VINVINAL
REPORT
1
OIEO
RIVER
WATER
QUALITY
SURVEY

											A CONTRACT		
29	28	27	26	25	\$	23	8	23	20	61	Sept 18	Date 1950	
7.9	8.1	9.1	7.3	8.0	6.4	6.1	6.3	6.4	8.4	7.0	7.3	D O	Sam
3.8	4.2	4.9	6.7	6.8	6.2	2.6	5.7	5.3	5.3	2.2	1.4	B O D PPm	pling S
23	21	21	15	15	19	22	23	23	42	23	23	Temp oc	statior
43.0	240.0	4.3	9.3	43.0	4.3	43.0	I	43.0	1,100.0	1,100.0	23.0 .	Confirmed M P N (1,000)	1 No: 16
2.8	1.0	0.5	0.3	0	0	2.3	0	1.3	1.0	0.4	0	Aci to pp Hot	
7.0	2.0	2.0	3.0	2.5	1.0	5.0	5.3	S°S	1.5	2.8	1.2	dity phen m Cold	Loc
35	87	38	13	38	41	66	67	62	68	34	42	M O Alkelinity pom	ation: Dam
7.2	7.3	7.3	7.3	7.2	7.4	7.5	7.7	7.6	7.5	7.3	4.7.	Ъđ	No.
276	475	516	448	414	397	1,100	1,500	109	515	354	349	Total Solids ppn	38
135	350	475	550	540	1,137	900	1,010	313	75	50	50	Turbidit; ppm	
											A M STADAOR	y Chl	
26	15	13	17	17	18	18	21	34	42	141	35	pm	
81	15	16	54	8T	56	94	1	82	103	90	75	Sulphates ppm	Analyzed
102	58	74	74	173	81	201	112	126	147	135	151	Eardhea Ityri	by: Ker
4.0	0.1	0.3	0.3	0.6	0.5	0.6	0.7	0.2	0.3	0.4	0.6	udă uorr s	tucky
72.0	122.0	172.0	208.0	247.0	254.0	215.0	125.0	68.4	56.9	37.5	6.24	Discharg .cfs (1,000)	

SURVEY
QUALITY
WATER
RIVER
OHIO
ł
REPORT
ANALYSIS
DAILY

Discharge cfs (1,000)	43.1	37.5	54.2	84.9	122.0	209.0	252.0	252.0	0.915	0.771	126.0	78.8
s Iron ppm	0.4	1.0	0.1	0.8	10.0	1.5	0.4	0.8	0.2	1.0	0.1	0.2
Hardnes	121	611	133	157	128	ToT	84	162	3115	81	88	105
Sulphates ppm	87	76	83	122	70	59	56	30	145	28	15	15
Chlorides	34	31	38	017	25	Lτ	15	16	18	16	15	19
Turbidity ppm	88	50	60	310	1,250	875	1,137	900	490	488	185	145
Total Solids ppm	365	336	296	1465	1,444	1,017	820	870	514	473	327	272
Hđ	7.3	1.4	7.3	7.3	7.4	4.7	7.4	7.1	7.3	2.3	1.1	7.2
M O Alkalinity ppm	† ††	01	14	19	80	12	1 ⁴ 1	37	22	37	89	91
ity hen cold	3.1	3.2	6.0	3.2	6.5	2.0	1.3	1.9	2.5	1.5	3.0	7.5
Acid to p ppm Hot	0	0.4	0	1.0	2.3	0.4	0	0	6.0	4.0	1.3	3.4
Confirmed M P N (1,000)	43.0	2.5	75.0	465.0	240.0	43.0	23.0	23.0	43.0	93.0	75.0	43.0
Temp	23	53	53	23	53	5	15	1 ⁴	15	23	21	53
B 0 D	4.2	1	3.0	4.1	3.9	3.8	3.8	1.3	3.9	3.3	5.8	4.4
D O	6.7	5.6	8.5	5.6	4.6	2.0	6.5	T.7	7.2	9.9	9.3	8.5
Date 1950	Sept 18	19	S	R	SS	53	54	5	50	12	8	6

	Samp	ling S	tation	No: H		Loc	ation: Ken	tucky	Kiver ne	ear mouth		Analyzed	by: Kei	rtucky	
Date 1950	D O Ppm	BOD PPm	Temp oC	Confirmed M P N (1,000)	Aci to PP Hot	dity phen m Cold	M O Alkalinity ppm	ΡĦ	Total Solids ppm	Turbidity ppm	Chlorides ppm	Sulphates ppm	Hardness ppm	3 Iron ppm	Dis (1
Sept 18	6.5	1.3	23	0.0	0	16	289	7.7	474	J	6T	30	31 ⁴	1.4	
61	5.2	1	23	•9	0.4	4.4	60	7.3	393	75	6	+-	72	0.2	
20	9.2	0.9	23	9.3	0	3.0	62	7.3	390	70	Л	1	74	0.3	
13	9.3	5.2	23	4.3	0.6	4.5	62	7.2	675	100	5	38	67	0.1	
22	8.9	1.0	23	75.0	1.7	3.0	66	7.2	806	138	Л	6	69	0.1	
23	8.2	2.1	21	23.0	1.0	2.3	71	7.4	381	400	5	0	83	1.0	
24	9.3	5.5	15	4.3	1.2	4.3	103	7.6	173	258	7	11	68	0.4	
25	8.9	1.7	15	0.4	0	1.8	86	7.4	185	70	7	1	102	0.2	1
26	9.3	0.4	12	0.9	0.3	2.5	84	7.4	160	75	7	24	97	0.1	
27	10.1	3.5	22	0.9	0	0	99	7.9	218	70	6	21	105	0.2	10. 453
28	9.7	2.8	20	4.3	0	0.5	100	7.5	162	35	7 (S.	17.	109	0.2	
23	9.5	2.8	23	0.4	0	0	72	7.6	192	25	8	15	107	0.1	
		(Note	: Sam	pling point tream from m	"H" in nouth)	s on Kei	atucky Rive	r at 1	road brid	lge, 1/8-mi	le west of	Carrollton,	Ky. 0.75	-mile	

Table 38

4

	Discharge cfs (1,000)	45.0	40.0	60.0	0.02	133.0	223.0	264.0	257.0	218.0	i78.0	124.0	80.0
ky	ppm	0.8	0.2	0.2	0.2	2.0	0.2	0.3	0.2	0.3	6.0	0.1	6.0
Kentuc	Hardness ppm	285	121	126	138	140	133	102	154	88	88	66	105
Analyzed by:	Sulphates ppm	34	77	78	τττ	16	48	I	1	49	29	20	15 River)
	Chlorides ppm	19	31	31	L4	30	19	9	2	20	13	16	21 er the Ohio
	Turbidity ppm	25	63	35	99	630	825	183	65	400	350	600	300 Bridge ov
ridge	Total Solids ppm	452	Lot	251	341	985	1,776	175	198	9T4	367	239	482 on River
ison B	pH	7.4	7.6	7.2	7.2	2.5	7.8	7.4	7.1	7.2	7.4	7.1	7.2 Madis
ttion: Mad	M O Alkalinity ppm	304	61	43	49	58	42	45	31	51	52	68	41 Id-point of
Loce	ity len Jold	13.8	2.0	2.0	4.4	1.3	2.8	4.8	2.0	3.3	1.3	2.8	7.5 3 at mi
	Acidi to pl ppm Hot (0	6.0	0.3	1.8	0.5	1.2	0	0	6.0	6.0	1.5	3.6 "18" is
No: 18	Confirmed M P N (1,000)	0	23.0	23.0	43.0	93.0	240.0	9.3	2.3	43.0	2.4	15.0	4.3 pling point
tation	Temp oC	23	23	23	23	53	51	15	16	J 6	23	20	23 : Samj
ling S	B 0 D ppm	1.4	J.6	1.6	2.7	3.9	4.1	4.8	1.6	7.0	p. 4	4.1	5.1 (Note
Samp	D O Date ppm 1950	Sept 18 6.5	1.7 21	20 7.3	21 7.3	22 4.3	23 4.6	24 9.3	25 6.8	26 7.6	27 8.9	28 8.2	29 7.3

Do B o D Terms (1,000) Acidity ppm M o ppm M o M o ppm M o		Dan	BUTTU	DC DTO	11 INO. 27		5	Carton: To	ato -	TTC NCOCT	Crudino.	LIOUIC	L'ILLE		w vy. meno	" wy. neuvouchy
5.00.8239.30.01.5626.8355485.50.8232.30.02.0567.0325.30.8237.50.02.5507.2278285.41.3244.30.03.04.5607.4312425.20.8232,400.00.03.5607.4312425.11.22393.00.04.5817.84901255.41.52015.00.028.0607.27373703.41.52015.00.013.0447.03622254.31.2214.30.013.0447.03622254.70.3213.90.04.5427.1163135	Und I	D O C	BOD ppm	Temp C	Confirmed M P N (1,000)	Acid to I PI Hot	ity hen m Cold	M O Alkalinity ppm	μđ	Total Solids ppm	Turbidity ppm		Chlorides ppm	Chlorides Sulphates ppm ppm	Chlorides Sulphates Hardnes ppm ppm ppm ppm	Chlorides Sulphates Hardness Iron ppm ppm ppm ppm
5.50.8232.30.02.0567.0307325.30.8237.50.02.5507.2278285.41.3244.30.03.0456.8255355.20.8232,400.00.03.5607.4312425.20.8232,400.00.03.5607.4312425.11.22393.00.04.5817.84901252.11.62243.00.028.0607.27373703.81.2214.30.013.0447.03622254.30.12143.00.05.0417.33031654.70.3213.90.04.5427.1163135	D	5.0	0.8	23	9.3	0.0	1.5	62	6.8	355	48		65	65 82	65 82 142	65 82 142 0.1
5.30.8237.50.02.5507.2278285.61.3244.30.03.0456.8255355.20.8232,400.00.03.5607.4312422.11.22393.00.04.5817.84901252.41.62243.00.05.0737.96684003.41.52015.00.028.0607.27373704.31.2214.30.013.0447.03622254.70.3213.90.04.5427.1163135	0	5.5	0.8	23	2.3	0.0	2.0	56	7.0	307	32		63	63 67	63 67 133	63 67 133 0.1
5.61.3244.30.03.0456.8255355.20.8232,400.00.03.5607.4312422.11.22393.00.04.5817.84901252.41.62243.00.05.0737.96684003.41.52015.00.028.0607.27373703.81.2214.30.013.0447.03622254.30.12143.00.05.0417.33031654.70.3213.90.04.5427.1163135	-	5.3	0.8	23	7.5	0.0	2.5	50	7.2	278	28		57	57 70	57 70 126	57 70 126 0.1
5.20.8232,400.00.03.5607.4312422.11.22393.00.04.5817.84901252.41.62243.00.05.0737.96684003.41.52015.00.028.0607.27373703.81.2214.30.013.0147.03622254.30.12143.00.04.5417.33031654.70.3213.90.04.5427.1163135		5.6	1.3	24	4.3	0.0	3.0	45	6.8	255	35		58	58 77	58 77 124	58 77 124 0.2
2.1 1.2 23 93.0 0.0 4.5 81 7.8 490 125 2.4 1.6 22 43.0 0.0 5.0 73 7.9 668 400 3.4 1.5 20 15.0 0.0 28.0 60 7.2 737 370 3.8 1.2 21 4.3 0.0 13.0 53 7.5 444 280 4.3 0.1 21 9.3 0.0 13.0 44 7.0 362 225 4.7 0.3 21 3.9 0.0 4.5 42 7.1 163 135		5.2	0.8	23	2,400.0	0.0	3.5	60	7.4	312	42		58	58 81	58 81 131	58 81 131 0.1
2.4 1.6 22 43.0 0.0 5.0 73 7.9 668 400 3.4 1.5 20 15.0 0.0 28.0 60 7.2 737 370 3.4 1.2 21 4.3 0.0 28.0 60 7.2 737 370 4.3 1.2 21 4.3 0.0 13.0 144 7.0 362 225 4.5 0.1 21 43.0 0.0 5.0 41 7.3 303 165 4.7 0.3 21 3.9 0.0 4.5 42 7.1 163 135		2.1	1.2	23	93.0	0.0	4.5	81	7.8	490	125		50	50 73	50 73 140	50 73 140 0.2
3.4 1.5 20 15.0 0.0 28.0 60 7.2 737 370 3.8 1.2 21 4.3 0.0 9.0 53 7.5 444 280 4.3 1.2 21 9.3 0.0 13.0 44 7.0 362 225 4.5 0.1 21 43.0 0.0 5.0 41 7.3 303 165 4.7 0.3 21 3.9 0.0 4.5 42 7.1 163 135	4	2.4	1.6	22	43.0	0.0	5.0	73	7.9	668	400		26	26 53	26 53 109	26 53 109 0.1
3.8 1.2 21 4.3 0.0 9.0 53 7.5 444 280 4.3 1.2 21 9.3 0.0 13.0 44 7.0 362 225 4.5 0.1 21 43.0 0.0 5.0 41 7.3 303 165 4.7 0.3 21 3.9 0.0 4.5 42 7.1 163 135	01	3.4	1.5	20	15.0	0.0	28.0	60	7.2	737	370		27	27 37	27 37 83	27 37 83 0.1
4.3 1.2 21 9.3 0.0 13.0 44 7.0 362 225 4.5 0.1 21 43.0 0.0 13.0 41 7.3 303 165 4.7 0.3 21 3.9 0.0 4.5 42 7.1 163 135	01	3.8	1.2	21	4.3	0.0	9.0	53	7.5	444	280		29	29 37	29 37 90	29 37 90 0.1
4.5 0.1 21 43.0 0.0 5.0 41 7.3 303 165 4.7 0.3 21 3.9 0.0 4.5 42 7.1 163 135	-1	4.3	1.2	21	9.3	0.0	13.0	44	7.0	362	225		38	38 48	38 48 86	38 48 86 0.1
4.7 0.3 21 3.9 0.0 4.5 42 7.1 163 135	8	4.5	0.1	22	43.0	0.0	5.0	41	7.3	303	165		32	32 ¹ 7	32 ¹ 47 88	32 47 88 0.1
INATA DETAIL STOL STOL STOLEN IN THE STOLEN	0	4.7	0.3	21	3.9	0.0	4.5	42	7.1	163	135 he tower		28 40 ft off t	28 49	28 49 86	28 49 86 0.1

The LO

Table 41

	Discharge cfs (1,000)	53.0	46.0	46.0	68.0	0.911	0.791	245.0	258.0	238.0	201.0	0.191	0.211	
ucky	Iron	0.1	0.1	0.1	0.2	0.1	0.2	1.0	0.1	0.1	0.1	0.1	0.1	
oy: Kent	Hardness ppm	140	241	TST	126	126	154	130	104	66	90	86	83	
Analyzed 1	Sulphates ppm	86	62	73	83	44	98	72	49	94	55	52	49	
	Chlorides ppm	61	67	62	62	55	67	35	59	27	36	36	30	2
	Turbidity ppm	52	33	38	38	43	125	400	550	480	0T4	300	185	
43	Total Solids ppm	348	345	278	284	301	439	1,129	1,421	951	745	537	366	
m No.	Ħď	7.0	6.9	7.1	6.7	7.4	7.8	7.9	7.7	6.1	7.6	7.4	7.5	
ocation: Da	M O Alkalinity ppm	73	49	59	52	52	72	77	70	60	84	40	38	
Ic	ity hen Cold	3.0	2.5	7.0	4.5	4.0	4.0	4.5	18.0	12.0	14.0	3.5	4.0	
	Acid to p ppm Hot	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
No: 20	Confirmed M P N (1,000)	230.0	750.0	290.0	230.0	93.0	43.0	93.0	43.0	23.0	15.0	43.0	23.0	
tation	Temp	54	54	53	25	23	23	22	51	51	51	5	51	
ling S	ppm	1.5	1.5	1.2	1.0	0.8	1	1.8	2.9	1.8	1.8	1.1	6.0	
Samp	D O H	4.T	4.7	4.7	6.1	5.6	3.8	3.3	3.8	4.2	2.0	5.3	0.9	
	Date 1950	Sept 18	19	20	12	R	53	412	ŝ	92	Li	8	6	

.....

	Sam	pling S	Station	No: 21		I	ocation: L	am No	. 47			Analyzed b	y: India	na	
l95	D O D O	ВОД Ррп	Temp	Confirmed M P I (1,000)	Aci to PP	dity phen m Cold	M O Alkalinity ppm	Ϋ́́	Total Solids ppm	Turbidity ppm	Chlorides ppm	Sulphates ppm	Hardness ppm	Iron ppm	Discharge cfs (1,000)
0 ep	t 7.0	0.8	23	23.0	0	5.0	139	7.6	257	35	30	34	133	0.1	66.0
0	7.7	1.1	23	23.0	0	5.0	142	7.7	259	25	28	34	135	0.0	54.0
õ	8.1	1.0	23	15.0	0	3.0	135	7.6	245	15	29	43	141	0.0	57.0
F	7.6	1.0	23	23.0	0	4.0	137	7.7	288	35	27	38	139	0.0	80.0
N	7.4	1.3	21	9.3	0	3.0	122	7.6	334	170	26	54	124	0.1	105.0
ŝ	7.3	1.1	20	4.3	0	2.0	122	7.6	328	110	30	53	143	0.1	121.0
4	7.1	1.7	20	4.3	0	2.0	114	7.5	329	95	31	78	137	0.2	165.0
5	6.3	2.0	18	9.3	0	3.0	101	7.4	413	110	33	95	145	0.5	220.0
6	3.1	1.5	19	43.0	0	3.0	152	7.5	841	400	46	42	135	0.5	257.0
7	3.9	1.3	18	23.0	0	4.0	130	7.4	1,241	500	17	46	129	0.5	255.0
8	4.9	1.4	19	2.3	0	7.0	103	7.2	736	600	17	35	95	0.9	233.0
ů.	4.8	0.9	18	23.0	0	4.0	106	7.3	659	520	17	40	101	0.4	175.0
		NT-Lo	2					ţ	3						

Table 42

Note: Samples taken at mile point 777.2 above Dam 47.

SURVEY
VTLLITY
WATER
RIVER
OHO
1
REPORT
ANALYSIS
DAILY

)ischarge cfs (1,000)	83.0	67.0	64.0	78.0	96.0	0.211	156.0	200.0	242.0	252.0	237.0	202.0	ġ.
lana	ppm	0.1	0.1	0.0	0.1	0.1	0.2	7.0	6.0	0.5	0.8	6.9	1.0	
y: Indi	Hardnese ppm	124	124	139	747	135	126	143	131	158	137	211	109	
Analyzed t	Sulphates ppm	34	38	38	64	55	55	74	89	58	42	34	37	
	10													
	thlorides ppm	31	24	25	26	27	25	31	28	30	17	18	17	
	Turbidity (ppm	35	30	15	35	80	180	210	200	370	650	800	650	
	Total Solids ppm	253	256	238	296	284	389	488	194	959	1,317	1,196	1,433	
0. 48	ЪĦ	7.5	2.6	7.6	2.6	2.6	1.6	2.3	7.3	+·· L	4.7	7.2	2.3	um 148.
tion: Dam N	M O Alkalinity ppm	124	135	135	137	142	122	122	103	134	145	121	115	8.5 above Da
Loca	dity phen pm Cold	5.0	5.0	4.0	4.0	3.0	2.0	3.0	3.0	3.0	4.0	7.0	5.0	point 80
	Aci to Bot	0	0	0	0	0	0	0	0	0	0	0	0	uile 1
No: 22	Confirmed M P N (1,000)	21.0	9.3	43.0	15.0	93.0	23.0	23.0	4.3	15.0	23.0	23.0	43.0	taken at 1
tation	Temp oC	ଷ	23	23	23	52	51	20	19	20	19	19	19	Samples
ling S	B O D ppm	1.2	1.1	0.8	1.3	2.0	1.3	1.4	2.0	1.5	1.3	1.5	2.6	Vote:
Samp	D O D	4.7	4.7	8.0	8.2	7.6	6.9	7.1	9.9	4.1	3.7	4.4	5.5	I
	Jate 1950	Jept L8	61	2	F	24	5	77	ŝ	9	Li	8	0	:

	Sam	pling S	tation N	10: 23		Го	cation: Dar	n No.	49		4.0	Analyzed	by: Ind	iana	
Date 195(udd 0 C	ВОД ррт	Temp C	onfirmed M P N (1,000)	Aci to pp Hot	dity phen m Cold	M O Alkalinity ppm	pH	Total Solids ppm	Turbidity ppm	Chlorides ppm	Sulphates ppm	Hardnes: ppm	s Iron Ppm	Discharg cfs (1,000
Sept 18	7.2	0.6	22	2.3	0	5.0	127	7.5	241	30	28	35	127	0.1	93.0
19	7.1	0.8	22	7.5	0	5.0	126	7.6	243	45	28	30	124	0.1	74.0
20	7.3	0.5	23	4.3	0	4.0	131	7.6	232	20	24	29	137	0.1	65.0
27	7.9	0.6	23	9.3	0	5.0	139	7.5	267	35	24	42	131	0.2	70.0
R	7.9	1.0	21	2.3	0	3.0	242	7.8	237	60	26	54	131	0.0	91.0
23	7.3	1.1	22	4.3	0	2.0	142	7.6	277	125	25	44	133	0.2	107.0
42	6.5	1.5	20	9.3	0	2.0	711	7.3	361	155	26	72	133	0.2	129.0'
3	6.7	1.5	20	4.3	0	2.0	711	7.4	421	125	29	58	135	0.3	182.0
26	5.4	1.2	21	23.0	0	5.0	106	7.2	784	250	34	89	147	0.5	230.0
27	3.5	2.2	19	7.5	0	3.0	5hT	7.6	921	440	21	38	131	0.6	252.0
28	4.0	1.3	19	43.0	Ч	5.0	141	7.4	1,316	460	20	46	139	0.9	248.0
29	4.5	1.6	6T	23.0	0	5.0	123	7.3	1,370	750	16	36	101	1.0	222.0
		Note:	Samples	s taken a	t mile	point &	344.5 above	Dam 4	9.						

1	a	13 ing		1		Q1								
	Discharg cfs (1,000)	12.5	5.LL	10.5	16.0	25.0	32.0	34.0	40.0	0.44	0.74	146.0	0.14	oley
ana	s Iron ppm	0.1	1.0	0.1	1.0	1.0	0.2	0.2	0.3	0.3	0.3	0.2	1.0	cher Sil
: Indi	Hardnes ppm	541	L42	142	237	239	234	181	135	153	151	162	167	at Flet
alyzed by	lphates ppm	54	34	50	48	52	58	52	42	26	20	54	25	io River
An	Su							•						h Oh
and a second	Chlcrides ppm	18	55	20	51	TT	35	54	ц	13	JO	12	7	luence wit
ar mouth	Turbidity ppm	⁴⁵	60	45	60	02	0/T	230	260	270	540	180	190	above conf
River ne	Total Solids ppm	371	378	376	389	380	429	524	498	594	506	443	601	m miles
abash	Ħq	8.1	8.3	7.6	8.0	8.0	8.0	2.5	2.6	7.5	7.8	2.6	6.7	strea
ocation: W	M O Alkalinity ppm	358	372	342	355	360	312	262	194	235	257	253	280	sh River 27 Road 62.)
I	dity phen pm Cold	0	0	0	2	0	Q	CI	2	5	0	Q	T	on Waba State
	Aci to P	0	0	0	0	0	0	0	0	0	0	0	0	nt is nus of
No: I	Confirmed M P N (1,000)	0.4	5.6	6.9	4.3	15.0	43.0	75.0	93.0	23.0	43.0	2.3	43.0	mpling poi
tation	Temp CC	20	21	23	23	51	23	19	19	19	18	18	18	te: Sa Fe
ling S	B O D ppm	2.9	3.4	3.6	3.6	4.8	3.1	2.7	2.0	2.1	1.9	1.8	2.2	(No.
Sam	D O DD O	9.4	7.6	7.6	8.7	7.4	5.7	5.2	6.0	6.5	6.4	6.9	6.7	1
	Jate 1950	Jept L8	6	20	Ц	Ŋ	53	54	ŝ	92	L	8	6	

62	8 22	27	26	25	24	23	22	21	20	19	18 U	Date 1 1950		
2.2	5	3.4	5.9	7.2	7.4	7.6	8.2	8.6	8.6	6.9	8.1	ppm	Samp	Tabl
0.6	1.6	1.7	0.9	1.7	1.6	1.2	1.0	1.2	1.2	0.3	1.5	BOD Ppm	ling S	e 46
61	20	18	19	15	17	22	22	24	24	26	22	Temp OC	tation	
9.3	24.0	24.0	9.3	15.0	4.3	24.0	15.0	46.0	9.3	2.4	4.3	Confirmed M P N (1,000)	No: 24	
0	0	0	0	0	0	0	0	0	0	0	0	Ac: to Hot		
4.0	3.5	3.5	3.5	4.5	7.5	4.0	3.5	3.5	4.0	3.5	3.5	idity phen ppm Cold	Locat	
58	59	69	51	59	72	74	89	70	76	68	63	M O Alkalinity ppm	ion: Shawn	
7.4	7.6	7.6	7.5	7.5	7.7	7.7	7.9	7.6	7.7	7.6	7.6	рĦ	eetown	
620	797	720	555	446	440	324	308	265	287	300	260	Total Solids ppm	Ferry	
400	350	250	75	60	60	140	35	35	35	35	35	Turbidity ppm		
Ħ	13	91	26	23	25	6Т	61	21	21	23	20	Chlorides ppm	1	
25	38	£tt	70	58	48	μĩ	46	41	35	36	41	Sulphates ppm	inalyzed by:	
96	122	136	140	140	140	142	158	132	138	133	122	Hardne ppm	Illin	
<0.1	<0.1	0.3	<0.1	<0.1	40.1	<0.1	0.1	0.2	<0.1	<0.1	\$0.1	ss Iron ppm	lois	
260.0	289.0	293.0	268.0	215.0	160.0	128.0	112.0	89.0	73.0	83.0	107.0	Discharge cfs (1,000)		

	S S	on Discharge m cfs (1,000)	1.7.0	1 87.0	1 68.0	1 90.0	1 106.0	1 113.0	1 136.0	1 183.0	1 238.0	2 276.0	1 289.0	
	Illinoi	ness Ir m pr	4 <0.	2 <0.	0 <0.	0 <0.	S .0.	6 <0.	0 <0.	0 <0.	8	6 <0.	0 <0.	
	d by:	s Hard Pp	13	13	15	15	141	14(16(15(13(15(140	
	Analyze	Sulphate	44	T4	38	42	42	45	44	50	60	02	34	
*		Chlorides	50	น	ស	22	19	20	23	54	23	27	14	
		Turbidity ppm	35	20	25	01	01	52	35	60	70	150	175	
	.т.	Total Solids ppm	270	260	280	305	280	326	385	410	184	576	5445	
	No.	Hđ	7.7	1.7	7.8	7.7	7.9	7.8	7.6	7.5	2.5	7.6	7.6	
	ation: Dam	M O Alkalinity ppm	12	69	17	77	81	78	89	17	59	64	44	
	Loc	dity phen pm Cold	4.0	3.0	3.0	3.0	3.5	3.0	6.5	4.5	4.0	3.5	4.0	
		Aci to Fot	0	0	0	0	0	0	0	0	0	0	0	
	No: 25	Confirmed M P N (1,000)	4.3	2.4	2.4	2.4	t. 3	6.4	6.9	7.5	6.4	24.0	4.3	
	tation	Temp	22	21	ł	54	55	22	19	16	51	55	51	
Le 47	Jing S	B 0 D ppm	1.1	1.4	0.1	1.1	1.2	6.0	1.3	1.8	0.8	1.3	1.4	
Tab	Sam	D O	8.1	8.1	7.5	8.8	8.2	7.9	2.5	6.8	6.5	2.0	3.9	
	•	Date 195(Sep1 18	19	50	57	55	53	54	52	56	12	8	

29	28	27	28	23	24	23	R	23	8	61	Sept 18	Date 1950
5.1	5.3	6.7	6.9	7.6	8.9	8.0	8.6	8.6	8.4	8.0	7.8	wđđ O G
0.8	8.0	1.2	1.4	2.1	1.9	1.3	1.4	1.3	0.9	1.2	8.0	ВОД ррт
P	6Т	P ,	21	6Т	20	23	22	1	23	25	21	Летр ос
2.4	4.3	4.3	4.3	9.3	2.4	2.4	2.1	0.8	4.3	2.4	1.5	Confirmed M P N (1,000)
0	0	0	0	0	0	0	0	0	0	0	0	Ac1 to PP Hot
4.0	4.0	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.0	4.0	dity phen m Cold
77	65	60	70	18	85	80	18	73	447	69	71	M O Alkalinity ppm
7.5	7.6	7.4	7.6	7.6	7.7	7.8	7.9	7.7	7.8	7.7	7.6	μđ
360	710	374	418	405	320	315	255	240	240	230	280	Total Solids ppm
200	375	80	60	60	LN S	30	35	25	25	30	30	Turbidity ppm
12	23	22	24	22	22	20	18	20	19	19	61	Chlorides ppm
29	65	62	58	414	46	41	37	54	41	39	48	Sulphates ppm
140	150	136	152	154	152	142	140	136	134	134	132	Hardne ppm
6.1	<0.1	6.2	% .1	\$0.1	<0.1	1.0	(0.1	(0.1	<0.1	<0.1	<0.1	ss Iron Ppm
365.0	364.0	339.0	294.0	234.0	200.0	185.0	185.0	162.0	147.0	168.0	223.0	Discharge cfs (1,000)

SURVEY
QUALITY
WATER
RIVER
OHIO
1
REPORT
ANALYSIS
DAILY

	Discharge cfs (1,000)	231.0	200.0	152.0	150.0	176.0	185.0	200.0	234.0	294.0	339.0	364.0	365.0
Analyzed by: Illinois	is Iron ppm	<0.1	40.1	<0.1	<0.1	40.1	1.0>	€0.1	<0.1	<0.1	<0.2	<0.1	1.0>
	Hardnes ppm	128	130	124	112	128	144	136	1 56	148	134	158	140
	Sulphates ppm	τη	43	36	26	31	36	36	946	53	55	72	29
	Chlorides ppm	20	ΤŢ	71	14	15	18	19	22	22	23	26	14
Location: Dam No. 53	Turbidity ppm	45	35	30	25	25	25	20	20	70	150	180	350
	Total Solids ppm	275	275	220	220	217	306	293	306	413	439	527	TOL
	Hq	7.7	7.7	1.7	7.6	7.8	7.8	2.7	1.7	7.6	7.6	7.5	7.5
	M O Alkalinity ppm	12	10	68	67	73	81	73	85	1 9	57	62	76
	lity phen n Cold	4.5	3.5	3.5	3.5	3.5	3.5	6.0	3.5	4.0	4.0	4.0	4.0
	Acio to J ppr Hot	0	0	0	0	0	0	0	0	0	0	0	0
Sampling Station No: 27	Confirmed M P N (1,000)	2.4	0.9	2.4	0.2	0.9	4.3	2.4	2.4	4.3	2.4	2.4	£°†
	Temp oC	1	22	22	22	22	22	19	51	19	18	21	52
	B 0 D	1.4	1.0	0.8	1.0	1.0	7.0	6.0	1.7	2.0	1.2	1.3	0.8
	D O	8.3	8.2	8.2	8.4	8.3	6.7	8.1	7.7	6.4	6.4	5.5	4.2
	Date 1950	Sept 18	19	50	53	22	53	54	52	50	12	80	6

##