Toxics Substances Control Program

Cincinnati to Louisville Field Survey

Ohio River Valley Water Sanitation Commission

RESULTS OF OCTOBER 1989 FIELD SURVEY CINCINNATI - LOUISVILLE SEGMENT OHIO RIVER

TOXIC SUBSTANCES CONTROL PROGRAM

Ohio River Valley Water Sanitation Commission (513) 421-1151

June 1992

TABLE OF CONTENTS

1.	BACKGROUND
11.	SURVEY DESIGN 4 Objective 4 Sampling Locations 4 Analytes 6 Participants 6 Quality Assurance/Quality Control 7
III.	SURVEY RESULTS 7 Overall 7 Assessment by Objective 8
IV.	CONCLUSIONS
V.	FOLLOW-UP ACTIONS
	TABLES
Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 Table 8 Table 9 Table 1 Table 1 Table 1	Communities with Combined Sewer Systems
	FIGURES
Figure : Figure : Figure : Figure : Figure :	Arsenic Concentrations In Sediments (mg/kg)

I. BACKGROUND

The Ohio River Valley Water Sanitation Commission, ORSANCO, is conducting investigations of segments of the Ohio River as part of its Toxic Substances Control Program. The segment investigations involve the following activities:

- ◄ Analysis of historic data
- Recommendation for field survey
- Analysis of field survey data
- Recommendation of follow-up work
- Determine needs for additional work/recommend control program

The segment of the Ohio River from Cincinnati, Ohio to Louisville, Kentucky is the scope of this report. A report evaluating historic data and recommending a field survey was completed in January 1989. The field survey took place in October 1989. This report presents an analysis of those data and recommends additional data collection.

Analyses of historic data showed long-term water quality problems. These problems potentially impact aquatic life (copper and lead), human health (arsenic, chloroform and nickel) and contaminate fish tissue (chlordane, mercury, phenolics, and polychlorinated biphenyls). Contributions of these pollutants come from both point and nonpoint sources. Recommendations from the January 1989 reports included: (1) collection of water column samples for analysis of volatile organic chemicals, phenolics and metals at low flow conditions: (2) collection of sediment samples for analysis of metals, PCBs and chlordane: (3) collection of fish tissue samples for analysis of chlordane and PCBs, and; (4) routine monitoring of Mill Creek in Cincinnati. Collection of water column and sediment samples occurred in October 1989. The fish tissue sampling was not completed due to resource problems.

Parameters of Concern

Table 1 shows the parameters of concern for the Cincinnati-Louisville segment of the Ohio River. The table shows those pollutants identified in three separate reports. All three reports used similar methods for analysis. Application of the Seasonal Kendaii Test for trends shows copper, lead and phenolics significantly decreasing for the 1977-1987 period. Arsenic, mercury and nickel were not evaluated for trends due to an insufficient number of samples.

TABLE I - CINCINNATI - LOUISVILLE SEGMENT TOXIC SUBSTANCES CONTROL PROGRAM Parameters of Concern Published Date The Presence of Toxic Substances in the Ohio River 1986 **Organics** Metals Copper @ Chlordane **Phenolics** Mercury @ Polychlorinated Biphenyls (PCBs) 1,1,1-Trichloroethane Methylene Chloride Published Data Cincinnati - Louisville Recommendation 1989 Metals **Organics** Arsenic Chloroform @ Chlordane Copper Methylene Chloride Lead @ Polychlorinated Biphenyls (PCBs) Mercury Nickel **Phenolics** Published Date 1990 Assessment of Water Quality Conditions: Water Years 1988-1989 **Organics** Metals @ Chlordane Copper Lead @ Polychlorinated Biphenyls (PCBs) Nickel

Table 1 indicates changing concerns since the publication of <u>The Presence of Toxic Substances in the Ohio River</u>. Arsenic and nickel have emerged as pollutants of concern due to a lower detection level. Mercury was not included as a pollutant of concern in the <u>Assessment of Water Quality Conditions - Water Years 1988-1989</u> because mercury is not found at levels of concern in fish tissue. The change in concern for the volatile organics is due to a change in analysis. The more recent analysis considers overall exposure to carcinogenic pollutants rather than individual criteria violations.

These parameters have a significant decreasing trend for 1977-1987

[@] Parameter of Concern due to Presence of Fish Tissue

Inventory of Facilities

Ninety seven facilities discharge to the Ohio River in the study segment. These include 58 industrial facilities and 20 municipal waste water treatment plants (WWTPs). Table 2 is a summary of those discharges. Twelve of the facilities are in Ohio, 63 are in Kentucky, and 22 are in Indiana. Appendix 1 contains a complete listing of these facilities.

TABLE 2	
SUMMARY OF DISCHARGES TO THE OHIO MILE POINT 0 - 85) RIVER
Municipal WWTPs flow > 5.0 MGD	7
Municipal WWTPs flow < 5.0 MGD	13
Private WWTP	10
Water Treatment Plants	99
Chemical Manufacturing Facilities	12
River Terminals	19
Power Stations	10
Other	17
Total Permitted Facilities	97

Six of the communities along the study segment have combined sewer systems transporting both waste water and storm water runoff. These systems overload during periods of heavy rainfall. This results in inadequate treatment of waste water and direct discharge of untreated sewage into the Ohio River. Table 3 lists those communities with combined sewer systems.

	TABLE 3								
COMMUNITIES WITH COMBINED SEWER SYSTEMS									
Mile Point	Municipality								
470.0	Newport, Kentucky								
472.5	Cincinnati, Ohio								
545.0	Carrollton, Kentucky								
601.1	Jeffersonville, Indiana								
605.0	Louisville, Kentucky								
609.5	New Albany, Indiana								

Urban runoff has been identified as contributing metals, PCBs and chlordane to the Ohio River. Urban runoff is delivered to the Ohio River by storm water discharges and combined sewer overflows.

A concern of the Commission is the transport of toxic substances from contaminated ground water to the surface water. The Commission inventoried sites that potentially have contaminated the ground water and several areas along the study segment have been identified. For the study segment there are 45 sites with the potential to impact ground water, with 8 sites evaluated to have severe contamination. The types of contaminants identified include metals, organics and other inorganics. There is a need to obtain additional data to characterize this problem.

There are 29 public water supplies along the Ohio River in the Cincinnati-Louisville segment. Five of these facilities (serving over 1.8 million people) use the Ohio River as their raw water source. Twenty-four of these utilities (serving over 125,000 people) use ground water pumped from the alluvial aquifer adjacent to the Ohio River. Appendix 1 contains a complete listing of all the public water supplies in the study area.

II. SURVEY DESIGN

Objective

The objective of the October 1989 field survey was to: characterize the distribution of PCBs and chlordane in the sediments and fish of the Ohio River and to delineate sources of metals and certain organics present in the Ohio River under low flow conditions. The specific recommendations from the January 1989 report are: (1) collection of water column sampling for analysis of volatile organic contaminants, phenolics and metals at low flow conditions; (2) collection of sediment samples for analysis of metals, PCBs and chlordane; (3) collection of fish tissue samples for analysis of chlordane and PCBs; (4) routine monitoring of Mill Creek in Cincinnati, Ohio.

Sampling Locations

Sampling locations were selected to isolate the effects of urban and industrial areas on the Ohio River. Five stations provided data on inputs of toxic substances from the tributaries. Six months of monitoring of Mill Creek in Cincinnati was done to better understand its contribution of toxic substances at different flow conditions. Numerous combined sewer overflows discharge into Mill Creek discharging untreated domestic and industrial wastes. Table 4 lists the sampling stations, the types of samples collected and shows the number of discharges between stations on the Ohio River. Rubbertown is an industrial area primarily producing plastics in southern Louisville. Appendix 1 includes sampling stations with the discharge list.

TABLE 4 In Stream Sampling Locations

	Bivar	Location	Sample Matrix	Discharges@	3 6
46.2.8 Oh	Ohio	Cincinnati Water Works	Water		
2	Little Miaml	Kellogg Ave. Bridge	Sediment		
470.24 Lick	Licking	Downstream of Banklick Creek	Sediment		
Ş	Ohio	Upstream of Mill Creek	Sediment	0	က
in V	Mill Creek	Downstream of Barrier Dam	Sediment		_
454.0 0.754	Ohio	Downstream of Mill Creek	Sediment	-	-
* 00	Great Miaml	Mile Point 1.0	Sediment		
492.0 Ohic	Ohio	Downstream of Great Miami	Sediment	01	က
100 100 100 100 100 100 100 100 100 100	Kentucky	Lock and Dam1	Water/Sediment		
559 0 Ohio	Ohio	Upstream of Madison, IN	Water	12	13
563.0 Ohic	Ohio	Downstream of Madison, IN	Water	_	_
598 0 Ohi	Ohio	Upstream of Louisville	Sediment	4	7
606.9 Oh	Ohio	Downstream of McAlpine Locks	Sediment	13	9
9. OP	Ohlo	Upstream of Rubbertown	Water/Sediment	7	-
615.0 Ohi	Ohio	Downstream of Rubbertown	Water/Sediment	13	-
625 9 Ohic	Ohio	West Point, KY	Water/Sediment	2	5

Total Number of Discharges:

36

61

@ - Number of discharges between sampling points
 IW - Industrial Wastewater Discharges

DW - Domestic Wastewater Discharges, including water treatment plants

* - Mile point of confluence with the Ohio River

Samples collected from Stations shown in Boid Italics were analyzed for volatiles

Analytes

Water samples were analyzed for arsenic, copper, mercury, nickel, lead, phenolics, and volatile organic chemicals, as well as several field and conventional water quality parameters. These included dissolved oxygen, conductivity, hardness, pH, temperature, and total suspended solids. The field parameters indicate any lateral or vertical variability of water quality at the sampling stations. Sediments were analyzed for arsenic, chlordane, lead, mercury, nickel, and PCBs. Table 5 lists all the parameters analyzed.

	A Same of Same	
Analytes/Sample	TERS FOR ANALYSIS Water	Sediment
Temperature	X	- Countries
pH	×	
Dissolved Oxygen	X	
Conductivity	X	
Hardness	X	
Total Suspended Solids	X	
Arsenic	X	Х
Copper	Х	X
Lead	X	X
Mercury	X	Х
Nickel	X	X
Phenolics	X	Х
Volatile Organics (Method 601)	X*	
Pesticides		Х
PCBs		Х

^{*}Only at selected stations, see Table 4

<u>Participants</u>

The field work was accomplished thanks to many different organizations. One federal agency, three state agencies and a public utility participated in the field work. These agencies provided personnel, equipment and valuable information on the middle Ohlo River. Table 6 lists the agencies which participated.

TABLE 6

AGENCIES PARTICIPATING IN THE OCTOBER 1989 CINCINNATI-LOUISVILLE FIELD SURVEY

State Participants

Ohio Environmental Protection Agency
Kentucky Division of Water
Indiana Department of Environmental Management

Federal Participants

United States Army Corps of Engineers

Public Utilities

Louisville Water Company

Quality Assurance/Quality Control

The Quality Assurance/Quality Control (QA/QC) plan developed for the survey is included as Appendix 2. Each participating agency reviewed and approved the QA/QC plan before the field work. NET Midwest, Inc. of Dayton performed all the laboratory analyses, except for the monthly samples from Mill Creek which were analyzed by the West Virginia Department of Natural Resources laboratory.

III. SURVEY RESULTS

Overall

The data collected show water quality conditions under stable flow conditions and a characterization of metals in bottom sediments. PCBs and chlordane were not detected in the bottom sediments. The only toxic substance detected in the water column was copper.

The water temperature ranged from 17 °C to 18 °C. Dissolved oxygen levels were near saturation at all stations except Mill Creek (3.4 mg/L). Conductivity ranged from 740 μ mhos/cm in the Little Miami River to 270 μ mhos/cm in the Ohio River and pH ranged from 7.0 - 8.0 standard units.

Metals (Water Column)

Copper was the only metal present above the detection level in any of the water column samples collected. Copper was detected in all water column samples except those from the Cincinnati Water Works (M.P. 462.8) and Madison, Indiana (M.P. 559.0). All detections exceeded the acute aquatic life criterion.

Volatile Organic Chemicals (Water Column)

No volatile organic chemicals were present above the detection level in any of the samples.

Metals (Sediments)

All of the metals analyzed (arsenic, copper, mercury, nickel, and lead) except mercury, were present in all of the sediment samples analyzed. Table 7 presents the range of values for each of the analyzed metals.

	TABLE 7 RANGE OF METALS CONCENTRATIONS IN SEDIMENT SAMPLES							
Metals	Max. mg/kg	Min. mg/kg	Location of Max					
Arsenic	10	2	Great Miami River					
Copper	112	11	Mill Creek					
Mercury	0.4	< 0.1	Ohio River (left bank) @ M.P. 492					
Nickel	58	10	Ohio River (ieft bank) @ M.P. 492					
Lead	102	11	Mill Creek					

Organics (Sediment)

Sediment samples were analyzed for the presence of PCBs and pesticides. All results were below the detection limit. The detection limit varied with each sample, but was approximately 2.2 mg/kg for both PCBs and pesticides.

Assessment by Objective

The objective of the field study was to (1) characterize the distribution of PCBs and chlordane in the Ohio River system: (2) show the distribution of metals in the Ohio River under stable flow conditions; (3) determine what contribution, if any, the Rubbertown industries have on levels of organic compounds in the Ohio River, and; (4) characterize the loadings of metals from Mill Creek in Cincinnati over time.

Table 8 shows the flow conditions on October 11, 1989 along with long-term average flows and minimum monthly flows on record. It is clear flow conditions were normal during October 1989. The exception is the Licking River which had flow above (200% greater) the long-term monthly average.

	TABLE	8								
FLOW CONDITIONS										
Flow Station	Flow 10/11/89	LTA Flow	Min. Avg. Flow							
Cincinnati, Ohio	45.2	41.7	7.1							
Licking River	3.4	1.6	0.2							
Markland Dam	52.1	19.3	19.3							
McAlpine Dam	58.6	45.6	7.9							

All values in 1000 cubic feet per second LTA = Long-term Average flow for October (1953-1986)

Min. Avg. Flow = Minimum average monthly (October for the period of record)

Table 9 displays sampling locations and key parameters identified in the data from the survey.

Field data were analyzed to determine variability in the water column by depth and by lateral position. A blocked, one factor analysis of variance was done for each field parameter at each station. A blocked, one factor analysis of variance allows evaluation of variability by location (factor) and by depth (block). A summary of the analysis is shown in Table 10.

Table 10 shows the significant variation (p<0.05) at each station for each parameter. The analyses indicate lateral position is more likely to show variation than depth.

Lateral variation suggests an input to the river that has not completely mixed. Temperature variation indicates a thermal load, conductivity indicates dissolved solids loads (i.e., metals), pH indicates an acid/caustic load, and dissolved oxygen variation indicates a load with an oxygen demand. Overall the following conclusions can be made:

- ▼ There are significant temperature differences at all stations except upstream of Louisville (M.P. 600.6).
- Significant variations in conductivity are observed at three stations in the study segment. This suggests incomplete mixing at the flow conditions of October 11, 1989.
- ▼ There are significant variations in dissolved oxygen concentrations at all but one station (Cincinnati Water Works, M.P. 462.8).

The lack of detections (detection level 2 mg/kg) of PCBs and chlordane in sediment prevents characterization of the distribution of these parameters in the system. Fish tissue samples were not collected due to resource problems.

In Stream Sampling Locations and Parameters of Concern TABLE 9

DW Parameters of Concern		Mercury	Arsenic, Copper	3 Copper, Lead	Copper, Lead, Nickel	Copper, Lead, Nickel	Arsenic, Copper, Nickel	3 Arsenic, Copper, Lead, Nickei		13 Copper	Copper		6 Arsenic, Copper, Nickel	Copper	Copper	Copper
Discharges@ IW DW				<u>ი</u>				10	_	12 13	-	4	13 6	2	13	5
Sample Matrix	Water	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Water/Sediment	Water	Water	Sediment	Sediment	Water	Water	Water
Location	Cincinnati Water Works	Kellogg Ave. Bridge	Downstream of Banklick Creek	Upstream of Mill Creek	Downstream of Barrier Dam	Downstream of Mill Creek	Mile Point 1.0	Downstream of Great Miami	Lock and Dam1	Upstream of Madison, IN	Downstream of Madison, IN	Upstream of Louisville	Downstream of McAlpine L&D	Upstream of Rubbertown	Downstream of Rubbertown	West Point, KY
River Mile River	462.8 Ohio	464 1* Little Miami	470.2" Licking	472.0 Ohio	472.5* Mill Creek	474.0 Ohio	491.1* Great Miami	492.0 Ohio	545.8* Kentucky	559.0 Ohlo	563.0 Ohio	593.0 Ohio	606.9 Ohio	611.0 Ohio	615.0 Ohio	625.9 Ohio

@ - Number of discharges between sampling points

36

61

Total Number of Discharges:

IW - Industrial Wastewater Discharges

DW - Domestic Wastewater Discharges, including water treatment plants * - Mile point of confluence with the Ohio River

Variation of Field Data TABLE 10

imblers H Cond D.D.							
U	ł						
	z	>-	>-	>-	>-	>	`~
		•	•	•	•		
							_
- T	ŀ						
ield Parameters emp pH Cond	_			_	_	_	
- O	~	_	—	~	Z	Z	> -
Φ.						_	_
	l						
	7	7	7	7	7	7	7
6- Win	-						-
G.							
	р-,						
S21 E	Ÿ			_			
\$0.00 A	~	_	_	~)	~	~
E W T							-
	ŀ	20	-	S	N		KO :
‱ ;∓4		S					- 1
*		•					
	ł	23		4	S	3	S
		S			-	*	
Ø i	ł						
F	1						
7	ł						
Discharges@	l						1
	l]
	1						
	}						
	i			₹			
CI.	l			ō			
	<u></u>	느	<u></u>	É	<u>_</u>	느	أجوا
	Nater	Nater	Nater	崇	Water	ā	Nater
77.00	੍ਰਲ	Ø	ਲ	×	œ	ಹ	Ö
6000	≥	3	>	Sediment	>	Water	≥
		_	_				
	i						i
	1						
	1						
nceconstances (in	1						
(0) (0) (0) (0) (0) (0) (0) (0) (0) (0)							
			z			Ē	
	ı	_	<u>z</u>		_	wn	
	,,	z	Z,		u/	town	
	ks	Z.	on, IN	es.	Jwn.	ertown	
	orks	ñ N	ison, IN	lle	town	bertown	
	Vorks	on, IN	dison, iN	ville	ertown	bbertown	
	Works	lison, IN	fadison, IN	isville	bertown	lubbertown	
	r Works	Adison, IN	Madison, IN	uisville	bbertown	Rubbertown	
	ter Works	Aadison, IN	of Madison, IN	ouisville.	Rubbertown	of Rubbertown	>-
	ater Works	Madison, IN	of Madison, IN	Louisville	Rubbertown	of Rubbertown	KY
	_	of Madison, IN	m of Madison, IN	of Louisville	of Rubbertown	m of Rubbertown	, KY
	_	ι of Madison, IN	am of Madison, IN	ι of Louisville	n of Rubbertown	am of Rubbertown	ıt, KY
1	_	m of Madison, IN	ream of Madison, IN	m of Louisville	m of Rubbertown	ream of Rubbertown	oint, KY
00	_	am of Madison, IN	stream of Madison, IN	am of Louisville	am of Rubbertown	stream of Rubbertown	oint, KY
tion	_	ream of Madison, IN	nstream of Madison, IN	ream of Louisville	ream of Rubbertown	nstream of Rubbertown	t Point, KY
ation	_	stream of Madison, IN	wnstream of Madison, IN	stream of Louisville	stream of Rubbertown	nnstream of Rubbertown	st Point, KY
gation	_	pstream of Madison, IN	ownstream of Madison, IN	pstream of Louisville	pstream of Rubbertown	ownstream of Rubbertown	est Point, KY
Cocation	Cincinnati Water Works	Upstream of Madison, IN	Downstream of Madison, IN	Upstream of Louisville	Upstream of Rubbertown	Downstream of Rubbertown	West Point, KY
Location	_	Upstream of Madison, IN	Downstream of Madison, IN	Upstream of Louisville	Upstream of Rubbertown	Downstream of Rubbertown	West Point, KY
Location	_	Upstream of Madison, IN	Downstream of Madison, IN	Upstream of Louisville	Upstream of Rubbertown	Downstream of Rubbertown	West Point, KY
Location	_	Upstream of Madison, IN	Downstream of Madison, IN	Upstream of Louisville	Upstream of Rubbertown	Downstream of Rubbertown	West Point, KY
Location	_	Upstream of Madison, IN	Downstream of Madison, IN	Upstream of Louisville	Upstream of Rubbertown	Downstream of Rubbertown	West Point, KY
Location	Cincinnati W	Upstream of Madison, IN	Downstream of Madison, IN	Upstream of	Upstream of Rubbertown	Downstream of Rubbertown	West Point, KY
r Location	Cincinnati W	Upstream of Madison, IN	Downstream	Upstream of	Upstream of	Downstream of Rubbertown	West Point, KY
ver Location	Cincinnati W	io Upstream of Madison, IN	Downstream	Upstream of	Upstream of	io Downstream of Rubbertown	io West Point, KY
iver Location	Cincinnati W	Ohio Upstream of Madison, IN	Downstream	Upstream of	Upstream of	Thio Downstream of Rubbertown	Thio West Point, KY
River Location	Ohio Cincinnati W	Ohio L	Ohio Downstream	Ohio Upstream of	Ohio Upstream of	Ohio Downstream	Ohio West Point, I
River Location	Ohio Cincinnati W	Ohio L	Ohio Downstream	Ohio Upstream of	Ohio Upstream of	Ohio Downstream	Ohio West Point, I
Piver Location	Ohio Cincinnati W	Ohio L	Ohio Downstream	Ohio Upstream of	Ohio Upstream of	Ohio Downstream	Ohio West Point, I
River Location	Ohio Cincinnati W	Ohio L	Ohio Downstream	Ohio Upstream of	Ohio Upstream of	Ohio Downstream	Ohio West Point, I
River Location	Ohio Cincinnati W	Ohio L	Ohio Downstream	Ohio Upstream of	Ohio Upstream of	Ohio Downstream	Ohio West Point, I
er Location	Cincinnati W	Ohio L	Ohio Downstream	Upstream of	Upstream of	615.0 Ohio Downstream of Rubbertown	Ohio West Point, I
ver location	Ohio Cincinnati W	Ohio L	Ohio Downstream	Ohio Upstream of	Ohio Upstream of	Ohio Downstream	Ohio West Point, I
River Ville River Location	Ohio Cincinnati W	Ohio L	Ohio Downstream	Ohio Upstream of	Ohio Upstream of	Ohio Downstream	Ohio West Point, I

Total Number of Discharges:

36 61

@ - Number of discharges between sampling points

IW - Industrial Wastewater Discharges

DW - Domestic Wastewater Discharges, including water treatment plants

Y-d - Significant Variation with Depth (p<0.05)

Y - Significant Lateral Variation (p<0.05) N - Variation not Significant (p>0.05)

Metals were detected in the sediment samples but organics were not. At this time there are no established criteria for levels of contamination in sediments. The sediment data can be evaluated relative to each other and to historic data.

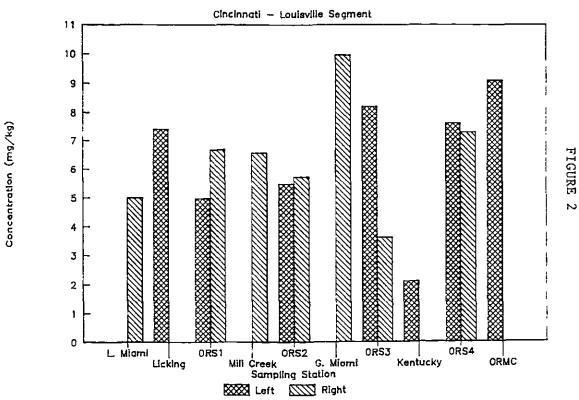
Figures 2 through 6 show the results of the laboratory analyses. The figures show the difference between the sediments from the left and right descending bank of the Ohio River. Tributary data are displayed with the data shown as left or right to show the side of the Ohio River on which the tributary enters.

Figure 2 shows the concentration of arsenic in bottom sediments. The sediments from the Great Miami River have the highest level of arsenic and the Kentucky River sediments have the lowest level. There appears to be a large difference between the left and right bank of the Ohio at M.P. 492.0 (Station ORS3).

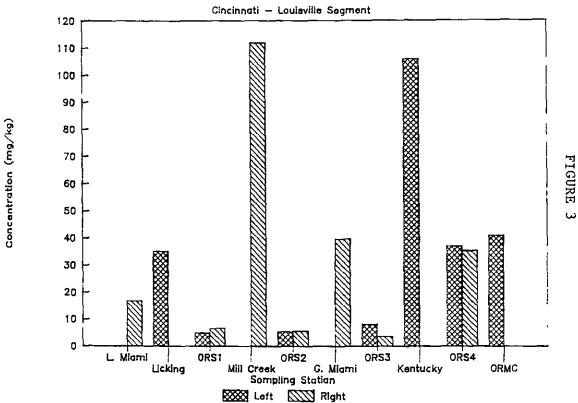
Figure 3 shows the concentration of copper in bottom sediments. Tributary sediments have higher levels of copper than Ohio River sediments. It appears that the tributary contribution is diluted by sediments from upstream in the Ohio River.

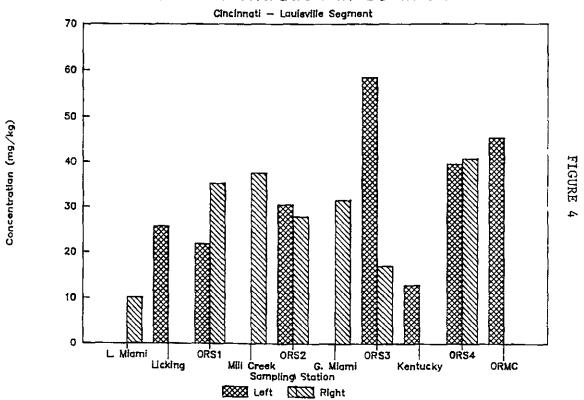

Mill Creek and the Kentucky River have the highest levels of copper of the tributaries samples. This is of note as the drainage basins of these two tributaries are very different. Mill Creek has an urban watershed while the Kentucky River watershed is dominated by forest lands, with some resource extraction activities.

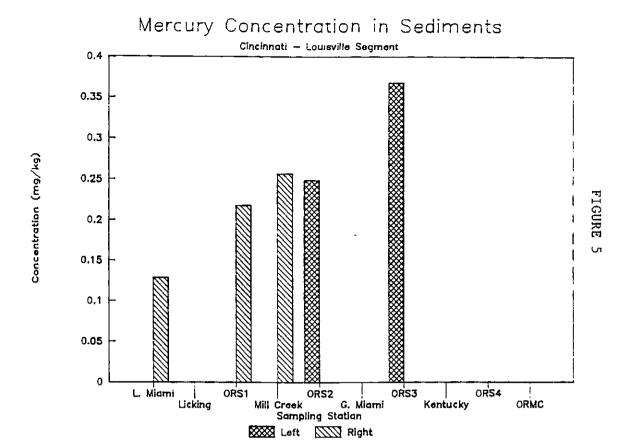
Figure 4 shows the concentration of nickel in bottom sediments. The highest level observed was the sample taken at M.P. 492.0, left descending bank, and the lowest level was from the Little Miami River. There is a marked difference between the levels found on the left descending bank and the right descending bank at M.P. 492.0. There is also a difference, though not as large, between the left and right banks at M.P. 472.0.

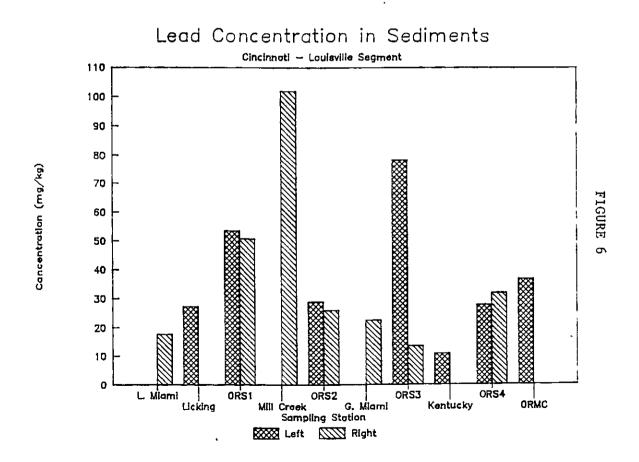

Figure 5 shows the concentration of mercury in bottom sediments. Figure 6 demonstrates that Mill Creek sediments have the highest level of lead of all the samples collected. Once again, the left descending bank sample at M.P. 492.0 is markedly greater than the right descending bank sample.

The concentration of metals in bottom sediments provides insight into the relative levels of metals carried by the Ohio River and tributaries during period of high flow. Overall the relative levels of the metals analyzed are similar in both the tributaries and the Ohio River. Mill Creek is the exception to this. For all metals analyzed, except arsenic, the sediments from Mill Creek are greater than that found in the Ohio River.


Copper Concentrations


Arsenic Concentration in Sediments




Copper Concentration in Sediments

Nickel Concentration in Sediments

A comparison of sediment data collected during the October field study with those sediment data available on the U.S. EPA STORET system shows that levels of arsenic, copper, lead, nickel, and mercury measured in October 1989, are similar to levels measured in the past. The exception is Mill Creek, which appears to have improving conditions since these type of data were last collected. Table 11 is a summary of these data.

TABLE 11 COMPARISON OF OCTOBER 1989 DATA WITH HISTORIC DATA										
Station	Sample Date	Mile Point	Arsenic mg/kg	Copper mg/kg	Nickei mg/kg	Lead mg/kg				
Mill Creek	10/11/89	472.5	6.6	112.0	37.6	102.0				
Mill Creek	07/00/73	472.5	33.0	236.0	123.0	783.0				
G. Miami	10/11/89	491.1	10.0	39.8	31.6	22.7				
G. Miami	09/00/80	491.1	3-7	10-29	6-17	19-72				
ORS4L	10/11/89	593.0	7.6	37.1	39.6	27.8				
ORS4R	10/11/89	593.0	7.3	35.5	40.9	31.9				
Ohio R.	09/00/81	594.5	<8	11-20	36-40	15.0				
Ohio R.	09/00/81	596.5	16	38.0	49.0	37.0				
ORMC	10/11/89	606.9	9.1	41.1	45.5	36.8				
Ohio R.	07/00/80	606.9	NA	<10	NA	20.0				

Sample locations up and down stream of the Rubbertown area (southwest Louisville) were chosen to characterize the effects of the Rubbertown industries on Ohio River water quality. Water column data (organic and inorganic) did not indicate any effects. Attempts to collect sediment at these locations yielded only sand and gravel.

Monthly samples (April-November) were collected from Mill Creek in Cincinnati and analyzed for selected water quality parameters. These data provide an overview of water quality conditions in the Mill Creek under different flow conditions. Table 12 displays these data. Those samples which exceed Ohio River stream criteria are shaded.

It is apparent that dissolved oxygen in Mill Creek is depressed and phenolics occasionally exceed criterion. Comparing Mill Creek data to samples taken from the Ohio River at M.P. 462.8 and M.P. 490.0 (up and down stream of the confluence of Mill Creek with the Ohio River) shows that except for conductivity, dissolved oxygen and phenolics, Mill Creek is of similar quality. The water column data do not support the sediment data which showed relatively high levels of metals.

TABLE 12
Mill Creek Monitoring Data

	-														
880088	5.7	390	æ	11.8	10	65	160	8	•	<10	<50	<0.2	5	2.3	
10/24/89	12.5	420	7.5	5.4	24	70	204	10	Ø	210	<50	0.4		2.6	<20
08/22/89 09/28/89	16.2	330	7.8	7.5	29	73	156	61	⊽	10	<50	0 ,		<0.5	
08/22/89	25.1	410	7.5	5.5	13	87	130	တ	-	210	<50	0.1	10	<0.5	
8	27.8	730	7.4	3.2	2		308	ιΩ	Q	0 √	<50	\$0.1		3.5	<20
06/29/89	22.0	860	7.0	3.0	15	85	252	13	4	20	<50	0.4			
68/2/1/3	19.5	440	6.4	3,3	17		210	က	ဖ	14	210				<10
68/11/70	8.7	480	7.1	2.3	40	51	CV	æ			20			2.0	
	Temmeatrie ded 6	Conductivity		Dissolved Oxygen mg/l	TSS ma/l		Hardness mg/l	Phenolics ug/		101 100 100 100 100 100 100 100 100 100	Ton the all	Mercury udi	Zweller	Arsanteudi	Zekel Light

IV. CONCLUSIONS

Data collected on October 11, 1989 at 15 locations in the middle Ohio River (M.P. 462 - M.P. 626) and selected tributaries provides an overview of metals concentrations in bottom sediments. The data show that sediment loads from several tributaries in the study area are contributing metals to the Ohio River. There are several locations on the Ohio River where there is an apparent different between left and right banks in metals concentrations in the sediment.

Specific conclusions are as follows:

- Sediment from the Great Miami River had the highest level of arsenic of the samples collected.
- Sediment from Mill Creek had the highest copper and lead levels of the samples collected. This is of particular interest as monthly water column samples collected from Mill Creek showed little difference from the Ohio River.
- Sediment from the left descending bank of the Ohio River at M.P. 492.0 had the highest level of nickel of the samples collected.
- There was a market difference between levels of arsenic, lead and nickel detected in sediment samples taken from opposite banks on the Ohio River at M.P. 492.0. The left descending bank had the higher level.

V. FOLLOW-UP ACTIONS

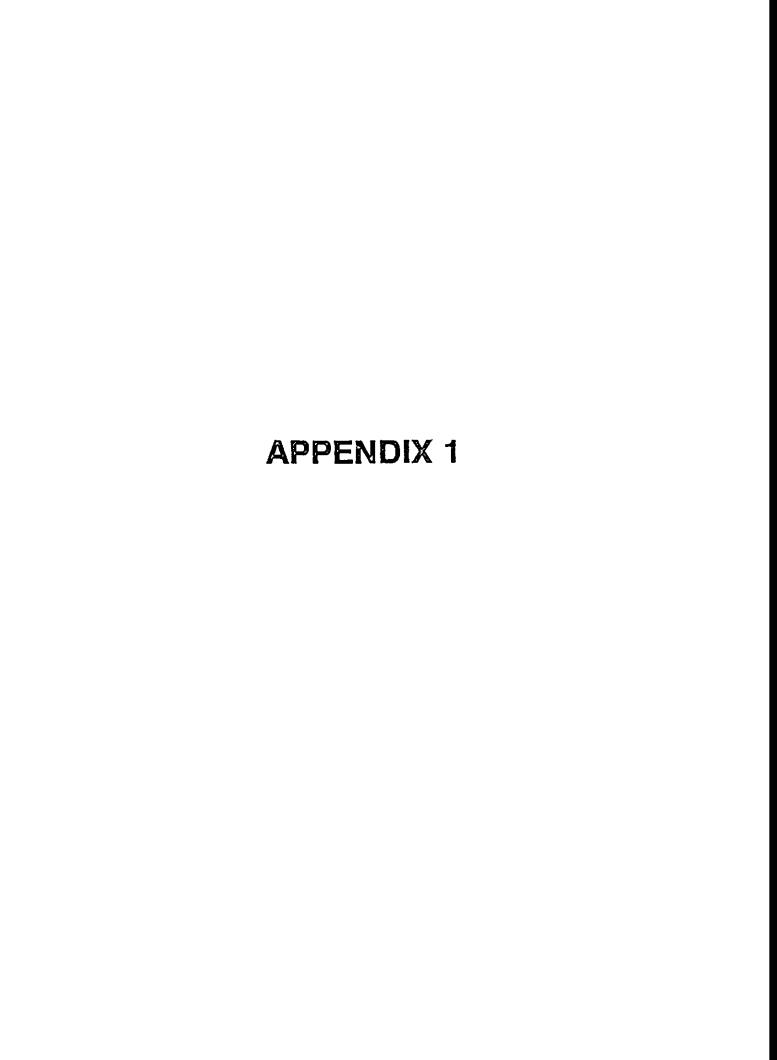
Action Underway

The primary concern in this segment of the Ohio River was levels of PCBs and chlordane in fish tissue. The issue is not isolated to this segment of the Ohio River. The Commission will carry out a significantly expanded fish tissue sampling program in fiscal year 1991. This will provide more data from more locations and species.

The U.S. Army Corps of Engineers, Louisville District, has intensified efforts in sediment sampling and analysis. Commission staff is in communication with the Corps' personnel regarding these efforts.

Remaining Actions

In January 1989, it was recommended that extensive fish tissue analyses be performed to accompany the sediment data collected. These samples were not collected due to resource constraints. There is a need for


additional work in this area. The Commission's FY91 Program Plan partly addresses this issue with a fourfold increase in fish tissue analyses.

The emphasis of the fish tissue program is to determine what levels of contamination are present in different species of fish. These data will then be used by the Ohio River states to address the need for consumption advisories. There is a need for site specific fish and sediment sampling to assess the impacts of urban runoff on levels of contamination in fish tissue.

This could be accomplished through additional fish and sediment collection up and down stream of urban areas on the Ohio River as well as from tributaries. Another method needing investigation is to use hexane filled dialysis bags. The bags are used as receptors of PCBs and organochlorine pesticides. This method is being investigated by the Commonwealth of Pennsylvania for monitoring of lipophilic compounds.

Additional sediments needs to be collected and analyzed for PCBs and pesticides. The analyses must be performed by a laboratory capable of reporting at levels as low as 10 ug/kg. These samples should also be analyzed for total organic carbon (TOC). Proposed U.S. EPA sediment criteria for PCBs and organochlorine pesticides are based on TOC concentration.

	·	

	.	
		,

Ohio River Discharges Cincinnati, OH - Louisville, KY Mile Point 462 - 626

River Corporation Mile

COMPANY, INC.

Plant Name

State Permit Number

					.Water Sam	mle
462.8	CINCINNATI WATERWORKS	CINCINNATI WTP	он	ОНООО9083	Pupret out	fre
462.9	NEWPORT WATER FILTRATION PLANT	NEWPORT WIF	ΚY	KY0002828		
	HAMILTON COUNTY COMMISSIONERS		он	ОНОО25453		
					_Sediment	Sample
	HAMILTON COUNTY COMMISSIONERS	MILL CREEK WWTP	ОН	он0025461		
473.0	HVC/M.J. DALY COMPANY		KY	KX0033003		
474 2	IBIOCAL CORPORAÇÃO	ariation as agreement	 _		_Sediment	Sample
	UNOCAL CORPORATION BORON OIL COMPANY	CINCINNATI TERMINAL	он	OHO010120		
		BROMLEY TERMINAL	KY	KY0001406		
475.4	CHEVRON U.S.A., INC.	COVINGTON TERMINAL	KY	KY0063274		
	ASHLAND OIL COMPANY	VALVOLINE OIL COMPANY DIVISION	он	оноо47457		
	TRESLER OIL COMPANY		OH	оноооэ598		
477.4	SANITATION DISTRICT NO. 1 OF CAMPBELL AND KENTON COUNTIES	DRY CREEK WWTP	KY	KY0021466		
480.0	HILLTOP BASIC RESOURCES, INC.	RIVER TERMINAL PLANT	он	оноо10031		
	TAYLORSPORT SAND COMPANY, INC.		KY	KY0089061		
	HAMILTON COUNTY COMMISSIONERS		OH	OHO025470		
	MONSANTO PLASTICS AND RESIN	PORT PLASTICS PLANT	ОН	оноооээ46		
	COMPANY		- • •			
	HAMILTON COUNTY COMMISSIONERS		OH	ОНОО24678		
489.5	KAISER ALUMINUM AND CHEMICAL COMPANY	KAISER AGRICULTURAL CHEMICAL DIVISION	ОН	онооо9571		
490.0	CINCINNATI GAS AND ELECTRIC	MIAMI FORT STATION	OH	онооо9873		
	COMPANY					
					g - 14	
493.0		COURT PRANCADA PROJONAL PRES	TNI		_Sediment	Sample
493.0	SOUTH DEARBORN REGIONAL SEWER	SOUTH DEARBORN REGIONAL WWTP	IN	IN0024538	_Sediment	Sample
	SOUTH DEARBORN REGIONAL SEWER DISTRICT	SOUTH DEARBORN REGIONAL WWTP		INO024538	_Sediment	Sample
	SOUTH DEARBORN REGIONAL SEWER	SOUTH DEARBORN REGIONAL WWTP	IN IN		_Sediment	Sample
495.0	SOUTH DEARBORN REGIONAL SEWER DISTRICT JOSEPH E. SEAGRAM AND SONS, INC.	SOUTH DEARBORN REGIONAL WWTP		INO024538	_Sediment	Sample
495.0 495. 0	SOUTH DEARBORN REGIONAL SEWER DISTRICT JOSEPH E. SEAGRAM AND SONS, INC. SCHENLEY DISTILLERS, INC.		IN	IN0024538	_Sediment	Sample
495.0 495. 0	SOUTH DEARBORN REGIONAL SEWER DISTRICT JOSEPH E. SEAGRAM AND SONS, INC.		IN IN	IN0024538 IN0003131 IN0001694	"Sediment	Sample
495.0 495.0 495.5	SOUTH DEARBORN REGIONAL SEWER DISTRICT JOSEPH E. SEAGRAM AND SONS, INC. SCHENLEY DISTILLERS, INC. INDIANA AND MICHIGAN ELECTRIC COMPANY ROONE COUNTY ROADD OF	TANNER'S CREEK GENERATING STATION CHARLES H. KELLY ELEMENTARY	IN IN KY	IN0024538 IN0003131 IN0001694	"Sediment	Sample
495.0 495.0 495.5	SOUTH DEARBORN REGIONAL SEWER DISTRICT JOSEPH E. SEAGRAM AND SONS, INC. SCHENLEY DISTILLERS, INC. INDIANA AND MICHIGAN ELECTRIC COMPANY ROONE COUNTY ROADD OF	TANNER'S CREEK GENERATING STATION CHARLES H. KELLY ELEMENTARY	IN IN KY	IN0024538 IN0003131 IN0001694 IN0002160 KY0080691	"Sediment	Sample
495.0 495.0 495.5	SOUTH DEARBORN REGIONAL SEWER DISTRICT JOSEPH E. SEAGRAM AND SONS, INC. SCHENLEY DISTILLERS, INC. INDIANA AND MICHIGAN ELECTRIC COMPANY ROONE COUNTY ROADD OF	TANNER'S CREEK GENERATING STATION CHARLES H. KELLY ELEMENTARY	IN IN KY	IN0024538 IN0003131 IN0001694 IN0002160 KY0080691 KY0077917	"Sediment	Sample
495.0 495.0 495.5	SOUTH DEARBORN REGIONAL SEWER DISTRICT JOSEPH E. SEAGRAM AND SONS, INC. SCHENLEY DISTILLERS, INC. INDIANA AND MICHIGAN ELECTRIC COMPANY ROONE COUNTY ROADD OF	TANNER'S CREEK GENERATING STATION CHARLES H. KELLY ELEMENTARY	IN IN KY	IN0024538 IN0003131 IN0001694 IN0002160 KY0080691 KY0077917 KY0075639	"Sediment	Sample
495.0 495.5 502.5 502.9 503.9 506.0	SOUTH DEARBORN REGIONAL SEWER DISTRICT JOSEPH E. SEAGRAM AND SONS, INC. SCHENLEY DISTILLERS, INC. INDIANA AND MICHIGAN ELECTRIC COMPANY BOONE COUNTY BOARD OF EDUCATION TOM ARLINGHAUS RIVER RIDGE PARKS, INC. TOWN OF RISING SUN	TANNER'S CREEK GENERATING STATION CHARLES H. KELLY ELEMENTARY SCHOOL ARLINGHAUS PROPERTIES WWTP RIVER RIDGE PARKS WWTP RISING SUN WWTP	IN KY KY KY KY	IN0024538 IN0003131 IN0001694 IN0002160 KY0080691 KY0077917 KY0075639 IN0024431	"Sediment	Sample
495.0 495.5 502.5 502.9 503.9 506.0 511.0	SOUTH DEARBORN REGIONAL SEWER DISTRICT JOSEPH E. SEAGRAM AND SONS, INC. SCHENLEY DISTILLERS, INC. INDIANA AND MICHIGAN ELECTRIC COMPANY BOONE COUNTY BOARD OF EDUCATION TOM ARLINGHAUS RIVER RIDGE PARKS, INC. TOWN OF RISING SUN CINCINNATI GAS AND ELECTRIC COMPANY	TANNER'S CREEK GENERATING STATION CHARLES H. KELLY ELEMENTARY SCHOOL ARLINGHAUS PROPERTIES WWTP RIVER RIDGE PARKS WWTP RISING SUN WWTP EAST BEND STATION	KY KY KY KY IN IN	IN0024538 IN0003131 IN0001694 IN0002160 KY0080691 KY0077917 KY0075639 IN0024431 KY0040444	"Sediment	Sample
495.0 495.5 502.5 502.9 503.9 506.0 511.0	SOUTH DEARBORN REGIONAL SEWER DISTRICT JOSEPH E. SEAGRAM AND SONS, INC. SCHENLEY DISTILLERS, INC. INDIANA AND MICHIGAN ELECTRIC COMPANY BOONE COUNTY BOARD OF EDUCATION TOM ARLINGHAUS RIVER RIDGE PARKS, INC. TOWN OF RISING SUN CINCINNATI GAS AND ELECTRIC COMPANY U.S. ARMY CORPS OF ENGINEERS	TANNER'S CREEK GENERATING STATION CHARLES H. KELLY ELEMENTARY SCHOOL ARLINGHAUS PROPERTIES WWTP RIVER RIDGE PARKS WWTP RISING SUN WWTP EAST BEND STATION BIG BONE CREEK RAMP WTP	KY IN KY KY IN IN	IN0024538 IN0003131 IN0001694 IN0002160 KY0080691 KY0077917 KY0075639 IN0024431 KY0040444 KY0027642	"Sediment	Sample
495.0 495.5 502.5 502.9 503.9 506.0 511.0	SOUTH DEARBORN REGIONAL SEWER DISTRICT JOSEPH E. SEAGRAM AND SONS, INC. SCHENLEY DISTILLERS, INC. INDIANA AND MICHIGAN ELECTRIC COMPANY BOONE COUNTY BOARD OF EDUCATION TOM ARLINGHAUS RIVER RIDGE PARKS, INC. TOWN OF RISING SUN CINCINNATI GAS AND ELECTRIC COMPANY	TANNER'S CREEK GENERATING STATION CHARLES H. KELLY ELEMENTARY SCHOOL ARLINGHAUS PROPERTIES WATP RIVER RIDGE FARKS WATP RISING SUN WATP EAST BEND STATION BIG BONE CREEK RAMP WTP BIG BONE LICK STATE PARK WTP	KY KY KY KY KY KY IN	IN0024538 IN0003131 IN0001694 IN0002160 KY0080691 KY0077617 KY0075639 IN0024431 KY0040444 KY0027642 KY0027642	"Sediment	Sample
495.0 495.5 502.5 502.9 503.9 506.0 511.0	SOUTH DEARBORN REGIONAL SEWER DISTRICT JOSEPH E. SEAGRAM AND SONS, INC. SCHENLEY DISTILLERS, INC. INDIANA AND MICHIGAN ELECTRIC COMPANY BOONE COUNTY BOARD OF EDUCATION TOM ARLINGHAUS RIVER RIDGE PARKS, INC. TOWN OF RISING SUN CINCINNATI GAS AND ELECTRIC COMPANY U.S. ARMY CORPS OF ENGINEERS KENTUCKY DEPARTMENT OF PARKS CRAIG'S CREEK CAMPGROUND	TANNER'S CREEK GENERATING STATION CHARLES H. KELLY ELEMENTARY SCHOOL ARLINGHAUS PROPERTIES WATP RIVER RIDGE FARKS WATP RISING SUN WATP EAST BEND STATION BIG BONE CREEK RAMP WTP BIG BONE LICK STATE PARK WTP CRAIG'S CREEK CAMPGROUND WATP	KY KY KY KY KY KY KY	IN0024538 IN0003131 IN0001694 IN0002160 KY0080691 KY0077917 KY0075639 IN0024431 KY0040444 KY0027642 KY0004243 KY00075825	"Sediment	Sample
495.0 495.5 502.5 502.9 503.9 506.0 511.0 516.5 529.9 530.0	SOUTH DEARBORN REGIONAL SEWER DISTRICT JOSEPH E. SEAGRAM AND SONS, INC. SCHENLEY DISTILLERS, INC. INDIANA AND MICHIGAN ELECTRIC COMPANY BOONE COUNTY BOARD OF EDUCATION TOM ARLINGHAUS RIVER RIDGE PARKS, INC. TOWN OF RISING SUN CINCINNATI GAS AND ELECTRIC COMPANY U.S. ARMY CORPS OF ENGINEERS KENTUCKY DEPARTMENT OF PARKS CRAIG'S CREEK CAMPGROUND CITY OF WARSAW	TANNER'S CREEK GENERATING STATION CHARLES H. KELLY ELEMENTARY SCHOOL ARLINGHAUS PROPERTIES WATP RIVER RIDGE FARKS WATP RISING SUN WATP EAST BEND STATION BIG BONE CREEK RAMP WTP BIG BONE LICK STATE PARK WTP	KY KY KY KY KY KY KY KY	IN0024538 IN0003131 IN0001694 IN0002160 KY0080691 KY0077917 KY0075639 IN0024431 KY0040444 KY0027642 KY0004243 KY00075825 KY0028118	Sediment	Sample
495.0 495.5 502.5 502.9 503.9 506.0 511.0 516.5 516.6 529.9 530.0	SOUTH DEARBORN REGIONAL SEWER DISTRICT JOSEPH E. SEAGRAM AND SONS, INC. SCHENLEY DISTILLERS, INC. INDIANA AND MICHIGAN ELECTRIC COMPANY BOONE COUNTY BOARD OF EDUCATION TOM ARLINGHAUS RIVER RIDGE PARKS, INC. TOWN OF RISING SUN CINCINNATI GAS AND ELECTRIC COMPANY U.S. ARMY CORPS OF ENGINEERS KENTUCKY DEPARTMENT OF PARKS CRAIG'S CREEK CAMPGROUND CITY OF WARSAW CLEANCOAL TERMINAL COMPANY	TANNER'S CREEK GENERATING STATION CHARLES H. KELLY ELEMENTARY SCHOOL ARLINGHAUS PROPERTIES WATP RIVER RIDGE FARKS WATP RISING SUN WATP EAST BEND STATION BIG BONE CREEK RAMP WTP BIG BONE LICK STATE PARK WTP CRAIG'S CREEK CAMPGROUND WATP	KY KY KY KY KY KY KY KY	IN0024538 IN0003131 IN0001694 IN0002160 KY0080691 KY00775639 IN0024431 KY0040444 KY0027642 KY0004243 KY0075825 KY0028118 KY0082686	Sediment	Sample
495.0 495.5 502.5 502.9 503.9 506.0 511.0 516.5 516.6 529.9 533.0 535.0	SOUTH DEARBORN REGIONAL SEWER DISTRICT JOSEPH E. SEAGRAM AND SONS, INC. SCHENLEY DISTILLERS, INC. INDIANA AND MICHIGAN ELECTRIC COMPANY BOONE COUNTY BOARD OF EDUCATION TOM ARLINGHAUS RIVER RIDGE PARKS, INC. TOWN OF RISING SUN CINCINNATI GAS AND ELECTRIC COMPANY U.S. ARMY CORPS OF ENGINEERS KENTUCKY DEPARTMENT OF PARKS CRAIG'S CREEK CAMPGROUND CITY OF WARSAW CLEANCOAL TERMINAL COMPANY SPANGLER APARTMENTS	TANNER'S CREEK GENERATING STATION CHARLES H. KELLY ELEMENTARY SCHOOL ARLINGHAUS PROPERTIES WWTP RIVER RIDGE PARKS WWTP RISING SUN WWTP EAST BEND STATION BIG BONE CREEK RAMP WTP BIG BONE LICK STATE PARK WTP CRAIG'S CREEK CAMPGROUND WWTP WARSAW WWTP	KY KY KY KY KY KY KY KY KY	IN0024538 IN0003131 IN0001694 IN0002160 KY0080691 KY00775639 IN0024431 KY0040444 KY0027642 KY0004243 KY0075825 KY0028118 KY0082686 KY0090603	Sediment	Sample
495.0 495.5 502.5 502.9 503.9 506.0 511.0 516.5 529.9 530.0 535.0	SOUTH DEARBORN REGIONAL SEWER DISTRICT JOSEPH E. SEAGRAM AND SONS, INC. SCHENLEY DISTILLERS, INC. INDIANA AND MICHIGAN ELECTRIC COMPANY BOONE COUNTY BOARD OF EDUCATION TOM ARLINGHAUS RIVER RIDGE PARKS, INC. TOWN OF RISING SUN CINCINNATI GAS AND ELECTRIC COMPANY U.S. ARMY CORPS OF ENGINEERS KENTUCKY DEPARTMENT OF PARKS CRAIG'S CREEK CAMPGROUND CITY OF WARSAW CLEANCOAL TERMINAL COMPANY SPANGLER APARTMENTS KENTUCKY UTILITIES COMPANY	TANNER'S CREEK GENERATING STATION CHARLES H. KELLY ELEMENTARY SCHOOL ARLINGHAUS PROPERTIES WWTP RIVER RIDGE PARKS WWTP RISING SUN WWTP EAST BEND STATION BIG BONE CREEK RAMP WTP BIG BONE LICK STATE PARK WTP CRAIG'S CREEK CAMPGROUND WWTP WARSAW WWTP WWTP GHENT GENERATING STATION	KY KY KY KY KY KY KY KY KY KY	IN0024538 IN0003131 IN0001694 IN0002160 KY0080691 KY0077639 IN0024431 KY0040444 KY0027642 KY0004243 KY0075825 KY0028118 KY0082686 KY0090603 KY0002038	Sediment	Sample
495.0 495.5 502.5 502.9 503.9 506.0 511.0 516.5 516.6 529.9 530.0 535.0 536.0 537.5	SOUTH DEARBORN REGIONAL SEWER DISTRICT JOSEPH E. SEAGRAM AND SONS, INC. SCHENLEY DISTILLERS, INC. INDIANA AND MICHIGAN ELECTRIC COMPANY BOONE COUNTY BOARD OF EDUCATION TOM ARLINGHAUS RIVER RIDGE PARKS, INC. TOWN OF RISING SUN CINCINNATI GAS AND ELECTRIC COMPANY U.S. ARMY CORPS OF ENGINEERS KENTUCKY DEPARTMENT OF PARKS CRAIG'S CREEK CAMPGROUND CITY OF WARSAW CLEANCOAL TERMINAL COMPANY SPANGLER APARTMENTS KENTUCKY UTILITIES COMPANY TOWN OF VEVAY	TANNER'S CREEK GENERATING STATION CHARLES H. KELLY ELEMENTARY SCHOOL ARLINGHAUS PROPERTIES WWTP RIVER RIDGE PARKS WWTP RISING SUN WWTP EAST BEND STATION BIG BONE CREEK RAMP WTP BIG BONE LICK STATE PARK WTP CRAIG'S CREEK CAMPGROUND WWTP WARSAW WWTP	IN I	IN0024538 IN0003131 IN0001694 IN0002160 KY0080691 KY0077639 IN0024431 KY0040444 KY0027642 KY0004243 KY0075825 KY0028118 KY0082686 KY0090603 KY0002038 IN0020231	"Sediment	Sample
495.0 495.5 502.5 502.9 503.9 506.0 511.0 516.5 516.6 529.9 530.0 535.0 536.0 537.5	SOUTH DEARBORN REGIONAL SEWER DISTRICT JOSEPH E. SEAGRAM AND SONS, INC. SCHENLEY DISTILLERS, INC. INDIANA AND MICHIGAN ELECTRIC COMPANY BOONE COUNTY BOARD OF EDUCATION TOM ARLINGHAUS RIVER RIDGE PARKS, INC. TOWN OF RISING SUN CINCINNATI GAS AND ELECTRIC COMPANY U.S. ARMY CORPS OF ENGINEERS KENTUCKY DEPARTMENT OF PARKS CRAIG'S CREEK CAMPGROUND CITY OF WARSAW CLEANCOAL TERMINAL COMPANY SPANGLER APARTMENTS KENTUCKY UTILITIES COMPANY	TANNER'S CREEK GENERATING STATION CHARLES H. KELLY ELEMENTARY SCHOOL ARLINGHAUS PROPERTIES WWTP RIVER RIDGE PARKS WWTP RISING SUN WWTP EAST BEND STATION BIG BONE CREEK RAMP WTP BIG BONE LICK STATE PARK WTP CRAIG'S CREEK CAMPGROUND WWTP WARSAW WWTP WWTP GHENT GENERATING STATION	KY KY KY KY KY KY KY KY KY KY	IN0024538 IN0003131 IN0001694 IN0002160 KY0080691 KY0077639 IN0024431 KY0040444 KY0027642 KY0004243 KY0075825 KY0028118 KY0082686 KY0090603 KY0002038	"Sediment	Sample

Ohio River Discharges Cincinnati, OK - Louisville, KY Mile Point 462 - 626

River Mile	Corporation	Plant Name	State	Permit Num	ber		
		CARROLLTON BULK PLANT	KY	KY0071757			
544.5	M & T CHEMICALS INC.		KY	KY0001431			
	MILTON SAND AND GRAVEL		ΚΥ	KY0079014			
	COMPANY, INC.		****	WW0001722			
	KAWNEER COMPANY, INC.		KY	KY0001732			
		MILTON WWTP	KY	KY0088625			
558.6	CITY OF MADISON	MADISON WWTP	IN	IN0024210	_Water	Cami	n la
	INDIANA - KENTUCKY ELECTRIC CORPORATION	CLIFTY CREEK STATION	IN	INO001759		بسبح	-10
562.5	TOWN OF HANOVER	HANOVER WWTP	IN	IN0020702			
	<u> </u>				_water	Samp	ple
571.1	BOBBY L. HARPER DISTRIBUTING COMPANY	BULK PETROLEUM TERMINAL	KY	KY 00913 59			
57 2. 0	LOUISVILLE GAS AND ELECTRIC COMPANY	TRIMBLE COUNTY GENERATING STATION	KA	KY0041971			
586.0	MARTIN MARIETTA BASIC PRODUCTS	LANE QUARRY	IN	INO053571			
589.5	GOSHEN UTILITIES, INC.	GOSHEN WWTP	KY	KY0038580			
590.0	HEIL COMPANY		KY	KY 00723 89			
592.0	CITY OF CHARLESTOWN	CHARLESTOWN WWTP	IN	IN0020508			
500.5					_Sedime	mt :	Sample
	INDIANA ARMY AMMUNITION PLANT		IN	IN0001163			
	LOUISVILLE WATER COMPANY	8.E. PAYNE WTP	KY	KY0003123			
	LOUISVILLE WATER COMPANY	ZORN AVENUE WTP	KY	KY0001830			
601.0	LOUISVILLE AND JEFFERSON COUNTY MUNICIPAL SEWER DISTRICT	NEW MARKET SUBDIVISION WWTP	KY	KY0031801			
6D1.5	CONVENIENT ENERGY, INC.		KY	KY0072745			
	CONSERVANCY DISTRICT OF OAK PARK	PARK WWTP	IN	IN0023965			
602.6	ASHLAND PETROLEUM COMPANY MARTIN MARIETTA AGGREGATES CHEVRON U.S.A., INC.	LOUISVILLE PLANT	KY	KY0054771			
603.0	MARTIN MARIETTA AGGREGATES	UTICA SAND AND GRAVEL	IN	IN0048801			
603.0	CHEVRON U.S.A., INC.	LOUISVILLE ASPHALT PLANT	KY	KY0061395			
603.3	JEFFERSON COUNTY MEDICAL CENTER	STEAM AND CHILLED WATER PLANT	KY	KY0053783			
	GALT HOUSE EAST		KY	KY0080675			
	LOUISVILLE GAS AND ELECTRIC COMPANY	WATERSIDE STATION	KY	KY0002101			
	HUMANA, INC.		KY	KY0069809			
	CITY OF JEFFERSONVILLE	JEFFERSONVILLE WWTP	IN	IN0023302			
	ASHLAND PETROLEUM COMPANY		IN	IN0025313			
	COLGATE - PALMOLIVE COMPANY		IN	INO003638			
	TOWN OF CLARKSVILLE	CLARKSVILLE WWTP	IN	INO020621			
	COMPANY	OHID FALLS STATION	KY	KY0002089			
_	U.S. ARMY CORPS OF ENGINEERS	MCALPINE LOCK AND DAM	KY	KY0020320			
606.4	MOSER LEATHER COMPANY, INC.		IN	IN0002666			_
609-5	CITY OF NEW ALBANY	NPW AT DANY MEED	TN	TND022004	Sedime	ent :	Sample
	PUBLIC SERVICE COMPANY OF	NEW ALBANY WWTP GALLAGHER GENERATING STATION	IN TN	INO023884 INO002798			
5.2.2.0	INDIANA	C. M. C.	711	1110004130			
					_Water	Sam	ple
611.6	ASHLAND PETROLEUM COMPANY		KY	KY0002291	-	. –	-

Ohio River Discharges Cincinnati, OH - Louisvilie, KY Mile Point 462 - 626

River Mile	Corporation	Plant Name	State	Permit Numl	ber	
	LOUISVILLE AND JEFFERSON COUNTY METROPOLITAN SEWER DISTRICT	MORRIS FORMAN WWTP	ΚY	KY0022411		
612.1	BP OIL COMPANY	LOUISVILLE TERMINAL	KY	KY0089711		
612.5	CHEVRON U.S.A., INC.	LOUISVILLE TERMINAL	KY	KY0063002		
	TEXACO, INC.	TERMINALS AND BULK STORAGE		KY0021717		
613.0	ASHLAND CHEMICAL COMPANY		ΚY	KY0021610		
	B.F. GOODRICH CHEMICAL COMPANY		KY	KY0001457		
613.3	ROHM AND HAAS KENTUCKY, INC.		KY	KY0002305		
613.5	AMERICAN SYNTHETIC RUBBER CORPORATION		KY	KY0001589		
613.6	LOUISVILLE GAS AND ELECTRIC COMPANY	PADDY'S RUN STATION	KY	KY0002071		
613.8	E.I. DU PONT DE NUMOURS AND COMPANY		KY	KY0001350		
614.0	ASHLAND SERVICE STATION	NO.14-0 WWTP	ΚY	кҮ0027839		
	MARATHON OIL COMPANY		KY	KY0064629		
614.9	STAUFFER CHEMICAL COMPANY		KY	KY0002780	Water-	Camm la
615.2	BORDEN CHEMICAL A&C	LOUISVILLE SITE	KY		-warer	-surfa te
	WELLINGTON ELEMENTARY SCHOOL			KY0027103		
616.2	LOUISVILLE GAS AND ELECTRIC COMPANY	CANE RUN STATION	KY	KY0002062		
616.3	EDWARDSVILLE WATER CORPORATION	EDWARDSVILLE WTP	IN	IN0004731		
617.4	INTERPOLYMER CORPORATION		KY	KY0086665		
619.2	LOUISVILLE AND JEFFERSON COUNTY RIVERPORT AUTHORITY		KY	KY 009 0875		
620.0	SHACKLETTE ELEMENTARY SCHOOL	SHACKLETTE ELEMENTARY SCHOOL WWTP	KY	KY0027014		
620.5	EXXON COMPANY, U.S.A	EXXON TERMINAL NO. 5277	KY	KY0021881		
	JOHNSONTOWN ROAD ELEMENTARY SCHOOL	JOHNSONTOWN ROAD ELEMENTARY SCHOOL WWTP		KY0026310		
623.3	LOUISVILLE AND JEFFERSON COUNTY METROPOLITAN SEWER DISTRICT	WEST COUNTY WWTP	KY		Water-	Sample
					-Macet	эчирте

•	•	
		•

QA Project Plan Cincinnati to Louisville Toxics Survey June 1989 Page 1 of 16

- 1. Project Name: Cincinnati to Louisville Toxics Survey
- 2. Project Initiation: October 1989

3. Project Objective:

To provide data on certain chemical and physical parameters for water quality assessments under the Commission's Toxics Substances Control Program for the Ohio River from Mile 462.8 to 625.9 (Cincinnati, Ohio to West Point, Kentucky).

4. Project Description:

This sampling project is designed to further characterize levels of metals, organic compounds, PCBs, and pesticides in the sediments, water column and the fishes of the Ohio River and its tributaries.

5. Sampling Design and Rationale:

Review of Commission monitoring data indicate that the greatest water quality concerns in the reach of Ohio River from Mile 462.8 to 625.9 are with the contribution of PCBs and chlordane and the subsequent bioaccumulation in fish tissue. A fish sampling program is proposed in conjunction with a sediment sampling program to characterize the general distribution of these parameters.

Of additional concern are instream levels of metals which exceed criteria established for the protection of aquatic life. Analysis has indicated that many of these parameters are runoff related, therefore sediment analysis will provide an understanding of the relative contribution from tributaries and of instream loads in the Ohio River.

Water column samples are proposed at selected locations to provide background data on the study segment and to characterize the input from ash ponds and ground water contribution from industrial areas in the study area.

Tables 1, 2, and 3 show the sampling locations for water column sediment and fish tissue samples.

QA Project Plan Cincinnati to Louisville Toxics Survey June 1989 Page 2 of 16

PROPOSED WATER COLUMN SAMPLING LOCATIONS CINCINNAT! - LOUISVILLE SECNENT

Site ID		River Mite	Parameters	Rationale
Cincinnati Water Works	ORUC1	462.8	Metals, conventionals, VOC,	Upstream end of study segment Questions regarding monitoring station data
Kentucky River	KRWC1	0.5*	Metals, conventionals	Characterization of contribution to Ohio River
Madison, Indiana	ORUC2	559.0	Netals, conventionals	Background sample for Hanover Beach sample
Hanover Beach, Indiana	ORHC3	563.0	Metals, conventionals	Characterize the impact of ash ponds to Ohio River
Louisville, Kentucky	ORUC4	611.0	Hetals, conventionals, VOCs	Background sample for RM 615.5 sample
Louisville, Kentucky	ORUC5	615.6	Metals, conventionals, VOCs	Characterize the impact of Louisville industry on Ohio River
West Point, Kentucky	ORUCS	6.25.9	Hetals, conventionals	Downstream of the study segment

^{*}River miles from the confluence with the Chio River - Upstream of Lock #1

Three depth integrated samples to be collected at each site

21 samples for each parameter set

Metals include: Arsenic, Copper, Lead, Mercury, Nickel Volatile Organics by EPA Method 502.2 Conventionals to include field parameters (temperature, pH, conductivity, and dissolved oxygen) + total suspended solids and hardness

QA Project Plan Cincinnati to Louisville Toxics Survey June 1989 Page 3 of 16

TABLE 2

PROPOSED SEDIMENT SAMPLING LOCATIONS CINCINNATI - LOUISVILLE SEGMENT

Site ID		River Hila	Parameters	Rationale
Little Miami River	LHS1	保 电电子电子电子电子电子电子电子电子电子电子电子电子电子电子电子电子电子电子电	Hetals, pesticides, PCBs	Characterization of contribution from Little Miami River
Licking River	LRS1	*4.5	Metals, pesticides, PCBs	Characterization of contribution from Licking River
Ohio River	0851	472.0	Metals, pesticides, PCBs	Downstream of Mill Creek and Mill Creek WATP
Mill Creek	HCS1	ඔපමසම	Metals, pesticides, PCBs	Characterization of contribution from Mill Greek
Ohio River	ORS2	0.474	Metals, pesticides, PCBs	Downstream of Mill Creek and Mill Creek WMIP
Great Miami	GHS1	*5.5	Metals, pesticides, PCBs	Characterization of contribution from Great Miami River
Ohlo River	0RS3	491.0	Hetals, pesticides, PCBs	Downstream of confluence of Great Miami River
Kentucky River	KRS1	0-5.	Metals, pesticides, PCBs	Characterization of contribution from Kentucky River
Ohio River	ORS4	611.0	Metals, pesticides, PCBs	Upstream of Louisville industrial area
Ohio River	ORSS	615.6	Metals, pesticides, PCBs	Downstream of Louisville industrial area

***** To be determined in the field Babab Upstream of the barrier dam Metals include: Arsenic, Copper, Lead, Mercury, Nickel for Ohio River samples - discreet samples are to be collected from each side of the river.

QA Project Plan Cincinnati to Louisville Toxics Survey June 1989 Page 4 of 16

TABLE 3

PROPOSED FISH SAMPLING LOCATIONS CINCINNATI - LOUISVILLE SEGNENT

Site ID	0 0 0 0 0 0 0 0	River Hile	Parameters	Rationale
Ohio River	ORF1	0.095	Pesticides, PCBs	Upstream of Cincinnati
Ohio River	ORF2	480.0	Pesticides, PCBs	Upstream of the confluence of the Great Miami
Great Miami	GNF1	**	Pesticides, PCBs	Characterization of fish inhabiting the Great Miami
Great Hiami	GNF2	‡ ‡	Pesticides, PCBs	Characterization of fish inhabiting the Great Miami and the Ohio River
Ohio River	ORF3	492.0	Pesticides, PCBs	Downstream of the confluence with the Great Miami
Ohio River	ORF4	593.0	Pesticides, PCBs	Upstream of Louisville
Ohio River	ORFS	625.9	Pesticides, PCBs	Downstream of Louisville metropolitan area

***** Determined in field

Two species to be collected at each station. Samples to be ten, one sided fillet composites.

1 - Channel Catfish

1 - Game Fish

QA Project Plan Cincinnati to Louisville Toxics Survey June 1989 Page 5 of 16

6. Monitoring Parameters and Frequency:

6.1 Water Column Samples

Vertically composited grab samples will be collected at stream quarter points. All water samples will be analyzed for hardness, total suspended solids, arsenic, copper, lead, and phenolics. Field parameters (temperature, pH, dissolved oxygen, and conductivity) will be measured at all collections points (i.e. at bottom, mid-depth, center depth) at stream quarter points.

Mid-depth samples will be collected at stream quarter points at three stations, see Table 1, for volatile organic chemical analysis.

TABLE 4

PARAMETER TABLE FOR WATER COLUMN SAMPLES

Compound	Number of Samples	Analytical Method Reference	Sample Preservation	Holding Time
*************		*******	*****	
Temperature	63	Std. Method 212	No ne	Field Test
рН	63	EPA 150.1	No ne	field Test
Specific Conductance	63	EPA 120.1	None	Field Test
Dissolved Oxygen	63		None	Field Test
Total Suspended Solids	21	EPA 160.1	Cool 4°C	7 Qays
Hardness	21	EPA 130.1, 130.2	HNO, to pH<2	6 Mas.
Arsenic	21	EPA 206.3, 206.2	HNO√ to pH<2	6 Mos.
Copper	21	EPA 220.1, 220.2	HNO√ to pH<2	6 Mos.
Lead	21	EPA 239.1, 239.2	HNO to pH<2	6 Mos.
Mercury	21	EPA 245.1	HNO√ to pH<2	28 Days
Nickel	21	EPA 249.1, 249.2	HNO to pH<2	6 Mos.
Phenolics	21	EPA 420.1	H ₂ SÖ ₄ to pH<2	28 Days
Bromochioromethane	11	EPA 502.2	°Cool 4°C	7 Days
Bromodichloromethane	11	EPA 502.2	Cool 4°C	7 Days
Bromoform	11	EPA 502.2	Cool 4°C	7 Days
Carbon Tetrachloride	11	EPA 502.2	Cool 4°C	7 Days
Chloroform	11	EPA 502.2	Cool 4°C	7 Days
Dibromochloromethane	11	EPA 502.2	Cool 4°C	7 Days
1,1-Dichloroethane	11	EPA 502.2	Cool 4°C	7 Days
1,2-Dichloroethane	11	EPA 502.2	Cool 4°C	7 Days
1,1-Dichloroethylene	11	EPA 502.2	Cool 4°C	7 Days
1,2-Dichloropropane	11	EPA 502.2	Cool 4°C	7 Days
Methylene Chloride	11	EPA 502.2	Cool 4°C	7 Days
Tetrachioroethylene	11	EPA 502.2	Cool 4°C	7 Days
1,1,1-Trichloroethane	11	EPA 502.2	Cool 4°C	7 Days
Trichtoroethylene	11	EPA 502.2	Coal 4°C	7 Days
Trichlorofluoromethane	11	EPA 502.2	Cool 4°C	7 Oays
Benzene	11	EPA 502.2	Cool 4°C	7 Days
Chlorobenzene	11	EPA 502.2	Cool 4°C	7 Days
Ethylbenzene	11	EPA 502.2	Cool 4°C	7 Days

QA Project Plan Cincinnati to Louisville Toxics Survey June 1989 Page 6 of 16

TABLE 4

PARAMETER TABLE FOR WATER COLLEGE SAMPLES (Continued)

Compound	Number of Samples	Analytical Method Reference	Sample Preservation	Bolding Time
	• • • • • • • • • • • • • • • • • • • •			
1,2-0ichlorobenzene	11	EPA 502.2	Cool 4°C	7 Days
1,3-Dichlorobenzene	11	EPA 502.2	Cool 4°C	7 Days
1,4-Dichlorobenzene	11	EPA 502.2	Cool 4°C	7 Days
Toluene	11	EPA 502.2	Cool 4°C	7 Days

EPA Method 502.2 - Volatile Organic Compounds in water by Purge and Trap Capillary Column Gas Chromatography with Photoionization and Electrotytic Conductivity Oetector in Series (Sept. 1986); CEPA Method 003A

6.2 Sediment Samples

Sediment samples will be collected at stations described in Table 2 for analysis of arsenic, copper, lead, phenolics, PCBs, and pesticides. It is recognized that sediment sample collection is dependent on the availability of sediments. The locations provided are a guide and exact locations will be determined in the field. The goal is to determine the influence of certain upstream influences (see Table 2).

TABLE 5
PARAMETER TABLE FOR SEDIMENT SAMPLING

Compound	Number of Samples	Analytical Method Reference	Sample Preservation	Halding Time
Arsenic	17	EPA 200	Coal 4°C	
Copper	17	EPA 200	Cool 4°C	
Lead	17	EPA 200	Cool 4°C	
Mercury	17	EPA 200	Cool 4°C	
Nickel	17	EPA 200	Cool 4°C	
Phenolics	17			
PCBs/Pesticides	17	EPA 608	cool 4°C	

6.3 Fish Tissue Samples

Fish tissue samples will be collected at stations described in Table 3. Each sample will consist of fillets from five adult fish of the same species. Two samples (channel catfish and game fish) are to be collected at each site and analyzed for PCBs and pesticides. The locations provided are a guide to the area where the fish samples have to be collected.

QA Project Plan Cincinnati to Louisville Toxics Survey June 1989 Page 7 of 16

TABLE 6

Compound	Number of Samples	Analytical Method Reference	Sample Preservation	Holding Time	
- PCBs/Pesticides % Fat (lipid content)	14	EPA 608	Freeze	1 Year	

7. Project Organization and Responsibility

The field survey is a cooperative effort between the Indiana Department of Environmental Management (IDEM), the Kentucky Division of Water (KDOW), and the Ohio River Valley Water Sanitation Commission (ORSANCO). ORSANCO will provide field personnel, all sample containers, preservatives, shipping materials, field data sheets and a sampling boat. Participating agencies will provide field personnel, appropriate sampling gear and necessary sampling boats to complement existing resources.

8. Quality Assurance Objectives

Data quality requirements are parameter specific and shall confirm to those stated in U.S. EPA approved analytical methods. Method 502.2 GC (VOCs), and Methods for Chemical Analysis of Water and Wastes, EPA 600/4-74-020 (inorganics). All sampling and analysis procedures will be performed as representativeness and minimize sample loss and contamination Twenty-two volatile organics will be analyzed in problems. grab samples of river water, and river sediments using purge and trap gas chromatography with photoionization electrolytic conductivity detectors. The analytical method employed is approved by U.S. EPA for analysis of treated drinking water and raw source water (Method 502.2). compounds include halogenated methanes, ethanes, laboratory detection limits for these parameters range from 0.2 μ g/l to $0.3 \mu q/1.$

<u>Parameter</u>	Target Detection Limit*
Temperature	1°C
Hq	0.1 s.u.
Specific Conductanc	e 10μ
Suspended Solids	5 mg/l
Hardness	1 mg/l
Cyanide	5 mg/l
Phenolics	2 mg/l

QA Project Plan Cincinnati to Louisville Toxics Survey June 1989 Page 8 of 16

METHOD DETECTION LIMIT, µq/L*

PARAMETER		HECD/PID
Bromochloromethane	Not	Established
Bromodichloromethane		0.1
Bromoform		0.1
Carbon Tetrachloride	Not	Established
Chloroform		0.1
Dibromochloromethane		0.1
1,1-Dichloroethane		0.2
1,2-Dichloroethane		0.1
1,1-Dichloroethylene		0.1
1,2-Dichloropropane		0.1
Methylene Chloride		0.8
Tetrachloroethylene		0.1
1,1,1-Trichloroethane		0.1
Trichloroethylene		0.1
Trichlorofluoromethane	Not	Established
Benzene		0.1
Chlorobenzene		0.1
Ethylbenzene		0.1
1,2-Dichlorobenzene		0.3
1,3-Dichlorobenzene		0.2
1,4-Dichlorobenzene		0.2
Toluene		0.1
		**

HECD = Hall Electrolytic Conductivity Detector

PID = Photoionization Detector

*OEPA OA Manual

9. Internal Quality Control Checks and Frequency

Quality control checks in the field will consist of field blanks, split samples and duplicate samples. All VOC samples will be collected in duplicate and analyzed at a frequency of 10%. One field blank and one duplicate per inorganic parameter will be analyzed for every 16 samples collected. Sampling sites for collection of blanks and duplicates will be selected randomly in the field and sample bottles labeled "field blanks" or "duplicate." Single lot reagent grade water will be provided for preparing all field blanks.

QA Project Plan Cincinnati to Louisville Toxics Survey June 1989 Page 9 of 16

Laboratories providing analysis in this project have an approved quality assurance program in place and are certified in water/wastewater analysis. Routine quality control in the laboratory should include the following:

- 1) daily reagent blank analysis;
- 2) daily calibration standard analysis;
- 3) analysis of field blanks and duplicates; and
- 4) weekly low level spike analysis.

10. Sampling Procedures

10.1 Water Column Samples

Water column samples are to be collected at each designated location at each quarter point (right quarter point, midstream and left quarter point) along a line perpendicular to the river bank. Depth composite samples collected for the inorganic parameters will consist of a composite of samples collected at depths of one meter from the surface, mid-depth and one meter from the bottom. Samples collected for volatile organic analysis shall be taken at mid-depth only. Appropriate preservatives will be added to each sample container. Samples will be collected using stainless steel or teflon Kemmerer samplers.

Cleaned, labeled sample bottles will be provided as follows:

Volatile Organics	40 ml glass-teflon septum
Phenolics	8 oz glass
Suspended Solids	l qt plastic
Hardness	l qt plastic
Metals	l qt plastic

Bottle labels will specify analyte, date, time, location description, sample ID, preservative, and collector's name and agency. A field sample report will also be prepared for each sampling point.

<u>Field Parameters</u>: ORSANCO and each participating agency will provide their own field instruments for field tests. Field measurements for temperature, conductivity and pH will be recorded at each quarter point at each sample interval. The completed field report will be returned with the results to ORSANCO.

QA Project Plan Cincinnati to Louisville Toxics Survey June 1989 Page 10 of 16

<u>Volatile Organics</u>: Samples must be collected in 40 ml septum (teflon septums) vials from the mid-depth at each quarter point at the sampling locations so designated. The sample vials are to be filled such that a meniscus forms on the top rim of vial. The tops are to be put on such that there are no air bubbles present in the vials. The hermetic seal is to be maintained on the sample vial until the time of analysis. Duplicates will be collected and submitted at all times and field blank samples will be submitted at a frequency of 10%. All samples are iced or refrigerated at 4°C from the time of collection to the time of analysis.

<u>Phenolics</u>: Samples must be collected in 8 oz. glass containers with polyethylene caps. Samples will be vertically composited in the field. Samples are preserved in the field by adding 1 ml 1:1 H₂SO₄. Samples will be stored at 4°C and submitted to the laboratory as soon as possible.

<u>Metals</u>: Samples will be collected in 1 qt. plastic containers. Samples will be vertically composited in the field. Samples are preserved in the field by adding 2 ml HNO₃. Samples will be stored at 4°C and submitted to the laboratory as soon as possible.

Total Suspended Solids: Samples will be collected in 1 qt. polyethylene cubitainers. Samples will be vertically composited in the field. Samples will be stored at 4°C from the time of collection to the time of analysis.

<u>Total Hardness</u>: Samples will be collected in 1 qt. polyethylene cubitainers. Samples will be vertically composited in the field and preserved by adding 2 ml of 1:1 H_2SO_4 . Samples will be stored at 4°C from the time of collection to the time of analysis.

10.2 Sediment Samples

Sediment samples are to be collected in the vicinity of the locations designated in Table 2 and indicated on the maps in Appendix A. Actual location for collection will be determined in the field based on availability of sediment. In the case of the Ohio River locations, two discreet samples are to be collected, one from each side of the River.

QA Project Plan Cincinnati to Louisville Toxics Survey June 1989 Page 11 of 16

Samplers shall attempt to collect samples of small particle size and no samples with particle size greater than sand (2.0 mm) shall be collected.

The samples shall be collected with either a ponar type sampler or a corer type sampler. Sediments shall be collected from the top layer of bottom sediments. The samples will be placed in 1 qt. glass jars.

Bottle labels will specify analyte, date, time, location description, sample ID, and collector's name and agency. A field sample report, which will include a river chart showing sampling collection location, shall be prepared for each sample.

10.3 Fish Tissue Sampling

Fish are to be collected for fish tissue samples at the locations indicated on Table 3. The locations are provided as a guide for the collection area, actual collection location will be determined in the field. The following procedures will be used to collect and preserve the fish tissue samples. Each sample is to be a composite consisting of ten one sided fillets. Two composite samples are to be collected at each site.

- 1 Composite Catfish
- 1 Composite Game Fish (preferably white bass)

10.3.1. Field Equipment

The following equipment is needed in the collection of fish fillets:

Fish measuring board
Fish weigh scale
Fillet board
Scaling tool
Stainless steel knife
Aluminum foil
Acetone or Hexane (reagent grade)
Plastic bags
Dry ice
Coolers
Data sheets
Label tags

QA Project Plan Cincinnati to Louisville Toxics Survey June 1989 Page 12 of 16

10.3.2 Fish Collection Procedures

- a. Collect the fish species to be filleted for tissue analysis.
 - i. Methods of Collection

Several methods of collection are acceptable. The methods most commonly used are:

- 1. Rotenone
- 2. Electrofishing
- 3. Hoop netting

Any method of collection is acceptable which provides live fish to be collected from the water, in good condition, without contamination from analyte compounds or substances which interfere with analyte compound identification or analysis.

b. Field Data Collection

Record on an ORSANCO field data sheet the location, date, time, collection method, and collectors of the fish to be filleted for analysis, etc. (see Attachment A). A copy of this data sheet should accompany the fish to be ORSANCO offices and be delivered to the Coordinator of Field Operations.

c. Fish Data Collection

Field data is collected on the fish to be filleted for analysis. This data should include:

- a. Species identification
- b. Total length
- c. Total weight
- d. Notation of anomalous characteristics
- 10.3.3 Filleting Procedures
- a. Fillet Equipment Preparation
- i. Rinse all equipment that will come in contact with the fish fillets (foil, scalers, knives, etc.) with reagent grade acetone or hexane.

QA Project Plan Cincinnati to Louisville Toxics Survey June 1989 Page 13 of 16

- ii. Rinse the equipment between species or composites, which are being submitted for analysis. It is not necessary to rinse equipment between individuals of the same species or individuals of the same composite.
- iii. Cover all work surfaces which will come in contact with the fish or fillet (table surface, scaling board, filleting board) with hexane or acetone rinsed aluminum foil. Use the foil with dull side up, or in contact with the fish and the fillet. Replace foil as often as necessary, especially between species or between composites of the same species.

b. Fish Preparation

- i. All fish, with the exception of catfish, are scaled prior to filleting. Catfish, having no scales, are skinned prior to filleting. Fish are scaled carefully as not to abrade the underlying tissue thus permitting unnecessary contamination.
- ii. After scaling or skinning has been completed, cut dorsoventrally behind the opercular flap from the nape to the
 rib cage, cutting deep enough to reach the spinal
 vertebrae. Do not cut into the abdominal cavity. If
 organs or viscera are cut during the filleting process,
 the fillet and equipment are automatically considered
 contaminated. The fish is discarded, the equipment
 rinsed with solvent, the foil replaced, and a new fish
 is started.
- iii. Cut posteriorly from the opercular cut to the caudal peduncle. Cut deep enough to reach the vertebrae on the anterior portion of the fish. Once passed the anus, the knife blade can extend ventrally through the fish, and the posterior portion of the fillet is cut following the vertebrae to the caudal peduncle.
- iv. Returning to the anterior portion of the fillet, carefully cut along the rib cage, extracting the bulk of the muscle tissue covering this area. As the muscle tissue thins appreciably, cut through the muscle wall to the exterior, resulting in the ventral extent of the anterior portion of the fillet. Continue this cut to just behind the anus (see Attachment B, 1-2 fish species and fillet locations).

QA Project Plan Cincinnati to Louisville Toxics Survey June 1989 Page 14 of 16

- v. Place fillet on rinsed aluminum foil, dull side up, and composite with other fillets.
- vi. Once the composite is complete, wrap the fillets in two layers of solvent rinsed aluminum foil, shiny side out. One the outside of the aluminum foil, write the species, location and date of collection. Place each composite in a resealable plastic bag and again write the species, location and date on the outside of the bag. Place the samples in a cooler with dry ice and present the cooler to the ORSANCO representative or ship overnight to the ORSANCO offices in care of the Coordinator of Field Operations.

11. Sample Custody

All pertinent information will be documented on field sample reports and sample bottle labels at the time of collection. The sample collector attests to the validity of the sample by signature on the bottle and log sheet. The log sheets are submitted with the samples to the laboratory and can be used to report the test results to ORSANCO. ORSANCO will be responsible for transporting the water samples to the laboratory.

12. Calibration Procedures and Preventive Maintenance

Field instrumentation to measure pH, temperature, and conductivity should be calibrated prior to sampling according to the manufacturer's directions. A copy of the calibration procedures will be submitted to ORSANCO. Calibration of laboratory instruments should conform to U.S. EPA protocol for the specific method used. Field personnel will record field calibration results and submit a copy of this log to ORSANCO.

Documentation of equipment maintenance, calibration and repairs is an integral part of a laboratory's quality assurance program. Each laboratory participating in this study is responsible for this element.

13. Analytical Procedures

See Section 6, Monitoring Parameters and Frequency.

QA Project Plan Cincinnati to Louisville Toxics Survey June 1989 Page 15 of 16

14. Data Reduction, Validation and Reporting

Documentation of test results, review of calculations, and data reporting will be conducted by each laboratory according to standard operating procedures. The data will be reviewed for completeness and consistency and entered into ORSANCO's toxics data base which has been established to manage all data collected on this Ohio River segment. Copies of the data on either floppy disk and/or paper will be made available to all participants.

15. <u>Data Usage</u>

The physical/chemical data generated by this sampling project is used to:

- assess general water quality conditions and identify problem areas.
- evaluate point, nonpoint and tributary impacts to the Ohio River,
- identify specific sources of toxic substances in the study area, and
- support water quality management decisions

Basic statistical tests and simple conservative water quality modeling will be performed on the data to characterize water quality. These values will be compared to the Commission's stream criteria and combined with other monitoring data for Toxic Substances Control Program assessments.

16. Corrective Action

In the field, spare sampling containers will be available in case of sample loss or contamination. State personnel are responsible for sample collection devices and test equipment supplies. In the event of unfavorable weather conditions or major conflicts with personnel scheduling, an alternative sampling data will be established.

Corrective action in the laboratory should follow established analytical operating procedures and any action taken reported to ORSANCO's project coordinator.

QA Project Plan Cincinnati to Louisville Toxics Survey June 1989 Page 16 of 16

17. Quality Assurance Reports

A status report will be prepared by ORSANCO to review progress and discuss any quality assurance problems following the field sampling effort. An estimation of analytical precision and accuracy should be included in the test results reported by the laboratory. The final project report will include a summary of quality control objectives achieved during the project.

Attachment A

ORSANCO FISH CONTAMINANTS PROGRAM FISH TISSUE DATA SHEET

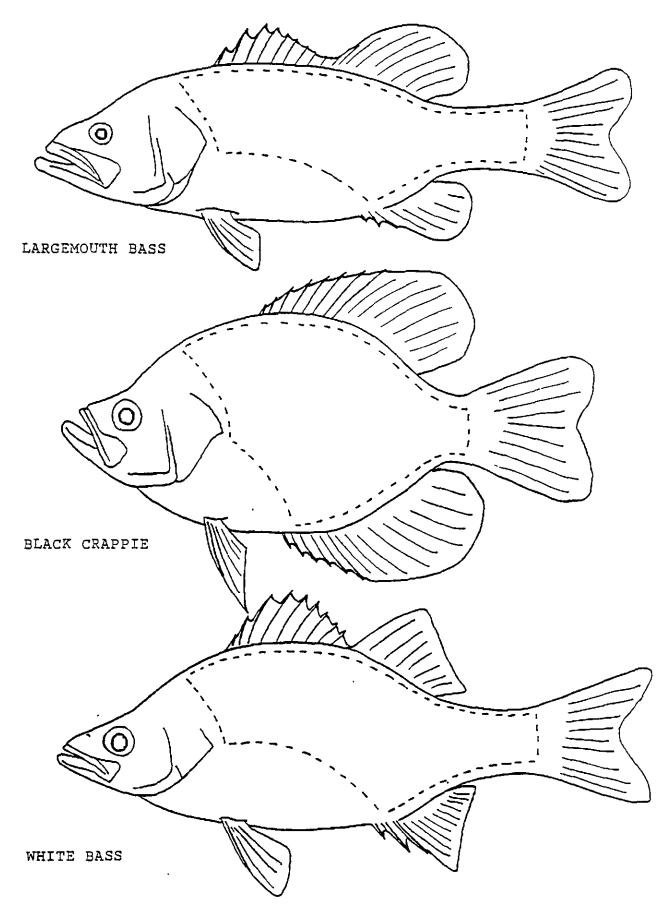
•		
	٠	

ORSANCO FISH CONTAMINANTS PROGRAM

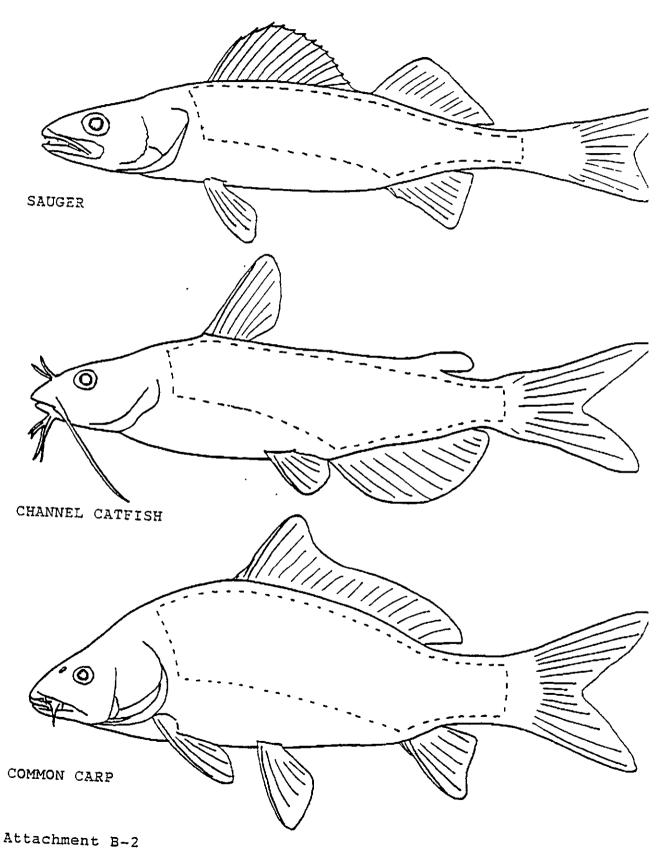
FISH TISSUE DATA SHEET

Waterbody:			Date	·
Location:		 .		
Filleted by:				
Data Transcriber:			·	
Method of Collection:				
<u>Specie</u>	<u>:s_</u>	Length	Weight	Condition
1	 -			
2				
3				·
4		· ————		
5	 .			
6				
7				
8				
9				
10				
Field Parameters: Time	collected			
Temp.	D.O.		pH	Cond
Seachi	Other			

Attachment A

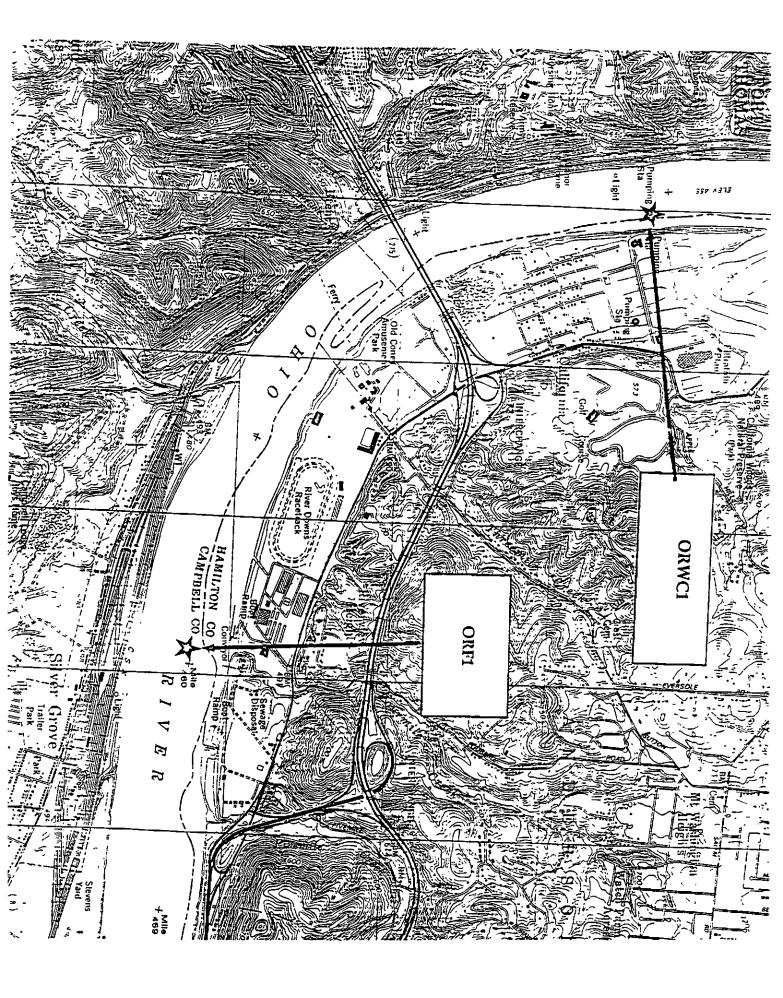

•		

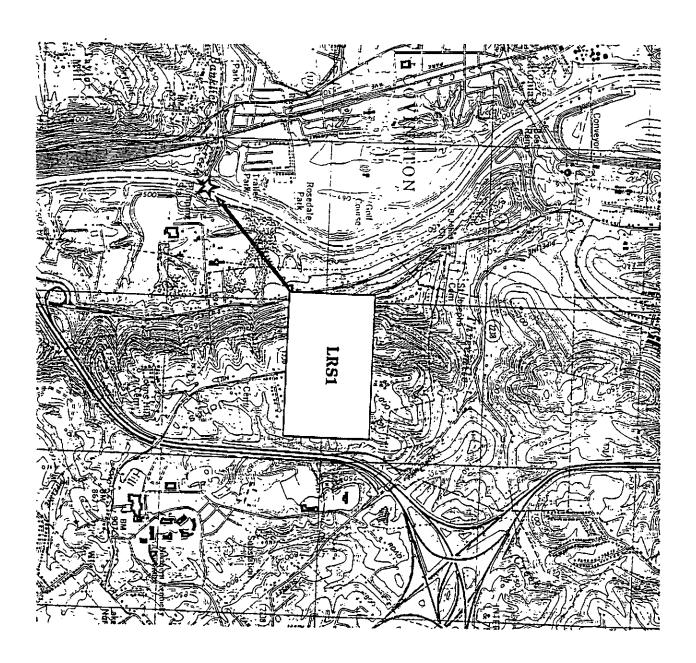
Attachment B

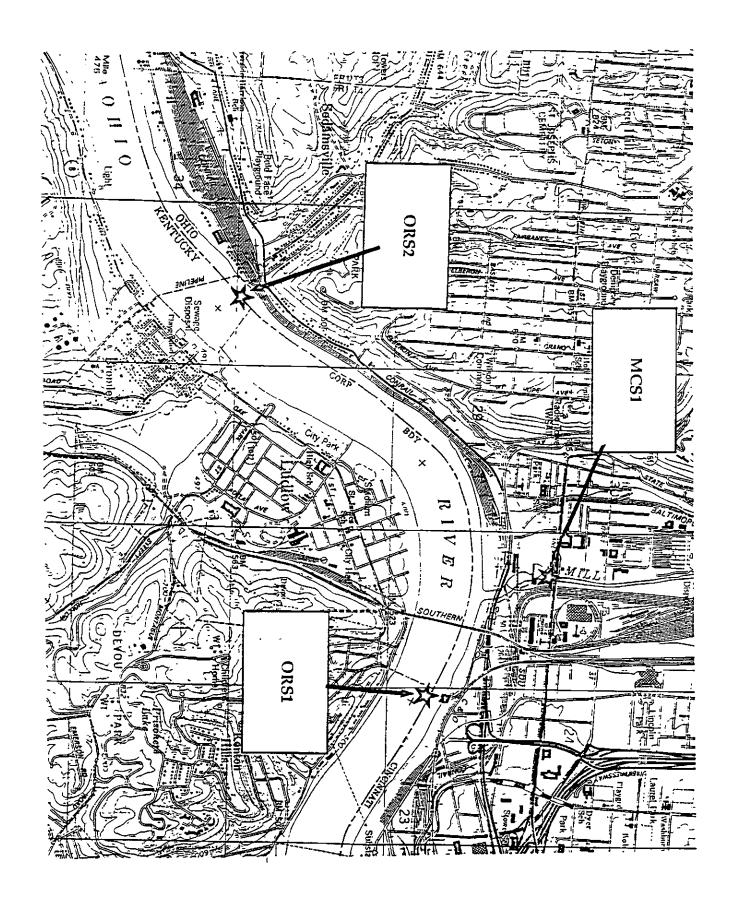

FISH FILLET LOCATIONS ON SELECTED SPECIES

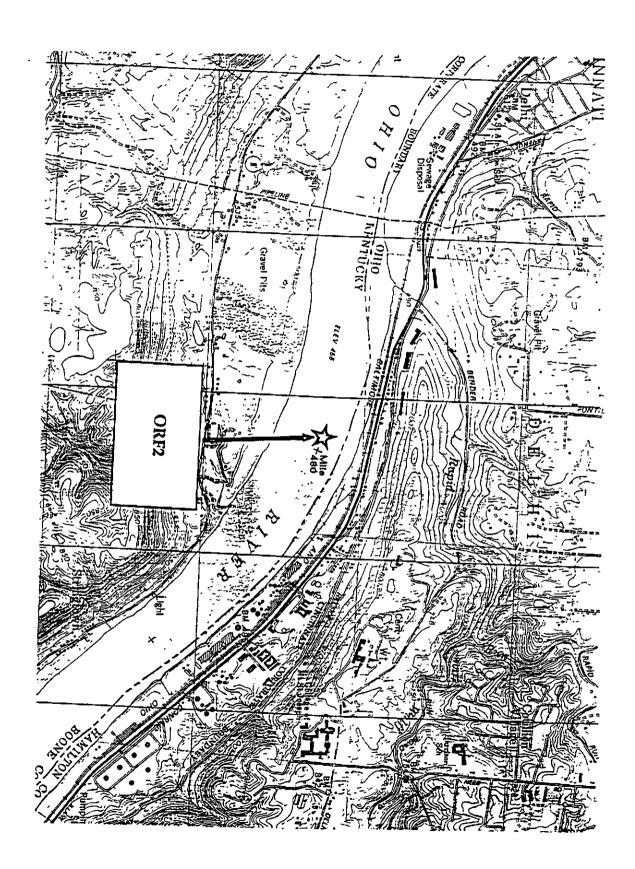
B-1

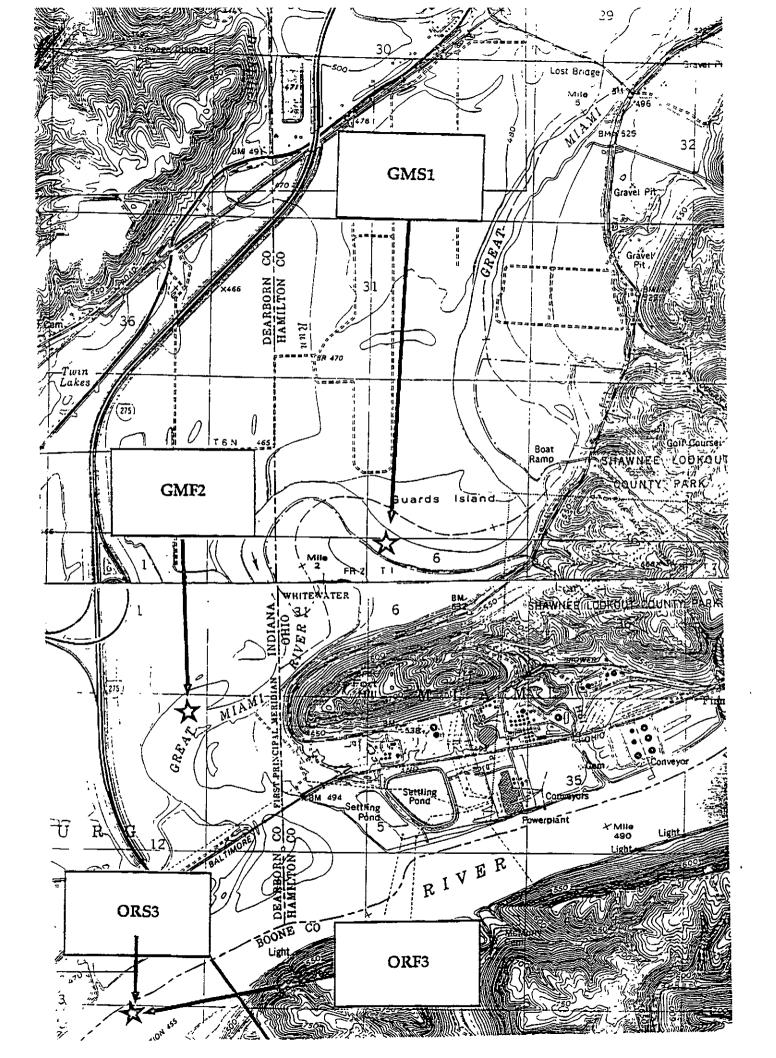
B-2


Attachment B-1 FISH FILLET LOCATIONS ON SELECTED SPECIES




Attachment B-2
FISH FILLET LOCATIONS ON SELECTED SPECIES


APPENDIX C


SAMPLING LOCATIONS

