Pollution Patterns

 in the Ohio River - 1950

 in the Ohio River - 1950}

PROPERTY OF
is. S PUBIIC KBATMA SERJIUB LIBRARE

Water-quality conditions and change
 DO NOT REMOVE revealed by a simulfaneous sampling of the 963 -mile stretch from Pittsburgh to Cairo.

OHIO RIVER VALLEY
WATER SANITATION COMMISSION

OHIO RIVER VALLEY WATER SANITATION COMMISSION
 An interstate agency representing Illinois, Indiana, Kentucky, New York, Ohio, Pennsylvania, Virginia and West Virginia

HENRY WARD, Chairman
CLARENCE W. KLASSEN, Vice Cbairman
JOSEPH L. QUINN, JR., Past Chairman

F. H. WARING, Secretary

LEONARD A. WEAKLEY, Counsel ROBERT K. HORTON, Treasurer

COMMISSION MEMBERS

INDIANA
BLUCHER A. POOLE
Technical Secretary
Stream Pollution Control Board L. E. BURNEY, M. D. State Health Commissioner
JOSEPH L. QUINN, JR. Engineer
The Hulman Company

OHIO

HUDSON BIERY
Director of Public Relations
Terrace Park, Ohio
KENNETH M. LLOYD
Executive Secretary, Mahoning
Valley Industrial Council
JOHN D. PORTERFIELD, M. D. Director of Health

WEST VIRGINIA
N. H. DYER, M. D.

State Health Commissioner
W. W. JENNINGS

West Virginia Water Commission ROBERT F. ROCHELEAU

Executive Secretary-Engineer
West Virginia Water Commission

ILLINOIS

CLARENCE W. KLASSEN Chief Sanitary Engineer
ROLAND R. CROSS, M. D. Director of Public Health
J. J. WOLTMANN Consulting Engineer

PENNSYLVANIA

E. A. HOLBROOK 1543 Shady Lane Pittsburgh 17, Penn.
HERBERT P. SORG Acting Speaker, House of Representatives
RUSSELL E. TEAGUE, M. D. Secretary of Health

VIRGINIA

E. BLACKBURN MOORE Chairman, Water Control Board
T. BRADY SAUNDERS Commissioner, Water Control Board
ROSS H. WALKER
Commissioner, Water Control Board

KENTUCKY

HENRY WARD
Commissioner of Conservation
BRUCE UNDERWOOD, M. D. State Health Commissioner
EARL WALLACE Division of Game and Fish

NEW YORK

MARTIN F. HILFINGER President, Associated Industries of New York State, Inc.
HERMAN E. HILLEBOE, M. D. State Health Commissioner
CHARLES B. McCABE Publisher, New York Mirror
UNITED STATES GOVERNMENT
O. LLOYD MEEHEAN

Fish \& Wildlife Service
ROBERT G. WEST
Corps of Engineers
LEONARD A. SCHEELE, M. D. Surgeon-General Public Health Service

STAFF MEMBERS

EDWARD J. CLEARY, Executive Director and Cbief Engineer
JOHN C. BUMSTEAD, Assistant Director
ROBERT K. HORTON, Sanitary Engineer
JOHN E. KINNEY, Sanitary Engineer
WILLIAM R. TAYLOR, Assistant Engineer
elmer C. rohmiller, Staff Assistant
HAROLD W. STREETER, Consultant

OHIO RIVER VALLEY WATER SANITATION COMMISSION

4I4 WALNUT STREET CINCINNATI 2, OHIO

TO: The Chairman and
Members of the Commission

A knowledge of water-quality conditions in the Ohio River and its tributaries is of basic importance to the work of the Commission. This was recognized by your authorization of an investigation to provide a baseline of reference for measuring streamimprovement progress.

This investigation involving simultaneous sampling around-the-clock of a 963 -mile stretch of the river at 36 points, was conducted on Sept. 18-29. Such an undertaking is unique and was made possible by the participation and intimate coordination of sixteen agencies.

Because of unanticipated freshet conditions during the survey an unusual pattern of pollution movement was obtained that heretofore has not been fully recognized. This finding along with other detailed data on water-quality variations provides a fund of information for current use and future policy decisions.

Respectfully submitted,

EDWARD J. CLEAR
Executive Director
June 20, 1951 and Chief Engineer

table of contents

Page
Letter of Transmittal 1
Participants 4
Results in Brief. 7
Behind the Survey 9
Purpose. 9
Execution. 9
Survey Conditions. 10
Map of Sampling Stations. 11
Discussion of Findings
Hydrometric Data. 12
Discharges and Hydrographic Comparisons 13
Figs 2 and 3 - Typical Discharge Hydrographs 15-16
Bacteriological Analyses. 17
Trend of Results 17
Maximum vs Average Ratios. 18
Coliform vs Enterococci Results. 19
Medians vs Averages. 19
Surface vs Mid-depth Sampling. 20
Confirmed vs Presumptive Results 20
Bacteriological Methods. 21
Presumptive Test 21
Confirmed Test 21
Interpretation of Results. 21
Fig 4 - Average and Maximum Coliform Numbers at Survey Sampling Points. 23
Fig 5 - Coliform MPN and Discharge (Distant from Sources of Pollution) 24
Fig 6 - Coliform MPN and Discharge (Near a Source of Pollution) 25
Sanitary, Chemical and Mineral Analyses 26
Acidity. 26
Alkalinity 27
pH 27
BOD. 27
Dissolved Oxygen 27
Chlorides 27
Fluoride 28
Hardness 29
Iron 29
Nitrates 29
Sodium 29
Solids 30
Sulfates 30
Turbidity. 30

TABLE OF CONTENTS (Cont)

Appendix

```
Table 1 - Location of Sampling Points
    2 - Summary - Twelve-Day Averages of Bacteriological,
        Sanitary, Chemical and Mineral Analyses
    3 - Summary of Bacteriological Data
    4 - Comparison of Methods for Reporting Coliform Results
    5 - Cities Using Ohio River Directly as Source of Water
        Supply
    6 - Average Coliforms (MPN) (1,000) Mid-depth and Surface
        Sampling
    7 - Daily Confirmed Coliforms (MPN's in 1,000s) Mid-depth
        and Surface Sampling
    8 - Confirmed Coliform-Enterococci Data
    9 - Summary - Averages and Maxima or Minima of Significant
        Chemical Analyses
    10 - Drainage Areas at Sampling Points on Main Stem Ohio
        River
    11 - Drainage Areas of Principal Tributary Streams
    12 - Mean Daily Gage Heights, in Feet, for Ohio River
        Gaging
    13 - Summary of Daily Discharges at Sampling Points
    14-49 - Daily Analysis Reports for Sampling Stations
        A to I and 1 to 27, Inclusive
```


PARTICIPANTS

The Ohio River Water Quality Survey was made possible by the cooperative efforts of seventeen state, federal and municipal agencies under the general supervision of the Ohio River Valley Water Sanitation Commission.

These agencies and personnel who had a part in this work included:

State Agencies

Pennsylvania: State Department of Health
H. E. Moses Consulting Chief Engineer
J. R. Hoffert Chief Engineer
L. D. Matter Assistant Chief Engineer
C. H. Young Division Engineer

Rudy J. Cunjak Advanced Chemist
Wm. J. Engle
Wm. L. McHale
Chemist
J. E. Gallagher

Chemist
T. Barnhart

Sanitary Inspector
W. F. Duncan

Senior Chemist
Mrs. Bessie Scheidel Bacteriologist

West Virginia: State Water Commission

Robert F. Rocheleau Executive Secretary-Engineer
J. H. Faber, Jr. Engineer

Rex C. Pierson Chief Chemist
J. E. Winkler Chemist

Ohio: State Department of Health
F. H. Waring

Bruce M. McDill
Leo Ey
M. L. Rieh1
H. P. Cowgill
W. A. Rodger

Mrs. Blanche Schwarzkopf

Chief Sanitary Engineer
Engineer-in-Charge, Water Pollution Control
Chief, Division of Public Health Laboratories
Chief Chemist
Assistant Sanitary Engineer
Assistant Sanitary Engineer
Assistant Chemist

Kentucky: Water Pollution Control Commission

F. C. Dugan	Technical Secretary
R. W. McIver	Assistant Sanitary Engineer
C. E. Locke	Chemist

Kentucky: State Department of Health
Louis F. Birkel, Jr. Assistant Sanitary Engineer G. D. Reed Assistant Sanitary Engineer N. G. Johnson Assistant Sanitary Engineer Miss D. Pedersen Chemist

Division of Game and Fish
Charles Black Chemist
Indiana: Strean Pollution Control Board
B. A, Poole Technical Secretary

State Board of Health
R. H. Holtje Chief, Stream Pollution Section
H. R. Christy Assistant Engineer, Stream Pollution Section
S. R. Kin Chief, Water and Sewage Laboratory

Illinois: Sanitary Water Board

Clarence W. Klassen Technical Secretary
State Department of Public Health

Wm. A. Hasfurther Robert A. Scott
A. Westerhold

Wm. Meyer
C. L. Ritchie

Sanitary Engineer Bacteriologist
Chemist
Sampler
Sampler

Federal Agencies

Corps of Engineers:

Col. Robert G. West	Assistant Division Engineer, Cincinnati
Edgar Landenberger	Engineer, Cincinnati
Col. Conrad P. Hardy	District Engineer, Pittsburgh
J. F. Dodds	Chief of Operations Div., Pittsburgh
Col. Walter Krueger, Jr.	District Engineer, Huntington
W. C. Steele	Chief of Operations Div., Huntington
Lt. Col. Clarence Bidgood District Engineer, Louisville	
O. H. Bellis	Chief of Operations Div., Louisville

Personnel at locks and dams who assisted in collection of samples.

Geological Survey: Surface Water Branch

J. V. 3. Wells
F. F. Schrader
A. A. Fischback
J. W. Mangan
M. Noecker
L. C. Crawford
D. M. Corbett

Chief
District Engineer, Louisville
District Engineer, Charleston
District Engineer, Harrisburg
Engineer in charge Pittsburgh Office District Engineer, Columbus
District Engineer, Indianapolis

Quality of Water Branch
W. L. Lamar
R. E. Elliot
P. N. Brown
M. E. Schroeder

District Chemist, Columbus
Chemist, Columbus
Chemist, Columbus
Chemist, Columbus
Public Health Service:
V. G. MacKenzie
M. LeBosquet, Jr.
E. F. Dubuque
H. T. Kramer
R. P. Myers

Officer in Charge, Environmental Health Center
Sanitary Engineer Director
Senior Sanitary Engineer
Chemist
Bacteriologist
Water Treatment Plants

Municipal Authority of Borough of West View, Pa.
Parkersburg, W. Va.
Portsmouth, Ohio
Ohio River Valley Water Sanitation Commission:

The Ohio River Water Quality Survey was organized and coordinated by the staff of the Commission. Field data was collated by John E. Kinney, sanitary engineer, aided by William R. Taylor, assistant chemical engineer. The report was written by Mr. Kinney and reviewed by Harold W. Streeter, consultant to the Conmission.

RESULTS IN BRIEF

The Ohio River Water Quality Survey of Sept 18-29, 1950 was planned originally to coincide with low-stage river-flow conditions, which previous records had shown are most likely to occur during this month and October. The purpose of the survey was to observe pollution densities under most unfavorable conditions of dilution and temperature, as a baseline for measuring future progress in pollution abatement.

Owing to the vagaries of weather during an exceptionally wet summerfall season in 1950, the desired flow condition was not attained. It was possible, however, to observe river pollution as affected by a minor rise and fall in stage, that returned to about the same flow levels after the rise as before it started. In some respects, this condition was advantageous. It reflected certain pollution effects -- not attained under uniformly low stages, but met from time to time when minor freshets occur. This condition is accompanied by reduced times of passage of water in the river, and their consequent effects on natural purification.

Coordinated by the Commission staff, the survey was a cooperative undertaking of the health departments of six signatory states -- Pennsylvania, Ohio, West Virginia, Kentucky, Indiana and Illinois. Daily sample collections were facilitated by arrangements with the U. S. Corps of Engineers, utilizing the personnel at the Ohio River locks and dams. Under contract with the Commission, the U. S. Geological Survey District Laboratory at Columbus carried out a series of mineral analyses of samples. The samples were composited from those collected daily at 27 points along the Ohio River proper, and at nine of the major tributaries near their mouths. The Geological Survey under the same contract supplied daily discharge data for all sampling points.

Findings from this survey, which reflect patterns of pollution under freshet conditions, revealed that:

1. The most highly polluted section of the river was found be tween Huntington and Louisville. Here both average and maximum coliform concentrations exceeded safe limits of loading for water-treatment plants.

In the upper section of the river -- where sewage and industrial pollution is extremely heavy -- the inhibiting effects of free acidity both on bacterial densities and on or ganic decomposition were clearly discernible. In the section of the river from Dam 47 to the mouth, pollution densities were found at decidedly lower levels than in the upstream sections. This is due to dilution effects of several large tributaries, together with the be neficial action of natural purification in relatively unpolluted stretches of the lower river.
2. Free acidity is evidenced in the lower Allegheny and Wonongahela rivers and in the Ohio River as far downstream as a point below Wheeling, despite the faster flows resulting from the minor freshet. The alkalinity of tributary streams in the upper section, as well as in the main river, was found below the normal level for most streams in the upper Ohio Basin.
3. Dissolved oxygen was at favorable levels throughout the entire river except at Louisville, where the average was below 5 ppm at the city's water intake and at Dam 43. In view of flow conditions, this low level in the Louisville area is difficult to explain unless it can be attributed to local pollution effects along the city's waterfront. The 5-day BOD levels were low throughout the river, except immediately below Cincinnati, where an average of 4.6 ppm was observed at Dam 38.
4. In the upper river, a large proportion of the total hardness was found to be of the permanent type, due largely to sulfates originating from mine drainage and steel-mill pollution. In the lower river, the hardness was of the temporary type derived from natural alkaline earth carbonates and bicarbonates.

Chloride levels in the middle section of the river were definitely affected by the salinity of the Muskingum River; chlorides were high also in the Louisville pool and in the river section between Dam 31 and Dam 36.
5. Concentrations of nitrate observed were well below physiologically critical limits. Sodium concentrations, however, reached sufficiently high amounts in some sections of the river to merit further study from the standpoint of health diet significance. Fluorides ranged from 0.1 to 0.6 ppm ; these values may be of possible significance in the event of future undertakings of fluoridation of public water supplies taken from the river.
6. Agreement between comparable results obtained by the state laboratories from daily spot-sampling and by the U. S. Geological Survey District Laboratory from composite samples was in general, very good. This indicated that both series of results were fairly representative of pollution conditions prevailing at the time of the survey.
7. Medians and geometric means obtained from the coliform data were indicated as being unreliable at most of the sampling points as measures of bacterial pollution significant from a public-health standpoint. They tended to mask or wholly conceal the effects of high bacterial densities -- which are most important from this standpoint.

Arithmetic averages, although influenced by occasionally very high results, were found to reflect the higher ranges of bacterial content more reliably than the medians or logarithmic means. Arithmetic averages were adopted, therefore, as the standard of expression for all of the bacterial results in this report. resurvey of the river under the settled low-stage conditions originally
sought. It would also be desirable as a follow-up step to carry out as a continuing project -- a monitoring survey of the river at a few carefully selected points throughout the year. This survey would aim to ascertain the effects of both normal and abnormal variations in runoff and seasonal changes on the pollution status of the river under both present and future conditions.

BEHIND THE SURVEY

Patterns of water-quality variations in the Ohio River were developed in Sept 1950 following a twelve-day simultaneous sampling of 36 points in six states (Table 1). Although the river had been thoroughly studied in the past, none of these previous surveys had been aimed at the same specific purpose as that which forms the subject of this report.

Purpose -- This survey of the Ohio River was planned as an initial step to:

1. Provide a baseline from which future pollution-abatement progress can be measured.
2. Define the more highly polluted reaches in the river needing primary attention in the abatement campaign of the Commission.
3. Show the sanitary condition of the river as it flows across state boundary lines, and also how and to what extent this condition is affected by major cities and tributaries.
4. Evaluate the various types of pollution as measured by physical, chemical and bacteriological tests -- such as acidity, DO deficiency, coliforms.
5. Standardize analytical techniques among the signatory states.
6. Promote interstate cooperation in field surveys.

Execution -- Under the direction of the Ohio River Valley Water Sanitation Commission six states bordering on the Ohio River -- Pennsylvania, West Virginia, Ohio, Indiana, Illinois and Kentucky -- sampled the river daily in the period Sept 18-29 inclusive.

Personnel were briefed and analytical techniques standardized prior to the field work in a two-day orientation course conducted by the Environmental Health Center of the U. S. Public Health Service. Personnel of the Ohio River Division, U. S. Corps of Engineers, located at locks and dams assisted in the sample collection.

Mineral analyses and hydrometric data were supplied under contract with the U. S. Geological Survey. The laboratory work was done in the district laboratory in Columbus, Ohio; the hydrometric data were prepared in the offices of the district engineers and correlated at the Louisville office.

Daily sanitary-chemical and bacteriological analyses were made at state health-department laboratories. Four states employed trailer laboratories located on the Ohio River; other testing was done at central laboratories or at water-treatment plants.

Survey conditions -- Low-flow conditions are normally experienced in the Ohio River during September and October. Kigher river temperatures prevail during September and make that month preferable for pollution studies.

Contrary to normal expectations, flow conditions proved to be abnormal in September, owing to unusually heavy rainfall in the valley. Scheduling of the survey had to be established weeks in advance to give participating agencies time for preparation. Changes in plan at short notice, consequently, were not possible.

The flow pattern that developed, consisting of a sharp rise and fall to the initial stages, provided:

1. Conditions that permitted study of short-term flush-out characteristics in ri⿻er pools and tributary rivers. Because of high flows occurring in July and August, however, this flush-out effect was not so pronounced as it otherwise might have been.
2. A variation in flow that normally can be expected occasionally from spring through fall during short periods of fairly heavy rainfall.
3. Analyses of coliform, turbidity and mineral content under conditions of variable flows rather than at constant-stage low flow.
4. A variable-flow pattern that permits easier comparison of results from other surveys carried out under similar flow ranges. River surveys can be compared best when general flow conditions are similar.

Data from this survey, though not meeting the requirements originally intended, fulfilled a useful purpose in providing a period of disturbed flow, but otherwise with the same seasonal conditions as had been anticipated for settled low-stage flow. That the river returned, after its rise, to about the same stages as prevailed initially is an added advantage in interpreting the results of the survey. This opportunity to compare the results observed in this survey with those cotainable under a static low-flow condition points to the need for additional data under the latter condition.

VICINITY MAP
INDIANAPOLIS
\bigcirc

\square

HYDROMETRIC DATA

River flows have been averaged (Table 2) in two ways for each station for period of survey:

1. As total discharge in thousand second-feet.
2. In terms of runoff $p \in r$ square mile of drainage area.

Practical use of total discharge can be made in estimating the average daily quantity load of each constituent passing any given sampling point, This can be done by the relation:
cfs \times ppm x $5.38=$ pounds per day
Use of runoff per square mile permits comparison of analytical data for different streams -- or different points on the same stream -- by making due allowance for similarities or differences in unit-area flow.

To predict possible stream discharges during September, runoff records since 1936 were reviewed by the U. S. Geological Survey. The Huntington (W. Na.) station was selected as a basis for prediction because it provides discharge data independent of other stations.

Approximate median monthly discharge was determined for the Huntington gage for the July-September period for each year. The median is the result which is exceeded by 50% of the results in a given series. The 1941 water year approximated the median (the "water year" adopted by the U. S. Geological Survey extends from September 1st through the ensuing year). Daily discharges for the threemonth period of that year, therefore, were plotted as well as those for the threemonth periods in 1943 and 1948. Monthly discharge during July and August for those two years was higher than the median; whereas September discharge in both years was lower than the median. Mean discharge during July 1950 was the highest for the period of record.

Analysis of these assembled hydrometric data for the Huntington gage showed:
a. Although high discharge prevailed during the first part of 1950, flows equal to or less than the median could be expected in September;
b. Peak discharges of almost $100,000 \mathrm{cfs}$ during the first part of August, and $80,000 \mathrm{cfs}$ in the latter part of August, have been followed by median or lower monthly discharge during September;
c. Despite maximum daily discharge of $50,000 \mathrm{cfs}$ on Sept 6, 1941 the river reached lower flow conditions during the last fifteen days of the same month;
d. Discharges up to $29,000 \mathrm{cfs}$ were experienced during the period Sept 20 25,1948 -- a condition that could be experienced again.

It was concluded that a mean discharge ranging as low as $10,000 \mathrm{cfs}$ during the period Sept 18-29, 1950 might be normally anticipated, judging from previous records. Discharge would vary above this figure depending on the amount of precipitation dur ing September.

The flow pattern experienced in Sept 1950, did not conform, however, to these expectations. At Huntington, for example, the discharge ranged from 30,100 to $172,000 \mathrm{cfs}$. Maximum discharge of $366,000 \mathrm{cfs}$ was measured at Dam 53.

Typical hydrographs are shown in Figs 2 and 3. Daily hydrometric data a re recorded in the Appendix.

Discharges and hydrographic comparisons -- Among the comments on the hydrometric data submitted by the U. S. Geological Survey were:

The following sampling points being located at, or very near, gaging stations, discharge for the sampling point was considered equivalent to the discharge at the gaging station: $\operatorname{Nos} 1,2,4,5,6,8,11,12,18,19,21,25,26$, 27, B and C.

For other sampling points, discharge at gaging stations was modified by the discharge from other tributary gaging stations, and by discharge from ungaged inflow areas (usually relatively small). For these ungaged areas discharge was determined from miscellaneous discharge measurements at selected points and runoff factors based on the runoff in surrounding areas.

Daily discharge at established gaging stations was computed by the usual methods involving the gage-height record and rating tables.

A consistency study was first made for the entire period by summations of upstream records at each main Ohio River station compared to the record at that station. This analysis showed that, for the period as a whole, the records were generally well within 5% accuracy, though daily flows occasionally exceeded this limit. The base data were then compared for gross errors by means of discharge hydrographs.

The hydrographs showed a number of minor inconsistencies but these did not necessarily indicate errors. The factors causing the apparent discrepancies result primarily from regulation of lock and dam operation, channel storage, and travel time, which is related to storage. These factors combined with inflowing tributary streams at varying magnitudes of flow, may cause a variety of hydrograph shapes progressively downstream.

The small freshet wave, which progressed downstream during the latter part of September, produced variable hydrograph shapes. Times of travel between main-stem gaging stations and sampling points during this flood period were not an important factor until sampling point No 20 was reached. The following tabulation shows the data used, including main-stem gaging station records, tributary
and inflow computed records, and factors in order to determine the daily discharge at sampling points Nos 20-27.

Sampling Point

20

21
22

23

24

25

26

27

Method of Discharge Determination

Ohio R. at Louisville with 0.4 day travel downstream plus (Salt R. x 1.2).

Ohio R. at Owensboro with 0.4 day travel downstream.

Ohio R. at Evansville with 0.2 day travel downstream plus inflow.

Ohio R. at Evansville with 0.7 day travel downstream plus inflow.

Average of sampling sta. No. 23 plus Wabash River at the mouth, and Ohio R. at Golconda with 0.5 day travel upstream minus inflow (Saline and Tradewater rivers)

Equivalent to Ohio River at Golconda.

Ohio River at Metropolis with 0.25 day travel upstream.

Ohio River at Metropolis with 0.25 day travel downstream.

The question was raised concerning the relative plotting of hydrographs for sampling points Nos 23,24 and 25 . It should be noted that inflow from point 21 to 23 was not an important factor, so that the flow crest progressed downstream with slight flattening and broadening of the hydrograph. Between sampling points 23 and 24 , however, the Wabash River contributes a large flow thus causing a substantial increase in discharge throughout the freshet. As the flow pattern computed downstream from Sta 23 plus Wabash River to Sta 24 was somewhat different from that which was computed upstream from Golconda minus inflow, it was decided to use the average of these two estimates for Sta 24. The difference probably results from inability to estimate exactly the timing and the effect of flattening of the peak flow curve. However, the resultant average hydrograph for Sta 24 is considered reasonably good.

FIG 2-- OHIO RIVER WATER QUALITY DEFINITION SURVEY

DISCHARGE HYDROGRAPHS

AT
SAMPLING POINTS
MAIN STEM OHIO RIVER

FIG 3--OHIO RIVER WATER QUALITY DEFINITION SURVEY
DISCHARGE HYDROGRAPHS
AT
SAMPLING POINTS
MAIN STEM OHIO RIVER

BACTERIOLOGICAL ANALYSES

Coliform data were obtained from daily samples at each one of the 36 sampling points listed in Table 1 , which shows period averages and daily maxima at these points (See Fig 4). Results expressed in terms of "most probable numbers" (MPN), were based on the standard confirmed test, with three tubes planted in each of three or more dilutions in decimal series.

In carrying out the confirmed tests, a record also was made of 24-hr and $48-\mathrm{hr}$ presumptive results. Averages of these results for comparison with those of the confirmed tests are given in Table 3. Methods followed in enumerating coliform organisms were essentially the same as those employed in the Ohio River Pollution Survey of $1939-1940$. The results, therefore, are directly comparable with those of the previous survey -- for sampling points having the same locations.

Trend of results -- The coliform data summarized in Table 3 show high bacterial pollution on the Ohio River at Sewickıey, just below Pittsburgh, but diminishing sharply at Dam 7, and continuing at relatively lower levels downstream to Gallopolis Dam, some 280 miles below Pittsburgh. This reduction appears to be due mainly to the effect of acidity in the upper section of the river. Owing to the shortened times of flow, the full effect of this acid condition evidently was not exerted until the river had passed some point below Sewickley.

This general picture corresponded to that which had been observed in previous surveys of the upper river: Well-marked decreases in coliform densities below Pittsburgh -- greater than could be attributed to normal self-purification -were consistently observed.

A sharp increase in coliform densities was shown below Dam 27, resulting mostly from direct sewage pollution in the Huntington-Portsmouth section of the river, augmented by the highly polluted flow of the Scioto River (Sta F).

In the relatively unpolluted stretch extending from Dam 31 to 36 , an increase in average coliform numbers was observed, much greater in degree than accountable from intermediate pollution. Under normal low-stage conditions, a marked decrease in bacterial pollution had been consistently noted in previous surveys. In the present case, the increase probably reflected the cumulative effects of channel scouring and shortened times of flow resulting from the rise in the river to a peak discharge of 228,000 cfs at Dam 36 .

The relationship between daily variations in discharge and coliform numbers at Dam 36 during the survey period are shown in Fig 5 . It will be noted that the greatest increase in coliform numbers coincided with the first stage of the rise in the river on Sept 20, and in advance of the major part of the rise. This is characteristic of increases in bacterial content accompanying freshets in the Ohio.

The rapid decline in coliform numbers following the crest of flow is also a commonly observed phenomenon, probably due to the washing-out effect of the freshet in its initial stages, followed by a dilution influence on the residual bacterial content. The secondary increase observed at Dam 36 on Sept 27 possibly was due to a delayed effect of pollution from the Scioto, which also produced a similar effect at Dam 31 beginning on Sept 25.

Coliform density in the river stretch below Cincinnati -- averaged 210,000 at Dam 38, 94, 000 at Dam 39 (30 miles downstream), and 44, 000 at Madison Bridge (26 miles below the mouth of the Kentucky River). This would represent a fairly normal picture of the combined effects of dilution and natural purification in this relatively unpolluted stretch of the river, following heavy pollution from the combined sewage of the Cincinnati District.

At Sta 19, located at the Louisville water intake, the average MPN was 211,000 -- practically the same as observed immediately below Cincinnati, despite the marked difference in pollution discharge above these two points. This average included, however, a single day's count of $2,300,000$, far out of line with the other results at this point. If this result were omitted, the average would be reduced to 21,000 . Although this single high result might be considered as unusual, its potential recurrence cannot be disregarded, in view of the proximity of sewer outfalls and the possibility of backflow in the river during sudden rises in pool stage.

At Dam 43, below the center of Louisville, the average coliform number was 156,000 , with a maximum-to-average ratio of 1.9 ; a result which normally would be expected at this point. The pattern shown at Dam 43 is somewhat different from that for Dam 36 (Fig 6). In this case, the more pronounced inverse relation indicated between coliform densities and river discharge is fairly typical of what would be expected just below a major source of pollution. This is distinguished from a point, such as Dam 36, which is located at the lower end of a 100 -mile stretch of river receiving little intermediate sewage pollution.

A markedly lower level of coliform numbers was observed from Dam 43 to Dam 53, near the mouth of the Ohio, except for a slight upturn at Dam 48, below Henderson, and at Shawneetown, be low the outlet of the Wabash River.

From Dam 51 to Dam 53, the effects of added dilution and natural purification, with little intermediate pollution, was apparent in the steady decline in coliform densities to relatively low levels.

In the entire stretch of river from Dam 43 downstream, ratios of maximum-to-average coliform numbers were comparatively low, indicating a fair degree of stabilization in the run of the data.

Maximum vs average ratios -- A review of the maximum-to-average ratios shown in Table 3 for each sampling point throughout the length of the river indicates the distribution of variations in these ratios:

Number of Sampling Points
\% of Total

11	31	Equal to or less than 3.0
23	64	Equal to or less than 5.0
32	89	Equal to or less than 6.0
4	11	Greater than 6.0

From these figures it appears that ratios of 5.0 or less were observed at nearly two-thirds of the sampling stations, and ratios of 6.0 or less, at roughly 90% of the points.

Under the variable flow conditions prevailing during the survey, ratios up to 5.0 or 6.0 might be expected. From the run of the data, ratios in excess of 6.0 would seem to be exce ptional, and where observed, would indicate the need for further study of local conditions, which might explain this degree of variability. Such conditions might include flushing of tributaries, proximity to sewers and storm overflows, and channel flows as affected by natural runoff and drain regulation.

Four stations with maximum-to-average ratios of 6.0 or over were located near water supply intakes.

Coliform vs enterococci results -- Data supplied by the Illinois Department of Health (Table 8) provided a basis for comparison of the coliform and enterococci numbers observed in the same samples collected at Stas $24,25,26$ and 27. Although no definite numerical correlation was found between these two indices of sewage pollution the trend of the data indicated in general that high enterococci numbers tended to coincide with high coliform densities. With a relatively low level of bacterial pollution in this stretch of the river, extending from Shawneetown to near the mouth, the effect of surface wash, dilution and natural purification might be expectdd to obscure that of sewage to a greater extent than in upstream sections of the river.

Despite these influences, enterococci nunbers less than 23 per 100 ml were observed in only 6 out of the 48 samples examined, and in these six cases the maximum number of coliforms recorded was 2,400 per 100 ml . It thus appears that sewage pollution predominates even in the lower reaches of the Ohio, and that the coliform group of organisms is a reliable indicator of such pollution both qualitatively and quantitatively.

Medians vs averages -- Comparison of the average and median coliform numbers recorded in Table 3 indicates little numerical correlation between these two variables, except a tendency for both to be high, or low, when the ratio of maximum-to-ave rage counts was low. In some cases, where this ratio exceeded 3.0 or 4.0 , the disparity between the two figures was wide, the median failing to show in some cases the effect of increased coliform numbers resulting from the rise in the river.

At fourteen of the 36 sampling points, the median was less than one-half of the corresponding average figure, and in at least ten cases would have led to an erroneous interpretation of the results as indicating conformance, or near-conformanity, to the bacterial-quality objectives recently adopted by the Commission. The weakness of the median in this respect is most apparent when an increase in coliform numbers to much higher levels occurs at some time after the mid-point of a given period of equally-spaced observations. Had the rise in the river occurred a few days later in the present survey, this weakness would have been even more strikingly shown.

The results of the survey have given ample evidence of the advantages
results: $3 / 3$ in $1 \mathrm{ml}, 3 / 3$ in $0.1 \mathrm{ml}, 1 / 3$ in 0.01 ml , and $0 / 3$ in 0.001 ml , the three dilutions considered would be $0.1 \mathrm{ml}, 0.01 \mathrm{ml}$, and 0.001 ml , as the highest dilution giving a $3 / 3$ result was 0.1 ml . This procedure is in accordance with that given in Standard Methods. It was applied in recording and checking all individual results, both confirmed and presumptive.

The usual precautions regarding sterility of glassware and culture media were carefully observed in carrying out the tests. Samples from the river generally were collected at mid-stream and mid-depth, though some difficulties were experienced during the freshet. Samples intended for bacteriological examination were transported in iced containers to the laboratory and, if not examined immediately on arrival, were stored in the refrigerator until examination.

Number of Sampling Points \% of Total

11	31	Equal to or less than 3.0
23	64	Equal to or less than 5.0
32	89	Equal to or less than 6.0
4	11	Greater than 6.0

From these figures it appears that ratios of 5.0 or less were observed at nearly two-thirds of the sampling stations, and ratios of 6.0 or less, at roughly 90% of the points.

Under the variable flow conditions prevailing during the survey, ratios up to 5.0 or 6.0 might be expected. From the run of the data, ratios in excess of 6.0 would seem to be excptional, and where observed, would indicate the need for further study of local conditions, which might explain this degree of variability. Such conditions might include flushing of tributaries, proximity to sewers and storm overflows, and channel flows as affected by natural runoff and drain regulation.

Four stations with maximum-to-average ratios of 6.0 or over were located near water supply intakes.

Coliform vs enterococci results -- Data supplied by the Illinois Department of Health (Table 8) provided a basis for comparison of the coliform and enterococci numbers observed in the same samples collected at Stas $24,25,26$ and 27. Although no definite numerical correlation was found between these two indices of sewage pollution the trend of the data indicated in general that high enterococci numbers tended to coincide with high coliform densities. With a relatively low level of bacterial pollution in this stretch of the river, extending from Shawneetown to near the mouth, the effect of surface wash, dilution and natural purification might be expect do to obscure that of sewage to a greater extent than in upstream sections of the river.

Despite these influences, enterococci nunbers less than 23 per 100 ml were observed in only 6 out of the 48 samples examined, and in these six cases the maximum number of coliforms recorded was 2,400 per 100 ml . It thus appears that sewage pollution predominates even in the lower reaches of the Ohio, and that the coliform group of organisms is a reliable indicator of such pollution both qualitatively and quantitatively.

Medians vs averages -- Comparison of the average and median coliform numbers recorded in Table 3 indicates little numerical correlation between these two variables, except a tendency for both to be high, or low, when the ratio of maximum-to-ave rage counts was low. In some cases, where this ratio exceeded 3.0 or 4.0 , the disparity between the two figures was wide, the median failing to show in some cases the effect of increased coliform numbers resulting from the rise in the river.

At fourteen of the 36 sampling points, the median was less than one-half of the corresponding average figure, and in at least ten cases would have led to an erroneous interpretation of the results as indicating conformance, or near-conformanity, to the bacterial-quality objectives recently adopted by the Commission. The weakness of the median in this respect is most apparent when an increase in coliform numbers to much higher levels occurs at some time after the mid-point of a given period of equally-spaced observations. Had the rise in the river occurred a few days later in the present survey, this weakness would have been even more strikingly shown.

The results of the survey have given ample evidence of the advantages of the average over the median in surveys of this type, concerned with evaluations of pollution densities having a definite public-health significance, despite the recognized statistical advantages of medians in studying certain other types of natural phenomena.

Surface vs mid-depth sampling -- The standard procedure in the survey involved the collection of all samples at mid-depth. A special comparative study by the Indiana State Board of Health at four of the sampling stations permitted further evaluation of surface vs mid-depth sampling (Tables 6 and 7). These results, though indicating little significant difference in the averages observed at thre ef the stations, showed a somewhat smoother and more consistent pattern of the daily figures obtained from the mid-depth samples than those derived from the surface sampling.

The few observations thus available tended to support the advantage of mid-depth sampling as a routine procedure, in line with previous observations in the Ohio and other streams.

Confirmed vs presumptive results -- A study of the average 24 -hr and $48-\mathrm{hr}$ presumptive results given in Table 3 has shown that agreement with the confirmed averages was closer for the $24-\mathrm{hr}$ figures at 19 sampling points, and for the $48-\mathrm{hr}$ results at 17 stations. Thus an almost even balance was indicated in this respect.

In the section of the river from Dam 27 upstream, however, the $24-\mathrm{hr}$ results corresponded more closely to the confirmed averages at 13 out of 15 stations. In the section below Dam 27, agreement was closer between the $48-\mathrm{hr}$ and confirmed results at 15 out of 21 stations.

With a very few exceptions, the $48-\mathrm{hr}$ results indicated more closely the confirmed numbers at stations where coliform densities were relatively high, whereas the $24-\mathrm{hr}$ figures tended to agree better with those of the confirmed tests when coliform densities were comparatively low.

Without going into a statistical analyses of these deviations, it may be said that neither the $24-\mathrm{hr}$ nor the $48-\mathrm{hr}$ presumptive results -- considered alone -- would appear to provide a very accur ate measure of the confirmed results, though in some cases agreement with one or the other was very good. On the whole, the $48-\mathrm{hr}$ presumptive resul ts appeared to run closer to the confirmed results than did the $24-\mathrm{hr}$ figures. If the presumptive test were to be used as a substitute for the confirmed te st, the $48-\mathrm{hr}$ period would seem preferable.

Bacteriological methods -- The methods followed in determining coliform bacteria were basically the same as described in Standard Methods for the Examination of Water and Sewage, 9th ed, American Public Health Assn New York, N. Y. (Section 9) paragraphs B and C, pp 194-196. The recorded results were based on the confirmed test, but the results of the $24-\mathrm{hr}$ and $48-\mathrm{hr}$ presumptive gas-former tests were also recorded for purposes of comparison.

In making each test, at least three sample dilutions were made in the usual decimal series. Three tubes of standard lactose broth were planted from each dilution, using the inverted-vial type of fermentation tube. In making up dilutions, sterile phosphate buffered distilled water was used, being contained in cotton-plugged bottles each holding 99 ml of dilution water. Pipettes were of one milliliter capacity graduated accurately to $0.1-\mathrm{ml}$ divisions. Measurements were made from meniscus to meniscus.

Sample portions of 1.0 and 0.1 ml were planted directly without dilution. Plantings of 0.01 and 0.001 ml were made from dilutions of the sample by adding 1.0 and 0.1 ml of the sample to 99 ml of dilution water, and transferring 1 ml of the corresponding dilution mixture to the fermentation tubes. Shaking and mixing techniques were in accordance with the directions of Standard Methods.

Judgment as to the number and amount of dilutions were base d on the experience of the operator with water samples from each sampling point. In general, the aim was to select a range of dilutions which would give three positive results in the lowest dilution, and preferably three negative results in the highest dilution.

Presumptive test -- After placing the fermentation tubes, suitably racked, in the $37-\mathrm{deg} \mathrm{C}$ incubator, any tube showing more than 10% of gas in the inverted vial at 24 hours was recorded as a positive presumptive result. At the end of 48 hours the tubes were read again; tubes showing more than 10% of gas at this time were recorded as $48-\mathrm{hr}$ positive presumptives.

Confirmed test -- As soon as gas in any amount appeared in a tube, a transfer of a 3.0 mm loopful of the liquid was made to standard brilliant-green lactose bile confirmatory medium, also contained in the usual type of fermentation tube. All tubes showing no gas at 24 hours were held over for a $48-\mathrm{hr}$ period so that transplants could be made from tubes developing any gas during the second 24 hours. Any gas formation in the brilliant-green lactose bile medium within 48 hours was recorded as a positive confirmed result.

Interpretation of results -- Enumeration of coliform bacteria from the fermentation tests was in accordance with the "most probable nunber" (MPN) method, using a table after Hoskins (Public Health Reports, Reprint 1621, 1940 revision) and transcribed from Supplement B, Part II of the report on Ohio River Pollution Control (House Document 266, 78th Congress, 1st Session, p 935), prepared by the U. S. Public Health Service.

In recording the results, the highest dilution showing all three tubes positive, together with the next two higher dilutions, were taken as the basis of the MPN enumeration. Thus, in a series giving the following
results: $3 / 3$ in $1 \mathrm{ml}, 3 / 3$ in $0.1 \mathrm{ml}, 1 / 3$ in 0.01 ml , and $0 / 3$ in 0.001 ml , the three dilutions considered would be $0.1 \mathrm{ml}, 0.01 \mathrm{ml}$, and 0.001 ml , as the highest dilution giving a $3 / 3$ result was 0.1 ml . This procedure is in accordance with that given in Standard Methods. It was applied in recording and checking all individual results, both confirmed and presumptive.

The usual precautions regarding sterility of glassware and culture media were carefully observed in carrying out the tests. Samples from the river generally were collected at mid-stream and mid-depth, though some difficulties were experienced during the freshet. Samples intended for bacteriological examination were transported in iced containers to the laboratory and, if not examined immediately on arrival, were stored in the refrigerator until examination.

$[$

FIG 4-Average and Maximum Coliform Numbers

 at
Survey Sampling Points

Only three sampling stations on the Ohio River gave average collform numbers that comply with the average of 5,000 MPN recommended by Ohio River Valley Water Sanitation Commission for water supplies,

Fig 5-Greatest increase in coliform numbers coincided with first stage of the rise in the river at sampling station Nols (Dam 36). This coliform-discharge relationship is typical of sampling points 500 distant from sources of pollution on the Ohio River.

SANITARY, CHEMICAL AND MINERAL ANALYSES

Chemical data were obtained from two independent series of observations consisting of:

1. Determinations made on routine samples collected and examined daily at each of the laboratories operated by signatory states. Included were: acidity to phenolphthalein (hot and cold), alkalinity to methyl orange, pH , total solids, turbidity, chlorides, hardness and total iron; dissolved oxygen and 5 -day biochemical oxygen demand at 20 deg C . Period averages for the results of these analyses are listed in Table 2, and average and maximum or minimum results for six of the more significant determinations in mable 9 .
2. Analyses reported in ionic form obtained from composite samples. This was done at tie Columbus, Ohio district laboratory of the U. S. Geological Survey which was under contract with the Commission to do this part of the analytical work, and also to provide the hydrometric data. The weighted average results of these analyses, noted in riable 2 under "Mineral Analysis," afforded a good check on the results which were common to the two series. They also provided a more comprehensive picture of the mineral cortent of the Ohio and its tributary waters. On the basis of specific conductance of each daily sample, two or more composite samples were prepared for mineral analysis. Specific concuctance provides a convenient over-all index of the ionized mineral content of a natural water.

Certain trends, and a few inconsistencies, are to be noted in the results of physical and chemical examinations carried out in the two series above noted. These may best be considered under the heading of each constituent, or group of constituents, with which the analyses have dealt.

Acidity -- Free acidity was recorded at the Monongahela and Allegheny river stations, and on the Ohio to a point below Wheeling, W. Va. In these reaches, alkalinities were lower than normai for non-acid streams in this basin. This lower alkalinity continued downstream as far as Cincinnati.

For the next six stations below Cincinnati (sampled by Kentucky) free acidity was recorded, together with an apprecirble increase in alkalinity. Indivicual daily analyses showed that this free acidity was not experienced every day. Free acidity was recorded in the lower part of the river -beginning at Louisville and extending to the mouth.

It would seem that the free acidity reported at Sta 15 to 18 is inconsistent with the reported pH above 7 , and average alkalinity greater than 45 ppm ; and inconsistent with results from stations above and below this stretch.

Alkalinity - No constant difference is noted in the daily and composite averages for alkalinity. Alkalinities on composite samples were determined with methyl red indicator; the daily samples were determined using methyl orange in accordance with Standard Methods. It has been the experience of the U. S. Geological Survey laboratory that the end-point is seen more readily with methyl red; hence, their use of this indicator.

Composites were analyzed for carbonate and bicarbonate alkalinity. Except for the Wabash River, carbonate alkalinity was absent.

Using the results of the composite samples, a smoother pattern of effects of tributaries with respect to alkalinity is seen than with the averages of daily samples. Particular attention should be given to results from sampling points at Dam 47 and on the Wabash River.
pH -- Average pH was computed by averaging hydrogen-ion concentrations -- so as to integrate the effects of the low pH values -- and then converting to corresponding pH .

This is a departure from the usual method of averaging pH values directly and the reason may be illustrated thus: An arithmetical average of pH 4.0 and pH 6.0 gives pH 5.0 ; but as pH 4.0 is 100 times as acid as pH 6.0 , the average of hydrogen-ion concentrations gives pH 4.3 , showing the true effect of the sample with greater acidity.

BOD -- During this survey, the 5-day $B O D$ values observed were relatively low, as is usually experienced at the higher river stages. Highest average BOD (4.6 ppm) was in the Cincinnati pool below the city.

Low BOD at Louisville was observed coincidently with reduced dissolved oxygen. This might be explained by assuming that the BOD in the river, resulting from pollution at Cincinnati, had been satisfied before reaching Louisville, with insufficient reaeration to replenish loss of dissolved oxygen. It also could be explained as being due to the effect of local sludge deposits in the Louisville pool.

Dissolved oxygen -- Lowest values for dissolved oxygen were found at the Louisville water intake and in the pool below Louisville. Minimum daily DO was critical at both of these points during the survey. Other critically low minimum points included the Beaver and Kanawha Rivers.

A check should be made on these points during low-flow stages of the river because past surveys have not indicated that the Louisville pool is the critical stretch of the river from this standpoint.

Chlorides -- Close agreement between the chloride results from daily and composite samples indicate that the compositing gave representative samples.

Substantial increase in chlorides was noted at Dam 18 -- the effect of high salinity in the Muskingum River.

Other increases were noted at the Dam 36 sampling point, an increase that developed between Dams 31 and 36, as well as in the Louisville pool; no obvious reason can be given for these increases.

Study of the daily report forms (Tables 14 to 49) suggests that chloride concentrations in the river, though roughly inversely proportional to the river discharge preceding and during the flow crest, fell sharply to disproportionately low levels immediately after the crest had subsided. The situation at Sta 30, near Haverhill, Ohio, illustrates this as shown:

Discharge I, 000 cfs	Chlorides ppm	Chlorides Ibs/day
37.0		
32.0	40	$8,000,000$
42.0	35	$6,040,000$
86.0	33	$7,480,000$
190.0	13	$6,030,000$
234.0	8	$8,200,000$
180.0	10	$12,600,000$
119.0	7	$6,780,000$
67.0	10	$6,400,000$
42.0	13	$8,700,000$
37.0	11	$2,490,000$
32.5	14	$2,790,000$
	14	$2,450,000$

The weighted average for chlorides from U. S. Geological Survey analyses equals the daily-analysis average so these concentrations may be assumed correct.

This means that the concentration of salts at minimum low flows cannot always be calculated from a knowledge of concentrations at higher flows.

It will be noted that up to the last three days of the sampling period, the total chloride discharge, in pounds per day, remained fairly constant, except for an increase on the day of maximum flow. This would be expected if the inverse relations between flow and chloride concentration should hold. On return of the river to its initial stages, however, a sharp decrease in this total chloride quantity to less than one-half of its previous level was observed. Such behavior would suggest that minor freshets in the river tend to flush out chlorides from various sources, and to reduce them to disproportionately low concentrations after the flushing action has been completed. The same general phenomenon probably affects the concentration of other mineral salts carried by the river.

Fluoride -- Even at the prevailing higher flows, the concentration of fluoride averaged 0.1 to 0.6 ppm at all sampling points. As fluoride was found to be present throughout the full length of the river, any supplementary fluoridation of municipal water supplies should consider the amount of fluorides present in the raw water.

Hardness -- Highest values for hardness for average and daily maximum readings were due to flow from certain tributaries, notably, the Beaver, Muskingum, Scioto, Kentucky and Wabash rivers.

An inverse correlation between hardness and runoff was not consistently apparent, as shown in the data collected at Dam 30, though the trend of the results was somewhat similar to that of the chlorides in its general pattern.
$\left.\begin{array}{cc}\text { Discharge } & \text { Hardnes } \\ \text { l,000 cfs } & \text { ppm }\end{array}\right\}$

Iron -- The most noticeable difference between results from composite and from daily samples was in respect to iron. Composite sample analysis deals only with soluble iron, special precautions being taken to remove colloidal material. This material, primarily silica, contains some iron. Usually filter paper dœs not remove all of it. The result is that some iron in part of the sediment is measured. The degree of completeness of removal of the sediment before analysis will cause variation in results obtained.

Nitrates -- With the realization that nitrates can cause cyanosis in infants due to methemoglobinemia (blue babies) determination of nitrates should no longer be viewed only as an indicator of the state of nitrification in the river. Latest toxicological data support 10 ppm of nitrate nitrogen as a tolerable limit (about 43 ppm as nitrates). The survey data indicate no present problem in this respect at higher flows in the Ohio.

Sodium -- Sodium has been found to be important in treatment of hypertension cases. In the so-called "salt-free diet," the maximum amount of sodium to be ingested per day, according to some medical authorities, is 200 to 400 milligrams. (Principles of Internal Medicine, T. R. Harrison, Blakeston Co., Philadelphia; 1950, p 1323). The high value for sodium observed in this survey was 38 ppm . For a person drinking 2.5 quarts of water daily; this amount would signify a daily intake of 90 mg of sodium. Thus, ingested water alone would contain about one-half the recommended limit permissiole in a low sodium-level diet.

Solids -- Total solids showed an increase through the central portion of the river -- particularly between Dams 30 to 49. This increase appears to be due largely to increased turbidity.

A different pattern is shown by dissolved solids which are not affected by turbidity. Higher results are shown in upper reaches of the river but without consistent trend.

Sulfates -- Sulfate concentrations were highest in the upper river due mainly to the effects of mine drainage and steel-mill wastes. Below Dam 29, the concentrations were diminished gradually to roughly one-third of those observed in the upper reaches of the river.

The good agreement in chlorides between daily and composite samples was not similarly noted for sulfates. The divergence in sulfate averages is probably due to the method of analysis. For analysis of composite samples, a gravimetric procedure (from Hildebrand and Lundell) was used. This more detailed technique included an ionic balance and would be presumably more reliable than the field method (Benzidene method).

Using the USGS laboratory work as a basis, the variation in state analysis work can be noted. Analysis for sulfate is one that requires specialized training and equipment and differences should be expected.

Turbidity -- Although the Ohio River always carries a measurable turbidity, this survey showed substantial increases in turbidity in the middle reach of the river below the Kanawha. Below Dam 39 turbidity levels diminished gradually, but did attain the low degree shown in the upper river. Turbidities observed throughout the river as a whole reflected the influence of increased runoff accompanying the freshet. This is a normal occurrence under the flow conditions prevailing at the time of the survey.

Table 1 -- Location of Sampling Po

Drainage Area in Sq. Mi.	Responsibility of Sample Collection	Reason See Note*
11,705	Pennsylvania	4
7,340	Pennsylvania	4
19,500	Pennsylvania	1
3, 040	Pennsylvania	4
22,980	Pennsylvania	3
24,650	West Virginia	1
25,170	West Virginia	1
26,950	West Virginia	2
35,600	West Virginia	1,2
2,320	West Virginia	4
37,940	West Virginia	1,2
40,500	West Virginia	1,2
12,200	West Virginia	4
53,510	West Virginia	1,2
53,670	Ohio	1
55,900	Ohio	
60,750	Ohio	1,2,3
61,670	Ohio	1
6,510	Ohio	4
68,910	Ohio	2
71,110	Kentucky	1,2
3,655	Kentucky	4
82,520	Kentucky	1,2,3
82,910	Kentucky	1,2
6,949	Kentucky	4
90,580	Kentucky	1,2
91,170	Kentucky	1
94,510	Kentucky	1,2
97,710	Indiana	1,2
107,550	Indiana	1,2
107,940	Indiana	3
33,100	Indiana	4
141,160	Illinois	2
143,900	Illinois	1,2
202,800	Illinois	1,2
203,100	Illinois	3

Table 2 Summary .. Twelve-day Average of Bacteriological, Sanitary Chemical
Ohio River Water Quality Survey (Sept 18

O. R. - Ohio River

- - Indicates source of public water supply near sampling point $-=$ no intermediate pollution.
- Indicates source of public water supply near sampling point but with some intermediate pollution.

Table 3 -. Snmary of Bacteriological Ohio River Water Quality Survey .- Sept

Sampling Station No.	Location		Coliforms in MPP			
			Average for Survey Period			Median
			$\begin{array}{r} \text { Gas } \\ 24-\mathrm{hr} \end{array}$	48-hr	Confirmed	
A	Allegheny River	-	19.7	29.0	24.5	23.0
B	Monongahela River	-	83.9	98.7	88.6	8.4
1	Sewickley		74.3	101.5	81.6	43.0
C	Beaver River	0	9.7	14.0	14.4	10.6
2	0. R. Dam 7	-0	7.9	17.3	9.5	6.8
3	0 . R. above Wheeling	-	8.7	10.7	8.0	4.6
4	0. R. Dam 13 -	0	28.4	28.5	15.4	4.6
5	0. R. Dam 17		5.1	7.4	4.4	0.9
6	O. R. Dam 18		7.8	8.7	6.3	4.2
D	L. Kanawha River		413.7	517.3	321.3	240.0
7	0. R. Dam 19		36.1	42.6	18.4	11.0
8	0. R. Pt. Pleasant		10.2	12.3	7.8	4.4
E	Kanawha River		5.5	6.0	3.8	3.3
9	0. R. Gallipolis		6.5	9.4	5.2	2.4
10	0. R. Dam 27	-	27.9	32.0	11.0	5.9
11	0. R. Dam 28		26.2	41.2	40.8	9,3
12	0. R. Dam 29	-0	35.9	46.0	39.9	12.2
13	0. R. Dam 30	-	49.6	70.6	69.7	43.0
F	Scioto River		73.7	166.0	161.8	43.0
14	0. R. Dam 31	o	31.0	42.6	40.9	29.0
15	O. R. Dam 36	- 0	19.5	75.9	75.9	5.8
G	Licking River		46.7	192.2	192.2	12.2
16	0. R. Dam 38	-	78.9	209.8	209.8	33.0
17	0. R. Dam 39		57.9	99.4	94.0	43.0
H	Kentucky River		11.1	13.7	11.7	2.6
18	O. R. Madison		35.2	46.2	44.3	19.0
19	O. R. Louisville Int.	- 0	207.2	216.3	211.2	9.3
20	O. R. Dam 43		135.6	153.0	156.3	68.0
21	0. R. Dam 47		9.8	14.6	14.6	19.0
22	0. R. Dam 48	$\bullet 0$	17.4	27.9	27.9	23.0
23	O. R. Dam 49	00		12.0	12.0	7.5
I	Wabash River		20.6	29.5	29.4	19.0
24	0. R. Shawneetown		10.2	17.3	15.0	12.2
25	0. R. Dam 51	- 0	6.5	9.1	7.6	4.3
26	0. R. Dam 52	0	2.8	4.6	3.2	2.4
27	0. R. Dam 53	-	2.2	6.3	4.1	2.4

0. R. - Ohio River

- Indicates source of public water supply near sampling point -- no intermediate
o Indicates source of public water supply near sampling point but with some inte:

Data

-29, 1950
per $100 \mathrm{ml}(1,000)$

Max. day	Ratio Max. to Avg.	Confirmed Avg. less Max. day
75.0	3.1	
930.0	10.5	12.2
230.0	3.0	
43.0	3.0	
43.0	4.5	
23.0	2.9	
93.0	6.0	7.7
23.0	5.2	
23.0	3.6	
930.0	2.9	
43.0	2.4	
43.0	5.5	
9.3	2.4	
23.0	4.3	
43.0	3.9	
230.0	5.6	
150.0	3.8	
430.0	6.2	38.8
930.0	5.8	
230.0	5.6	
430.0	5.7	
930.0	4.9	
930.0	4.4	
430.0	4.6	
75.0	6.4	5.3
230.0	5.2	
2,300.0	10.9	21.3
290.0	1.9	
43.0	2.9	
93.0	3.3	
43.0	3.6	
93.0	3.2	
43.0	2.9	
23.0	3.0	
9.3	2.8	
23.0	5.6	

ollution
Table 4 -- Comparison of Methods for Reporting Coliform Results

Table 5 -- Cities Using Ohio River Directly as Source of Water Supply

Public Water Supply	River Mile from Source	Quality In Sampling Stations	icated at: \qquad
Midland, Pa.	36	2*	Dam No. 7
E. Liverpool, Ohio	40	2	Dam No. 7
Toronto, Ohio	59	-	- - -
Weirton, W. Va.	63	-	- - -
Steubenville, W. Va.	65	-	T
Wheeling, W. Va.	87	3	Above Wheelint
Bellaire, Ohio	94	4*	Dam No. 13
Sistersville, W. Va.	137	-	- - -
Pomeroy, Ohio	148	-	- - -
Huntington, W. Va.	304	10	Dam No. 27
Ashland, Ky.	320	12	Dam No. 29
Ironton, Ohio	327	12*	Dan No. 29
Portsmouth, Ohio	351	13*	Dam No. 30
Maysville, Ky.	408	14*	Dam No. 31
Cincinnati, Ohio	463	15	Dam No. 36
Covington, Ky.	463	15	Dam No. 36
Newport, Ky.	464	15*	Dam No. 36
Aurora, Ind.	497	16*	Dam No. 38
Louisville, Ky.	601	19	Louisville Int
New Albany, Ind.	608	19*	Louisville Int
Evansville, Ind.	792	-	- - -
Henderson, Ky.	803	22*	Dam No. 48
Mt. Vernon, Ind.	829	22	Dam No. 48
Uniontown, Ky.	840	23*	Dam No. 49
Morganfield, Ky.	844	23*	Dam No. 49
Rosiclare, III.	891	25*	Dam No. 51
Golconda, Ill.	903	25	Dam No. 51
Paducah, Ky.	934	26*	Dam No. 52
Cairo, Ky.	977	2'**	Dam No. 53

[^0]Interpretation: 29 cities use Ohio River as source of water supply; 23 are in vicinity of survey sampling points.
Table 6 -- Average Coliforms (MPN) (1,000) Mid-depth and Surface Sampling
27.5
18.7
22.9
23.7

29.5
14.7
28.0
12.1
$\underset{\text { Mid-depth }}{24-\mathrm{hr}}$

Interpretation: See comment Table 7.
Sampling
Station No.
H- N

 much mumxew

 NONTO N NONNFOちょ｜

Table 7 －－Daily Confirmed Coliforms（MPNs in 1，000s）Mid Depth and Surface Sampling
21.0
9.3
43.0
15.0
$0 . 〔 己$
$\varepsilon \cdot 6$
$0 . 〔 6$

0.82
$9.5 \varepsilon \varepsilon$
$0 . \varepsilon 4$

$0 . ६ 己$
$\varepsilon^{\circ} \sqcap$
$0 \cdot ६ \sqcap$

9・エ纪
$\overline{\varepsilon^{*} \dagger}$
0.5 I

$0 . S \tau$
$0 . \mathrm{L己}$
$0^{\circ} \varepsilon \square$
$0 . \varepsilon \pi$
$0 . \mathrm{SI}$
$0 . \varepsilon 己$
$0 . \varrho 己$

 әrejuns प7dәр एтW LH mea

әכълтns पдवәр рт़ －
Table 8 -- Confirmed Coliform-Enterococci Data (MPN/100 ml)

Station:1950	No. 24		No. 25		No. 26		No. 27	
	Coliform	Enterococci	Coliform	Enterococci	Coliform	Enterococci	Coliform	Enterococci
Date								
9/18	4,300	23	4,300	23	1,500	6	2,400	6
9/19	2,400	23	2,400	<4.5	2,400	23	2,90	<4.5
9/20	9,300	700	2,400	62	4,300	23	2,400	6
9/21	46,000	2,400+	2,400	23	750	2,400+	230	230
9/22	15,000	7,000	4,300	62	2,100	620	930	240
9/23	24,000	2,400	4,300	23	2,400	2,400	4,300	240
9/24	4,300	700	9,300	62	2,400	2 6	2,400	240
9/25	15,000	240	7,500	240	9,300	62	2,400	700
9/26	9,300	1,300	4,300	62	4,300	240	4,300	700
9/27	24,000	700	24,000	62	4,300	130	2,400	130
9/28	24,000	2,400	4,300	620	4,300	240	24,000	2,400+
9/29	9,300	620	24,000	240	2,400	240	4,300	240

स)
3

Table 9 .- Summary .- Averages and Maxima or Minima of
Ohio River Water Quality Survey .-

Sampling Station No.	Location	D				Turbidit ppm
A	Allegheny River	8.7	8.1	0.6	1.10	19
B	Monongahela River	7.4	6.0	0.4	1.10	25
1	Sewickley	7.7	7.1	0.9	2.30	18
C	Beaver River	5.1	3.9	1.0	1.40	22
2	O. R. - Dam 7	9.1	8.3	1.0	1.60	15
3	O. R. - Above Wheeling	8.2	7.0	1.1	2.7	18
4	O. R. - Dam 13	8.0	7.4	1.3	3.25	39
5	O. R. - Dam 17	7.6	6.2	1.3	2.55	53
6	O. R. - Dam 18	7.8	6.0	1.6	2.85	36
D	L. Kanawha River	7.4	5.7	2.3	4.35	206
7	O. R. - Dam 19	7.8	6.6	2.0	4.6	66
8	O. R. - Pt. Pleasant	7.2	6.1	1.6	2.35	50
E	Kanawha River	5.6	2.1	1.5	3.6	131
9	O. R. - Gallipolis	6.5	5.3	1.0	2.05	102
10	0. R. - Dam 27	6.7	5.6	1.2	2.4	165
11	O. R. - Dam 28	6.9	5.8	1.4	2.6	204
12	O. R. - Dam 29	7.2	6.4	1.9	4.8	262
13	O. R. - Dam 30	6.9	5.9	1.6	2.5	264
F	Scioto River	7.1	4.7	3.5	6.7	273
14	0. R. - Dam 31	6.8	5.9	1.5	2.4	243
15	O. R. - Dam 36	7.9	6.5	2.9	5.0	498
G	Licking River	8.2	7.3	3.5	6.8	458
16	O. R. - Dam 38	7.4	6.1	4.6	6.8	465
17	O. R. - Dam 39	6.8	4.6	4.0	5.8	498
H	Kentucky River	8.7	5.2	2.5	5.5	110
18	O. R. - Madison	7.1	4.3	3.0	5.1	295
19	0. R. - Louisville Intake	4.3	2.1	1.0	1.6	157
20	0. R. - Dam 43	4.8	3.3	1.5	2.9	222
21	O. R. - Dam 47	7.3	3.1	1.3	2.0	218
22	O. R. - Dam 48	6.4	3.7	1.5	2.0	272
23	O. R. - Dam 49	6.3	3.5	1.2	2.2	209
I	Wabash River	7.4	5.2	2.9	4.8	156
24	O. R. - Shawneetown	7.0	4.2	1.3	1.7	118
25	O. R. - Dam 51	6.9	3.9	1.2	1.8	90
26	0. R. - Dam 52	7.5	5.1	1.3	2.1	82
27	O. R. - Dam 53	7.3	4.2	1.0	1.7	82

pt 18-29, 1950

x.			Sulfates ppm		Hardness ppm	
			Avg.	Max.	Avg.	Max.
;	22	35	101	128	110	140
1	7	11	141	220	113	135
;	17	27	121	136	118	140
;	23	26	143	172	154	172
1	14	21	132	184	129	156
1	15	22	136	192	133	160
1	13	19	131	172	128	150
1	20	24	146	192	135	154
;	66	113	130	182	181	216
1	3	9	25	57	38	40
;	49	77	147	259	160	186
1	36	49	142	250	156	184
1	8	17	30	48	56	84
1	25	42	109	153	115	158
1	25	39	97	149	122	156
1	24	37	92	132	114	144
1	17	38	62	120	84	145
1	17	40	64	135	87	146
1	13	23	42	67	174	265
1	19	40	68	120	95	140
1	26	49	60	121	118	197
1	25	43	60	107	110	144
,	25	42	51	103	112	173
1	24	40	57	121	117	162
1	7	19	14	29	107	313
;	21	40	55	110	131	285
1	44	65	60	82	112	142
1	47	67	68	98	120	157
1	28	46	50	95	130	145
1	25	31	50	89	132	158
I	25	34	51	89	131	147
)	18	35	40	58	199	241
1	20	25	44	70	134	158
)	21	27	46	70	144	160
;	20	24	47	65	142	154
1	19	26	43	72	137	158

Table 10 -- Drainage Areas at Sampling Points on Main Stem Ohio River

Sampling Station	Drainage Area (Square miles)	Source
1	19,500	Sewickley gaging station.
2	22,980	Montgomery Isl. gag. sta. plus inflow (25)
3	24,650	Bellaire gag. sta. minus inflow (520).
4	25,170	Bellaire gaging station.
5	26,950	St. Marys gaging sta. plus inflow (100).
6	35,600	Parkersburg gaging station.
7	37,940	Parkersburg gag. sta, plus L. Kanawha R. plus inflow (25).
8	40,500	Pomeroy gaging station.
9	53,510	Pt. Pleasant gag. sta. plus Raccoon Creek plus inflow (65).
10	53,670	Sampling Sta. No. 9 plus inflow (160).
11	55,900	Huntington gaging station.
12	60,750	Ashland gaging station.
13	61,670	Ashland gag. sta. plus L. Sandy R. plus inflow (200).
14	68,910	Sampling Sta. No. 13 plus (Tygarts Cr., Scioto R.) plus inflow (390).
15	71,110	Cincinnati gag, sta, minus (Licking R. and L. Miami R.) minus inflow (45).
16	82,520	Cincinnati gag. sta. plus Miami R. plus inflow (550).
17	82,910	Sampling sta. No. 16 plus inflow (390).
18	90,580	Madison gaging station.
19	91,170	Louisville gaging station.
20	94,510	Sampling Sta, No. 19 plus Salt R. plus inflow (405).
21	97,710	Owensboro gag. sta. plus inflow (510).
22	107,550	Evansville gag. sta, plus inflow (550).
23	107,940	Sampling Sta. No. 22 plus inflow (390).
24	141,160	Golconda gag. sta. minus (Saline R., Tradewater R.) minus inflow (500).
25	143,900	Golconda gaging station.
26	202,800	Metropolis gag. sta. minus inflow (200).
27	203,100	Metropolis gag. sta. plus inflow (150).

Note: The drainage areas at gaging stations are those published in USGS water supply papers. The drainage areas for named tributary streams are those shown in the accompanying list of drainage areas for tributary streams. The drainage areas for inflow areas (shown in parenthesis following "inflow") were determined by outlining the inflow areas on maps and approximately scaling the areas.

Table 11 -- Drainage Areas of Principal Tributary Streams
Drainage Area

Stream
Alleghany R.
Monongahela R.
Beaver R.
Muskingum R.
Little Kanawha R.
Hocking R.
Kanawhe R.
Raccoon Cr.
Guyandot R.
Big Sandy R.
Scioto R.
Little Sandy R.
Tygarts Cr.
Little Miami R.
Licking R.
Miami R.
Kentucky R.
Salt R.
Green R.
Wabash R.
Saline R.
Tradewater R.
Cumberland R.
Tennessee R.
(Square miles)
11,705
7,340
3,040
8,040
2,320
1,200
12,200
684
1,670
4,281
6,510
723
339
1,755
3,655
5,385
6,949
2,938
9,222
33,100
1,235
1,008
18,080
40,900

Corps of Engineers
Corps of Engineers
Corps of Engineers USGS \& C. of E . Corps of Engineers USGS
Corps of Engineers USGS
Corps of Engineers USGS
USGS \& C. of E .
USGS
USGS
Corps of Engineers
USGS
USGS
USGS
USGS
USGS
Corps of Engineers Corps of Engineers USGS
USGS
USGS

Table 12 -- Mean Daily Gage Heights, in feet, for Ohio River gaging stations (1950)

	Sewickley, Pa.				Louisville, Ky. (lower			
	June	July	Aug.	Sept.	June	July	Aug.	Sept.
Day								
1	4.67	4.26	3.49	3.42	25.20	22.80	18.85	11.30
2	4.91	3.76	3.72	3.57	24.85	18.90	16.35	10.95
3	4.93	3.74	3.93	4.63	23.95	13.50	14.25	14.75
4	5.52	3.74	4.08	4.90	27.30	11.85	13.55	16.20
5	7.14	4.83	3.94	4.39	27.80	13.05	12.95	17.60
6	7.07	5.45	3.75	4.18	28.05	15.35	12.70	18.25
7	6.18	4.74	3.55	3.94	29.55	17.00	12.00	18.55
8	5.56	4.36	3.37	3.71	29.95	18.55	10.95	15.35
9	4.98	4.00	3.37	3.53	28.60	21.85	10.75	10.85
10	4.71	3.75	3.44	3.41	26.05	22.80	10.85	11.95
11	5.04	3.78	3.46	3.32	24.10	20.20	11.10	12.45
12	5.08	3.82	3.45	3.66	21.35	15.25	10.20	1.2 .65
13	4.77	3.64	3.42	4.17	19.45	11.90	10.70	13.65
14	4.49	3.86	3.48	4.78	19.65	13.45	11.00	14.0
15	4.50	4.37	3.48	5.05	19.75	14.40	9.80	14.9
16	4.41	4.09	3.35	4.71	18.75	14.90	10.65	14.8
17	4.20	3.77	3.20	4.46	17.35	14.35	11.50	13.7
18	3.98	3.88	3.15	4.28	16.35	13.40	10.70	12.8
19	3.72	4.00	3.65	4.10	21.90	13.45	10.85	12.1
20	3.85	4.02	3.84	3.96	28.30	14.30	11.80	13.0
21.	3.96	4.14	3.61	4.03	31.20	15.90	12.20	16.0
22	3.98	4.86	3.48	5.56	32.50	16.45	21.35	22.2
23.	3.82	5.03	3.32	5.82	33.55	17.45	10.85	29.3
24	3.97	4.34	3.26	5.25	33.15	18.60	10.55	33.9
25	4.88	4.21	3.20	4.50	30.90	19.25	9.75	35.1
26	5.88	4.46	3.23	4.11	27.65	18.60	10.10	33.9
27	5.85	4.51	3.19	3.93	24.35	18.25	9.95	30.3
28.	5.08	4.20	3.10	3.83	22.95	19.55	10.50	24.9
29	4.81	4.00	3.10	3.75	24.20	19.75	10.60	17.4
30	4.63	3.70	3.26	3.62	24.10	21.15	10.90	11.6
31		3.55	3.30			21.00	11.55	

Note: The locations of Sewickley and Louisville gaging stations correspond to Sampling Points Nos. 1 and 19, respectively. At Sewickley and Louisville discharge is related directly to gage height although rate of change of stage is also a factor at Iouisville. For all other main stem Ohio River gaging stations the slope factor between gages enters into the computation of discharge.

Table 13 -- Summary of Daily Discharges at Sampling Points
Sept. 13-30, 1950

Date	1	2	3	4	5	6	7	8	9
Sept. 10.0									
13	18.0	20.8	21.2	21.5	22.5	25.6	31.6	32.3	46.9
14	28.1	26.2	28.8	29.2	28.2	31.8	36.8	37.4	52.1
15	32.4	33.2	36.4	36.7	34.4	38.2	40.8	41.5	48.5
16	26.4	28.8	30.5	30.7	31.4	35.7	37.0	36.4	48.1
17	22.3	24.5	26.7	26.8	25.4	28.7	29.5	26.9	36.6
18	19.6	21.5	21.6	21.7	22.2	25.4	25.9	24.8	32.3
19	16.9	18.7	19.9	20.0	21.2	20.7	21.0	23.0	30.6
20	15.0	16.8	17.5	17.6	16.9	18.8	19.0	20.9	30.7
21	16.2	18.0	18.1	18.7	23.4	24.7	25.1	26.8	47.0
22	42.2	41.6	44.1	45.3	46.5	50.0	55.2	56.5	116.0
23	46.3	54.3	57.7	58.3	55.5	69.3	79.8	72.2	141.0
24	36.0	39.1	38.6	39.0	45.9	57.0	65.2	67.1	102.0
25	23.1	24.8	25.8	26.1	25.4	28.6	31.8	33.7	64.7
26	17.0	18.6	19.4	19.6	18.3	20.3	22.1	20.9	37.7
27	14.6	16.1	18.3	18.5	18.0	20.1	21.4	22.0	35.9
28	13.2	14.7	16.1	16.2	17.6	19.4	20.3	18.8	28.6
29	12.2	13.6	14.4	14.5	14.1	16.1	16.8	17.1	28.0
30	10.7	12.1	11.4	11.5	15.4	15.8	16.3	16.3	25.1

$\frac{\text { Daily discharge, in } 1,000}{}$ second-feet, at indicated sampling points

Date	10	11	12	13	14	15	16	17	18
Sept.									
13	45.6	46.6	48.4	48.0	48.0	38.1	47.6	47.8	55.0
14	52.3	56.8	58.0	57.5	57.0	53.2	55.3	55.1	63.5
15	49.4	53.9	55.9	56.5	59.0	58.1	64.8	64.6	70.5
16	48.2	53.5	56.0	56.0	56.0	57.0	63.4	64.7	68.0
17	38.5	41.1	44.7	47.0	45.0	48.3	52.9	54.4	57.0
18	32.9	35.1	34.9	37.0	37.0	38.7	42.9	43.1	45.0
19	30.6	31.2	31.2	32.0	37.0	38.1	37.5	37.5	40.0
20	31.7	36.2	46.7	42.0	52.0	45.0	56.9	54.2	60.0
21	41.4	63.2	80.0	86.0	95.0	76.0	88.4	84.9	90.0
22	105.0	142.0	170.0	190.0	178.0	122.0	125.0	122.0	133.0
23	147.0	172.0	201.0	234.0	239.0	193.0	215.0	209.0	223.0
24	111.0	131.0	158.0	180.0	221.0	228.0	254.0	252.0	264.0
25	71.2	9.6	106.0	119.0	161.0	203.0	247.0	252.0	257.0
26.	38.6	42.4	54.0	67.0	100.0	154.0	208.0	216.0	218.0
27	36.4	37.1	38.9	42.0	56.0	100.0	172.0	177.0	178.0
28	29.6	31.9	35.3	37.0	40.0	49.8	122.0	126.0	124.0
29	28.1	30.1	31.1	32.5	32.0	35.8	72.0	78.8	80.0
30	26.3	22.6	21.3	23.5	22.0	32.4	38.0	39.3	39.0

Table 13 (cont) -- Summary of Daily Discharges at Sampling Points Sept. 13-30, 1950

Daily discharge, in 1,000 second-feet, at indicated sampling points

Date	19	20	21	22	23	24	25	26	27
13	57.0	59.0	60.0	102.0	103.0	117.0	134.0	312.0	328.0
14	61.0	64.0	64.0	102.0	103.0	117.0	129.0	278.0	295.0
15	70.0	68.0	72.0	107.0	105.0	118.0	124.0	246.0	257.0
16	69.0	71.0	77.0	109.0	109.0	122.0	126.0	237.0	242.0
17	58.0	64.0	78.0	103.0	107.0	120.0	125.0	233.0	237.0
18	49.0	53.0	66.0	83.0	93.0	107.0	117.0	223.0	231.0
19	42.0	46.0	54.0	67.0	74.0	83.0	87.0	168.0	200.0
20	51.0	46.0	57.0	64.0	65.0	73.0	68.0	147.0	152.0
21	81.0	68.0	80.0	78.0	70.0	89.0	90.0	162.0	150.0
22	151.0	116.0	105.0	96.0	91.0	112.0	106.0	185.0	176.0
23	214.0	197.0	121.0	112.0	107.0	128.0	113.0	185.0	185.0
24	254.0	245.0	165.0	156.0	129.0	160.0	136.0	200.0	187.0
25	253.0	258.0	220.0	200.0	182.0	215.0	183.0	234.0	220.0
26	226.0	238.0	257.0	242.0	230.0	268.0	238.0	294.0	264.0
27	186.0	201.0	255.0	252.0	252.0	293.0	276.0	339.0	318.0
28	144.0	161.0	233.0	237.0	248.0	289.0	289.0	364.0	354.0
29	89.3	112.0	175.0	202.0	222.0	260.0	273.0	365.0	366.0
30	37.0	56.0	105.0	162.0	187.0	220.0	242.0	343.0	355.0

Daily discharge, in 1,000 second-feet, at indicated sampling points $\begin{array}{llllllllll}\text { Date } & \text { A } & \text { B } & \text { C } & \text { D }\end{array}$

13	7.0	9.10	2.04	5.98	12.6	1.18	5.7	6.1	17.5
14	10.4	16.00	3.12	5.05	14.6	1.14	5.3	7.0	16.2
15	15.5	13.40	2.75	2.60	13.7	.87	6.5	5.3	115.3
16	15.5	9.32	2.25	1.35	10.0	.77	4.2	4.3	14.3
17	15.9	5.26	2.04	.83	6.8	.82	2.4	3.6	13.3
18	14.5	3.54	1.79	.50	6.3	.85	1.6	2.9	12.5
19	12.5	3.28	1.70	.33	5.7	.87	1.2	2.5	11.3
20	10.6	3.58	1.66	.25	6.7	1.70	1.1	2.8	10.5
21	9.1	5.81	1.61	.40	25.2	3.80	1.6	2.5	16.0
22	8.2	32.00	1.63	5.20	62.6	18.00	14.5	7.6	25.0
23	8.6	36.70	1.68	10.50	51.0	7.75	31.5	11.0	32.0
24	7.8	25.10	1.58	8.20	30.4	5.90	33.5	10.3	34.0
25	6.8	13.90	1.47	3.20	17.5	3.65	26.5	7.4	40.0
26	6.1	9.54	1.40	1.83	12.7	2.60	21.5	5.7	44.0
27	5.6	7.78	1.34	1.25	9.0	2.12	18.0	4.7	47.0
28	5.1	7.54	1.33	.87	8.4	1.74	11.5	3.8	46.0
29	4.6	6.82	1.34	.65	7.0	1.47	4.1	3.2	41.0
30	4.0	6.13	1.34	.50	6.1	1.29	2.1	2.7	35.0

DAILY ANALYSIS REPORT -- OHIO RIVER WATER QUALITY SURVEY

$$
\begin{aligned}
& \text { Table } 15 \\
& \text { Sampling Station No: B }
\end{aligned}
$$

こ｀टT	8＊0	$9 \varepsilon \tau$	O¢T	LT											
					ot	062	$\varepsilon \cdot 9$	oع		$0 \cdot \pi$	0° ¢ \dagger	S9	6.0	$L \cdot L$	62
${ }^{\bullet} \bullet \varepsilon \tau$	$0^{\circ} \mathrm{T}$	टटt	Oटt	02	ST	852	$5 \cdot 9$	8ε	0 －\dagger		$0 \cdot \varepsilon$ ¢	$\varepsilon 9$	己 ${ }^{\text {¢ }}$		82
$9^{-\dagger T}$	$0^{\circ} \mathrm{z}$	$\downarrow 6$	OटT	2T	ST	¢¢己	${ }^{\circ} \mathrm{S}$	TT	$0 \div \%$	$0 \cdot 0$	$0 \cdot$ ¢6	¢9	$0 \cdot \tau$	0.8	L2
$0 \cdot L T$	$s \cdot \tau$	Ott	Oटt	＋τ	OZ	¢れて	$9^{\circ} \mathrm{S}$	$\varepsilon \tau$	002	$0 \cdot 2$	$0 \cdot 0$ \＃2	29	$L^{\circ} \mathrm{O}$	$5 \cdot 8$	92
$\tau \bullet \varepsilon \Sigma$	8＊0	己ti	00t	टT	ST	Oれて	$\varepsilon \cdot 9$	82	$0 \cdot 2$	$0 \cdot 2$	$0 \cdot 0$ ¢ 2	09	$9{ }^{\circ} 0$		Se
$0 \cdot 9 \varepsilon$	$9{ }^{\circ} 0$	пот	805	8	Sz	Sez	2＊9	LZ	0.9	$0 \cdot 0$	$0{ }^{\circ} \mathrm{E}$ ¢	T9	己•O．		\＃
ع•9ヵ	8．0	OZT	9π	TT	Sz	OS己	6.5	02	$0 \cdot 7$	$0 \cdot 0$	$0 \cdot 5 L$	69	$\varepsilon \cdot \tau$		£
ごこれ	$\iota^{\circ} \mathrm{T}$	टटt	пटt	22	02	8L2	0.9	92	$0 \cdot 0 \tau$	$0 \cdot$ ¢	$0 \cdot ¢ \pi$	T．	$\varepsilon \cdot \tau$	$\varepsilon \cdot L$	己己
2•9T	$9 \cdot 0$	OHT	$9 \varepsilon \tau$	12	ST	Sos	0.5	Ot	$0 \cdot 0 \tau$		$0 \cdot 12$	oL	$\varepsilon \cdot \tau$	$5 \cdot L$	т2
$0 \cdot S T$	$0 \cdot \tau$	$8 \varepsilon \tau$	ट\＆t	Se	02	0t	6.5	t2	$0 \cdot$ ¢	$0 \cdot 8$	0^{\bullet} ¢ \dagger	OL	$9{ }^{\circ} 0$	$\dagger^{\circ} \mathrm{L}$	O2
$6 \cdot 9 \tau$	900	8 TT	己ti	己	O2	\dagger ¢	T＊9	โ己	$0 \cdot 8$	0.0	$0 \cdot \varepsilon 6$	OL	$9^{\circ} 0$	$L \cdot L$	6τ
$9^{\bullet} \cdot \underline{\text { c }}$	$\overbrace{}^{\circ} \mathrm{O}$	$9 \pi \mathrm{~T}$	0टt	6τ	St	092	$\varepsilon \cdot 9$	\＃	$0 \cdot \pi$	$0^{\circ} \mathrm{T}$	$0 \cdot \varepsilon$ ¢	04	ガロ		$\begin{array}{r} 8 \tau \\ q đ \partial S \\ \hline \end{array}$
	mdd पо．I	$\begin{gathered} \text { mवd } \\ \text { ssaupxeH } \end{gathered}$	$\begin{gathered} \text { mdd } \\ \text { sə } \begin{array}{c} \text { meqd } \\ \hline \text { ns } \end{array} \end{gathered}$	$\begin{gathered} \text { mdd } \\ \text { səpṭ. } \\ \hline \end{gathered}$		$\begin{gathered} \text { mdd } \\ \text { spitos } \\ \text { [en.ou } \\ \hline \end{gathered}$	Hd	$\begin{gathered} \text { udd } \\ \kappa_{7 \text { tuTuTTeytV }} \\ 0 \mathrm{~W} \\ \hline \end{gathered}$			$\begin{gathered} \left(000^{\prime} \mathrm{I}\right) \\ \text { N d W } \\ \text { pauxyfuop } \\ \hline \end{gathered}$	$\stackrel{\substack{\text { Iod } \\ \text { dmo }}}{\text { nmə }}$	$\begin{aligned} & \text { udd } \\ & \alpha 00 \in \end{aligned}$	$\begin{aligned} & \text { mdd } \\ & 0 \text { a } \end{aligned}$	

DAILY ANALYSIS REPORT -- OHIO RIVER WATER QUALITY SURVEY
Analyzed by: Pennsylvania

DAILY ANALYSIS REPORT -- OHIO RIVER QUALITY SURVEY

S＊TI	$0^{\circ} \mathrm{T}$	8TT	0．901	$S^{\circ} \mathrm{OT}$	5	6 H	$6 \cdot 9$	TT	ε	S＊O－	$0 \cdot \tau T$	O2	て・	$6 \cdot 8$	62
ご9T	$8{ }^{\circ} 0$	HtT	$0 \cdot 96$	$0{ }^{\circ} \mathrm{OT}$	ε	ELC	$\varepsilon \cdot L$	$\varepsilon \tau$	$5 \cdot 2$	$5 \cdot 2-$	ザ己	OZ	$*^{*} \tau$	8．8	8 8
$5 \cdot 8 t$	$8{ }^{\circ} 0$	807		$5 \cdot \square$	\checkmark		$2 \cdot L$	TT	$S \cdot T$	T－	9＊カ	6T	T＊τ	$0 \cdot 6$	L．
$9^{\circ} 6 \mathrm{~L}$	$8^{\circ} 0$		8＊れてt	$5 \cdot \square$	5	2L己	0.2	OT	$S \cdot 2$	$S \cdot T-$	サ＊	9τ	$8^{\circ} 0$	0.6	92
T＊92	$\%^{\circ} \mathrm{T}$	OZT	\sim^{*} STT	TT	OE	26T	8.9	TT	2	T－	［\％\％	6 T	$0^{\circ} \mathrm{T}$	T＊8	S己
$0 \cdot 6 \varepsilon$	TIN	ટ¢T	8＊れてT	乙己	$\varepsilon \dagger$	282	$0 \% 2$	＋	乙	己－	$0 \cdot 7$ 如	8 \％	$\dagger \bullet$	$5 \cdot 2$	サて
$\varepsilon \cdot 8 \zeta$	$\varepsilon \cdot 0$	\＃टt	9^{*} Sot	$5 \cdot 8 T$	59	LટE	$T \cdot L$	7	$5 \cdot \sim$	$\varepsilon-$	0° OTL	02	$\varepsilon \bullet \varepsilon$	$9^{\circ} 9$	£ટ
$\varepsilon \cdot S \rightarrow$	$L \cdot O$	$8 \dagger \tau$		$S \cdot \varepsilon \tau$	OS己	625	$\varepsilon \cdot L$	$L \tau$	$S^{\circ}{ }^{\text {c }}$	T－	$0^{\circ} \mathrm{E}$ LL	T2	$9 * 2$	$7{ }^{\circ} \mathrm{L}$	ટટ
L．8T							१วอтน	OS sotdmes on							TC
$9^{\circ} \mathrm{L} \tau$	$8^{\circ} 0$	OST	$8^{\circ} \mathrm{CLT}$	6 T	S	SSE	$9 \cdot 9$	9	$5 \cdot 2$	$5 \cdot 0^{-}$	9＊＊	ટટ	$6 \cdot 0$	$0 \cdot 8$	02
$0 \cdot 02$	0．${ }^{\circ}$	8t	89τ	S．8T	L	908	$5 \cdot 9$	\dagger	ε	S．T	ガて	$\varepsilon ટ$	T＊O	8.2	6 T
$L \cdot \tau 己$	$0^{\circ} \mathrm{T}$	$\varsigma \& \tau$	己•¢9	$S \cdot S T$	02	262	L＇9	9	ε	7	ザこ	$\varepsilon ટ$	ごo	$\pi^{\circ} 2$	
	$\begin{gathered} \text { mdd } \\ \text { uoxI } \end{gathered}$	mad әupxeH	$\begin{gathered} \text { udd } \\ \text { sə7eपवपदs } \end{gathered}$	uवd sәртฺォотчจ	mad кาтртqun工	modd spttos Teqoit	Hd		$\begin{gathered} \text { PTUD } \\ \text { wad } \\ \text { ueपd } \\ \kappa_{4}+T \end{gathered}$	$\begin{gathered} 7 \mathrm{OH} \\ 107 \\ 07 \end{gathered}$	$\begin{gathered} \left(000^{\prime} \tau\right) \\ \mathrm{N} \subset \mathrm{~W} \\ \text { paxis !zoo } \end{gathered}$	$\begin{gathered} \mathrm{J}_{\mathrm{O}} \\ \text { đmə } \end{gathered}$	$\begin{aligned} & \text { mad } \\ & \mathrm{a} 0 \mathrm{G} \end{aligned}$	$\begin{aligned} & \text { mdd } \\ & 0 \text { व } \end{aligned}$	$66 \mathrm{~T}$ ear
						$\varepsilon \tau$ urea \％หวот ：пот̧eวот					† ：On uotreas sutidurs				

T＊9	$9^{\circ} 0$	85τ	O．Stt	$0 \cdot 8 \%$	5	678	$\varepsilon \cdot \tau$	$0 \cdot \angle T$	S．t g－	9＊ヶ	\＃	8．0		6
${ }^{*} 6 \tau$	$\varepsilon \cdot 0$	097	8＊00t	$5 \cdot \mathrm{LS}$	5	SSL	ガし	$0 \cdot 2 t$	2 ع－	ガて	己2	$\varepsilon \cdot 己$		2
T＊02	$5 \cdot 0$	29τ	己－Stt	$0 \cdot 59$	ε	£ャ8	$+^{\circ} \mathrm{L}$	$0 \cdot 9 \tau$	\＆¢．2－	ガこ	02	$S^{\circ} \mathrm{T}$		L2
$\varepsilon \cdot 02$	$9{ }^{\circ}$	08 T		S．06	Ot	T97	$\varepsilon \cdot L$	$0 \cdot 02$	$5 \cdot \mathrm{C}$＋	9＊＊	6τ	ガT		92
$9 * 82$	$9^{\circ} 0$	9 92	Hott	$s \cdot E t t$	92	29ヶ	$\varepsilon \cdot L$	S． 2	$5 \cdot \mathrm{~s} \cdot \mathrm{~S}$－	$\varepsilon \cdot 0$	6	$\varepsilon \cdot \tau$		sz
0.25	¢¢	002	己－Stt	$S^{\bullet} 5_{8}$	Sटt	ĘS	$5 \cdot 2$	$5 \cdot 0 \varepsilon$	$25 \cdot 2-$	$6^{\circ} \mathrm{\varepsilon}$	O2	$6{ }^{\circ} \mathrm{O}$	［ 2	\＃已
ع．69	ご0	оt己	が巾\＆T	0×9	Sot	LES	がL	$5 \cdot \varepsilon z$	2 S S－	0＊れて	02	T＊${ }^{\circ}$	0.9	£
$0 \cdot 05$	がO	96 T	－－カ九	$0 \cdot 59$	Sot	85\％	ガL	$0 \cdot$ こट	¢ $5 \cdot \varepsilon-$	$0 \bullet$ ¢ 己く	£	$\varepsilon \cdot \sim$	ガレ	In
L｀れて	く・	85 T	己 $¢$ ¢ τ	$5 \cdot 0 \pi$	ε	562	$2 \cdot L$	$0 \cdot$ ¢ ${ }^{\text {c }}$	$0 \cdot \tau \quad \varepsilon-$		£己	己「 τ	$0{ }^{\circ} 8$	İ
$8{ }^{\circ} \mathrm{8T}$	己｀0	297	8＊ヶटT	$5 \cdot$－	ς	S氻	$\tau \cdot L$	$0 \cdot \pi$	S．己 ${ }^{\text {－}}$	$0 \cdot \tau$	£己	こ「	$8 . \mathrm{L}$	Oz
L．02	$\dagger{ }^{\circ} \mathrm{O}$	8LT	$9 \cdot \varepsilon S T$	$0 \cdot \varepsilon \varsigma$	Se	668	$0 \cdot 2$	$0 \cdot 01$	己 S＇t－	6.0	£		$L \cdot L$	6 T
カ＊S己	$9{ }^{\circ} 0$	$\dagger 6 \tau$	ザこ¢т	$0 \cdot 29$	02	TO\＃	$2 \cdot \tau$	$0^{\circ} \mathrm{CT}$	$S^{\circ} \mathrm{T} \quad \mathrm{C}^{-}$	9＊ヶ	\dagger	$9^{*} \mathrm{~T}$		$\begin{array}{r} 8 \mathrm{~s} \\ \cdot q \mathrm{~d} \partial \mathrm{r} \end{array}$
	$\begin{aligned} & \text { wad } \\ & \text { uoxI } \end{aligned}$	แ．da sәиртен					нd	$\begin{aligned} & \text { udd } \\ & \text { אqụutceytv } \\ & 0 \mathrm{~W} \end{aligned}$			$\begin{gathered} D_{0} \\ \text { dmá } \end{gathered}$	$\begin{aligned} & \text { mdd } \\ & \text { © } 0 \text { g } \end{aligned}$	$\begin{aligned} & \text { wad } \\ & 0 \quad 0 \end{aligned}$	$0 ¢ 6 \tau$ ә甲ヶ¢
										9 ：on uotyeqs surtdures				

Table 23
Sampling Station No: D

$8 \cdot 9 \tau$	$9^{\circ} 0$	$9 \varepsilon \tau$	O．OZT	$S \cdot S T$	ST	8.78	$\varepsilon \cdot L$	$S \cdot L \tau$	己＋	$0 *$ 2	加	$0^{\circ} \mathrm{C}$	$2 \cdot 6$	S
$\varepsilon \cdot 0 己$	$0 \cdot \tau$	HST	2•6S己	$0 \cdot \varepsilon 9$	8ε	651	$5 \cdot 2$	$S \cdot L T$	＜$S^{\circ} \varepsilon^{-}$	$0 \cdot$ โ己	02	$6^{\circ} 0$	$9^{\circ} 8$	82
サ＂场	$9^{\circ} 0$	89τ	0＊02t	$0 \cdot L L$	£ย	787	$s \cdot 2$	$s \cdot 6 \tau$	S＇U ${ }^{-}$	0° TT	02	T＇τ	L＇8	Lट
T＊ C	$9^{\circ} 0$	99 T	己．STI	$5 \cdot 29$	HE	68ε	$\varepsilon \cdot L$	$5 \cdot 9 \tau$	E．$¢$－て－	$9{ }^{\circ} \dagger$	02	6.0	8.2	92
8^{*} T ε	$9^{\circ} 0$	$25 T$	己・く\＆โ	0．2ヵ	\checkmark	ITE	$\varepsilon \cdot L$	$0 \cdot 2 T$	己－サ－	$\varepsilon \cdot 0$	02	$0^{\circ} \mathrm{J}$	0.8	Sट
2．59	TTN	98τ		$5 \cdot T S$	Sot	68 т	$7{ }^{\circ} \mathrm{L}$	$0 \cdot 02$	$0^{\circ} \mathrm{C} S^{\circ} \varepsilon-$	ع＊＇t	02	9＊サ	$9{ }^{\circ} 9$	－九己
8．6L	$2 \cdot 0$	797	こ・¢9t	0＊2t	OTT	LLH	$7^{\circ} \mathrm{L}$	$0 \cdot S T$	0＊2 こ－	$\varepsilon \cdot L$	ટ己	$\varepsilon \cdot \sim$	L•9	દટ
己®S	$\mathrm{C}^{\circ} 0$	ટદโ	9^{*} SOT	$0 \cdot 7$	562	T67	$7^{\circ} \mathrm{L}$	$0^{\circ} \mathrm{ST}$	$S^{\circ} \tau \quad z^{-}$	0＊97	દટ	$サ ゙ て$	$\tau \cdot L$	－2ટ
τ^{*} S	$9^{\circ} 0$	29τ	$\tau^{\bullet} \varepsilon_{9 \tau}$	0° 功	OZ	LटE	$\varepsilon \cdot L$	0° TT	S．t S＊O－	0．97	＋2	ザを	6.2	T2
$0 \cdot 6 \mathrm{~T}$														02
0＊T2	$6^{\circ} 0$	OLT	9^{\bullet} ¢ $¢ \tau$	S•帆	OS	567	$6 \cdot 9$	$5 \cdot 8$	$5 \cdot 25 \cdot 0-$	0＊97	H	L・て	$9^{\circ} \mathrm{L}$	6 T
$6 \cdot$ S	$8^{\circ} 0$	HLT	でと9	0^{\bullet} ¢ $¢$	S2	28ะ	$2 \bullet L$	$0 \cdot T T$	己 己－	9＊カ	\＃	$\varepsilon \cdot \tau$	$5 \cdot L$	$\begin{array}{r} 8 T \\ \cdot 7 d \partial S \\ \hline \end{array}$
	mdd uox I	wdd ssəupл飞н		mdd sәрт̣．สотчว		$\begin{gathered} \text { udd } \\ \text { spitos } \\ \text { [ध70山 } \end{gathered}$	H ${ }^{\text {® }}$			$\begin{aligned} & \left(000^{\prime} \tau\right) \\ & \text { N व W } \\ & \text { pounçuop } \end{aligned}$	$\begin{gathered} \text { No } \\ \text { düat } \end{gathered}$	$\begin{gathered} \text { mवd } \\ \text { व } 0 \text { g } \end{gathered}$	mad 0 a	056τ әұеฮ
$3-$					6τ ured \％หวот：чотұеวот					L ：on motqe7s suit ${ }_{\text {dures }}$				

DAILY ANALYSIS REPORT -- OHIO RIVER WATER QUALITY SURVEY

Date	$\begin{aligned} & \text { D } 0 \\ & \text { ppm } \end{aligned}$	$\underset{\text { ppm }}{\text { B } 00 D}$	$\begin{gathered} \text { Temp } \\ { }^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & \text { Confirmed } \\ & \text { M P N } \\ & (1,000) \end{aligned}$	Aci to pp	dity phen p.	$\begin{gathered} \text { MO } \\ \text { Alkalinity } \\ \mathrm{ppm} \end{gathered}$	pH	Total Solids ppm	Turbidity ppm	$\begin{gathered} \text { Chlorides } \\ \text { ppm } \end{gathered}$	Sulphates ppm	Hardness ppm	$\begin{array}{r} \text { Iron } \\ \text { ppm } \end{array}$	$\begin{gathered} \text { Discharge } \\ \text { cfs } \\ (1,000) \end{gathered}$
1950					Hot	Cold									
$\begin{aligned} & \text { Sept. } \\ & 18 \end{aligned}$	7.3	2.4	24	11.0	-1	2.5	8	7.2	378	20	45.0	182.4	180	0.7	24.8
19	7.6	1.2	23	4.6	-1.5	2.5	12.5	7.1	440	25	49.0	172.8	180	0.2	23.0
20	7.7	1.4	24	11.0	-3	0.5	12.0	7.2	384	25	46.0	250.0	184	0.1	20.9
21	7.8	1.3	23	4.6	-1.5	1.5	12.0	7.3	229	25	44.0	172.8	180	0.2	26.8
22	7.8	2.3	23	11.0	-1	1.5	9.0	7.3	377	80	44.5	153.6	160	0.1	56.5
23	6.3	1.8	22	46.0	-2	1.5	12.0	7.3	313	120	30.0	124.8	132	1.0	72.2
24	6.3	1.9	20	4.3	-2	2	12.0	7.3	354	100	26.0	105.6	124	Nil	67.1
≥ 5	6.1	0.5	19	2.1	-1.5	2	12.5	7.05	250	60	24.0	115.2	148	1.0	33.7
≥ 6	6.5	1.3	19	1.5	-2	3.5	16.5	7.25	358	42	26.5	124.8	140	0.7	20.9
\therefore	7.8	2.1	20	2.4	-1	2.5	16.5	7.45	394	32	27.5	115.2	136	0.6	22.0
?8	7.4	2.0	20	2.4	-2.5	2.0	15.5	7.55	746	41	30.5	91.2	170	0.6	18.8
9	8.3	0.7	23	2.4	-4	2	17	7.4	278	31	38.5	91.0	140	0.4.	17.1

[^1]DAILY ANALYSIS REPORT -- OHIO RIVER WATER QUALITY SURVEY
Table :27
Location: Gallipolis Dam
Analyzed by: West Virginia

$8 \cdot 5 ¢$	\＆．0	26	02	02	OSt	St¢	$\varepsilon \cdot L$	¢ ${ }_{0}$		${ }^{6 \cdot T}$	$8 \cdot \%$	己2	$L \cdot \varepsilon$	0.662
8.6	$\tau \cdot 0$	${ }^{\text {zot }}$	02	8τ	OLZ	ESS	E．L	โ8	$5 \cdot \mathrm{c}$	$\varepsilon \cdot \tau$	\＆゙ヵ	02	8 \％	\＆．8 82
－ 0 －0t	$2 \cdot 0$	H2	$¢ 2$	$\varepsilon \tau$	oos	29\％	$T \cdot L$	58	5.0	8＊0	$0 \cdot \leqslant \tau$	Tz	$9 \cdot 2$	$0 \cdot 8 \mathrm{Lz}$
	L．0	＋2	5%	9τ	ess	¢LS	$\varepsilon \cdot L$	ז2	$8{ }^{\circ} \mathrm{T}$	－${ }^{\circ}$	¢． 2	St	\dagger カ	$5 \cdot 992$
$0 \cdot ¢ 02$	$5 \cdot 0$	99τ	97	己	$0<9$	09ヶ	τ^{-L}	58	$0 \cdot 2$	0	¢．${ }^{\text {c }}$	St	2• ε	$6 \cdot 2 \mathrm{Sz}$
0．8टz	8.0	26	$¢_{4}$	LT	OLO＇t	262	$\varepsilon \cdot L$	9\％	$L^{\circ} \cdot{ }^{\text {T }}$	0	¢．6	02	0.5	L．9 ${ }^{\circ} \mathrm{F}$
$0 . ¢ 6 \tau$	$\dagger{ }^{+1}$	00t	68	${ }^{\text {8 }}$	00t＇t	LES＇${ }^{\text {T }}$	$\varepsilon \cdot L$	95	$\varepsilon \cdot 2$	8．0	0．09\％	Tz	\＆\dagger	L．9 ¢
0•टटт	$0 \cdot 8$	60 T	LS	5	059	089	$L \cdot L$	87		$\mathrm{z}^{\circ} \mathrm{T}$	0．0st	¢	$1 \cdot \mathrm{O}$	$5 \cdot L$ ez
0.92	$\dagger 0$	STt	＋6	82	SLL	¢62＇T	S．L	＋9	$8 . \tau$	8.0	0．9ヶて	九	$0 \cdot \dagger$	5.8 ¢
0.5%	6.0	${ }_{¢} \dagger \pi$	TTI	¢ ${ }_{\square}$	OSt	TTS	$5 \cdot L$	88	$8{ }^{\circ}$	\＆．0	$0 . ¢ 6$	九	T＇τ	$9 \bullet 808$
T＊ 8	T－0	$5{ }^{\text {ct }}$	тот	功	OL	TLE	\＆ $2 \cdot L$	功	$8 \cdot 2$	$L^{\circ} \mathrm{T}$	$5 \cdot \tau$	\＆	$\varepsilon \cdot z$	$\dagger{ }^{\circ} 86$
L．88	$\tau^{\circ} 0$	26T	тঠt	6π	SL	¢9\％	$8 \cdot 2$	¢9	$8 . \tau$	ε.	6.	\＆	$\mathrm{e}^{\circ} \tau$	
	$\begin{gathered} \text { wad } \\ \text { uoxI } \\ \hline \end{gathered}$	$\begin{gathered} \text { madd } \\ \text { ssaup } x \text { I } \end{gathered}$	$\begin{gathered} \text { udd } \\ \text { soquydTnS } \\ \hline \end{gathered}$		$\begin{gathered} \text { udd } \\ \kappa_{7} \text { पрp!q-mi } \end{gathered}$	$\begin{gathered} \text { wdd } \\ \text { spitios } \\ \text { TBPOL } \end{gathered}$	${ }_{\text {Ha }}{ }^{\text {d }}$	$\begin{gathered} \text { wdad } \\ \substack{\text { KȚuTciextV } \\ 0 \\ 0} \\ \hline \end{gathered}$				$\begin{gathered} \mathrm{J}_{\mathrm{o}}^{\mathrm{dma}} \mathrm{~L} \end{gathered}$	$\begin{gathered} \text { wdd } \\ 000 \end{gathered}$	
\％	кяэпาиә	\％：： Aq P	ezATeut				Oll wea				St ：on	－077875	）${ }^{\text {atcdu }}$	dimes

Table 35
Sampling Station No: G

$\begin{aligned} & \text { Date } \\ & 1950 \end{aligned}$	$\begin{aligned} & \text { D O } \\ & \text { ppm } \end{aligned}$	$\begin{gathered} \text { BOD } \\ \text { ppm } \end{gathered}$	$\underset{\mathrm{C}}{\substack{\text { Temp }}}$	$\begin{aligned} & \text { Confirmed } \\ & \text { M P N } \\ & (1,000) \end{aligned}$	$\begin{aligned} & \text { Acio } \\ & \text { to } \\ & \text { ppn } \\ & \text { Hot } \end{aligned}$	idity phen研 Cold	$\begin{gathered} \text { M O } \\ \text { Alkalinity } \\ \text { ppm } \end{gathered}$		Total Solids ppm	$\begin{gathered} \text { Turbidity } \\ \text { ppm } \end{gathered}$	$\begin{aligned} & \text { Chlorides } \\ & \text { ppm } \end{aligned}$	$\begin{aligned} & \text { Sulphates } \\ & \text { ppm } \end{aligned}$	$\begin{gathered} \text { Hardness } \\ \text { ppm } \end{gathered}$	$\begin{aligned} & \text { Iron } \\ & \text { ppm } \end{aligned}$	$\begin{gathered} \text { Discharg } \\ \text { cfs } \\ (1,000) \end{gathered}$
$\begin{aligned} & \text { Sept } \\ & 18 \end{aligned}$	7.8	1.5	23	. 4	1.0	2.0	76	7.9	400	53	33	77	126	0.3	1.6
19	8.4	0.5	23	23.0	0.3	5.3	38	7.1	376	50	39	107	138	0.2	1.2
20	8.7	2.3	23	23.0	0.8	1.0	43	7.5	903	105	43	108	145	0.6	1.1
21	7.9	4.4	23	1,100.0	3.7	4.0	54	7.4	1,353	438	34	89	133	0.4	1.6
22	7.3	5.6	23	150.0	0	3.2	68	7.6	1,497	990	22	85	112	0.8	14.5
23	7.6	6.8	21	1,100.0	1.0	3.0	64	7.3	891	875	18	63	76	0.5	31.5
24	8.3	6.4	19	4.3	0.3	2.0	81	7.1	822	933	21	83	103	1.0	33.5
25	7.9	2.2	15	9.3	0	2.0	26	7.2	595	800	16	25	133	0.7	26.5
26	8.5	1.0	15	15.0	0.4	4.0	22	7.3	370	380	19	31	74	0.2	21.5
27	8.4	4.1	21	1.5	0.3	1.8	48	7.5	415	475	13	16	81	0.1	18.0
28	8.7	4.2	20	240.0	0.8	1.8	76	7.2	414	235	19	13	93	0.5	11.5
29	8.7	2.5	$\begin{array}{ll} 23 \\ \text { te: } & \\ \mathrm{Se} \\ \mathrm{ab} \end{array}$	$\begin{aligned} & 9.3 \\ & \text { ampling poil } \\ & \text { bout one mi } \end{aligned}$	$\begin{aligned} & 2.5 \\ & t \mathrm{c}^{2} \\ & \text { e upst } \end{aligned}$	$\begin{gathered} 5.8 \\ \text { is on } \\ \text { tream } \end{gathered}$	39 Licking Rive rom Ohio Riv	$\begin{aligned} & 7.1 \\ & \text { or at at } \\ & \text { ver) } \end{aligned}$	$\begin{aligned} & 375 \\ & \text { bridge on } \end{aligned}$	$\begin{gathered} 165 \\ \text { on route 28, } \end{gathered}$	$\begin{gathered} 23 \\ \text { in built-u } \end{gathered}$	$\begin{gathered} 21 \\ \text { up area, eas } \end{gathered}$	102 of Cov	$\begin{aligned} & 0.2 \\ & \text { ington, } \end{aligned}$	4.1

DAILY ANALYSIS REPORT -.. OHIO RIVER WATER QUALITY SURVEY

$\begin{aligned} & \text { Jate } \\ & 1950 \end{aligned}$	$\begin{aligned} & \text { D O } \\ & \text { ppm } \end{aligned}$	$\begin{gathered} \text { B O D } \\ \text { ppm } \end{gathered}$	${ }_{\mathrm{O}}^{\mathrm{C} p}$	$\begin{gathered} \hline \text { Confirmed } \\ \text { M P N } \\ (1,000) \end{gathered}$		Acidity to phen ppm Cold	$\begin{gathered} \text { M O } \\ \text { Alkalinity } \\ \text { ppm } \end{gathered}$		Total Solids ppm	$\begin{aligned} & \text { Turbidity } \\ & \text { ppm } \end{aligned}$	Chlorides ppm	Sulphates ppm	Hardness ppm	$\begin{aligned} & \text { Iron } \\ & \text { ppm } \end{aligned}$	Discharge cfs $(1,000)$
$\begin{aligned} & \text { 3ept } \\ & 18 \end{aligned}$	9.4	2.9	20	0.4	0	0	358	8.1	371	45	18	43	241	0.1	12.5
19	9.7	3.4	21	9.3	0	0	372	8.3	378	60	22	34	241	0.1	11.3
30	9.7	3.6	23	9.3	0	0	342	7.6	376	45	20	50	241	0.1	10.5
21	8.7	3.6	23	4.3	0	3	355	8.0	389	60	21	48	237	0.1	16.0
32	7.4	4.8	21	15.0	0	0	360	8.0	380	70	17	52	239	0.1	25.0
≥ 3	5.7	3.1	23	43.0	0	2	312	8.0	429	170	35	58	234	0.2	32.0
34	5.2	2.7	19	75.0	0	2	262	7.5	524	230	24	52	181	0.2	34.0
35	6.0	2.0	19	93.0	0	3	194	7.6	498	260	11	42	135	0.3	40.0
?6	6.5	2.1	19	23.0	0	5	235	7.5	594	270	13	26	153	0.3	44.0
$? 7$	6.4	1.9	18	43.0	0	0	257	7.8	506	240	10	20	151	0.3	47.0
! 8	6.9	1.8	18	2.3	0	2	253	7.6	443	180	12	24	162	0.2	46.0
9	6.7	2.2	18	43.0	0	1	280	7.9	409	190	11	25	167	0.1	41.0
	\cdots	(Note: Sampling point is on Wabash River 27 stream miles above confluence with Ohio River at Fletc Ferry (terminus of State Road 62.)													

DAILY ANALYSIS REPORT -- OHIO RIVER WATER QUALITY SURVEY

DAILY ANALYSIS REPORT -- OHIO RIVER WATER QUALITY SURVEY

[^0]: * Physical and chemical quality only; bacterial quality influenced by pollution between sampling point and water intake.

[^1]: 4 : ON पOŢ7e7S sutctưes

