

WILLOW ISLAND, GREENUP, \& CANNELTON

ORSANCO Biological Programs
Ohio River Valley Water Sanitation Commission
5735 Kellogg Ave. Cincinnati, OH 45230
www.orsanco.org

Table of Contents

Introduction 3
The River 4
Methods 5
Site Selection 5
Collecting the Fish 5
Collecting the Macroinvertebrates 6
Characterizing Instream Habitat 7
Water Quality and Hydrology 7
Assessing Biological Condition 8
Survey Results 9
Willow Island Pool 10
Greenup Pool 11
Cannelton Pool 12
Conclusions 13
Pool Surveys 13
Assessment Comparisons 13
Past vs. Present Assessments 13
River-wide Assessment Comparison 13
Willow Island Pool (2016 vs. 2011 vs. 2006) 14
Greenup Pool (2016 vs. 2011 vs. 2006) 14
Cannelton Pool (2016 vs. 2011 vs. 2006/2007) 15
Another Biological Indicator 15
River-wide Catch Comparison (table) 17

Introduction

Based in Cincinnati, the Ohio River Valley Water Sanitation Commission (ORSANCO) is an interstate water pollution control agency created in 1948 by an act of Congress to monitor and improve the water quality of the Ohio River. A primary goal of ORSANCO programs is to work with state agencies to develop a set of pollution control standards for the Ohio River. Monitoring programs were established to develop and refine these standards. One of these programs, the ORSANCO biological program, uses fish and macroinvertebrate (macro) studies to establish biological criteria (biocriteria) for the Ohio River. These biocriteria are ultimately used to provide insight into the overall health of the river ecosystem.

In 1993, ORSANCO developed and implemented a survey design that used electrofishing methods designed for the Ohio River. Preexisting macro sampling was augmented to prescribe to this new random survey design. After years of biological collections on the Ohio River, two biological indices were developed (see figure on right for specifics). Each year we collect fish, macro, and environmental data from various sections of the Ohio River. These data are used to calculate index scores, which are numerical representations of the relative condition of Ohio River biological communities based on a suite of measurable attributes. The resulting scores allow us to assess the biological condition of each section of the river. The information included in these assessments is further used for regulatory, restorative, and protective efforts within the Ohio River basin.

Present - We continue to work with state \& federal agencies to assess the biological integrity of Ohio River aquatic communities as directed by the Clean Water Act

This report summarizes the findings of the 2016 surveys; the assessments of the Willow Island, Greenup, and Cannelton pools

The River

The Ohio River begins at the confluence of the Monongahela and Allegheny rivers in Pittsburgh and flows 981 miles in a southwesterly direction to its confluence with the Mississippi River near Cairo, IL. The Ohio has several additional large tributaries including the Muskingum, Scioto, Kanawha, Kentucky, Green, Wabash, Cumberland and Tennessee rivers. The Ohio River itself runs through or borders six states; Illinois, Indiana, Kentucky, Ohio, Pennsylvania, and West Virginia. The river basin ($>200,000 \mathrm{mi}^{2}$) covers an additional eight states; New York, Maryland, Virginia, North Carolina, Tennessee, Georgia, Alabama, and Mississippi. Nineteen high-lift locks and dams maintain a nine foot minimum depth for commercial navigation throughout the river.

Facts

- Average depth 24 ft ; max depth exceeds 90 ft
- Average width $1 ⁄ 2 \mathrm{mi}$; 1 mi max (Smithland Pool)
- ~350 fish species from Ohio River basin (24 exotic) = 37% of native U.S. fauna (881 species)
- ~180 fish species found in the Ohio River (17 exotic)
- Deciduous forests continue to dominate the basin
- Major land uses: pastures, row crops, and urban development
- Basin holds $\sim 10 \%$ of the nation (27 million people)
- 33 drinking water intakes along the main stem provide drinking water for over 5 million people
- ~600 permitted discharges to the Ohio River
- 28 coal-fired power plants on the main stem
- Coal and energy products comprise 70% of the 250 million tons of cargo carried by barges each year

Site Selection

A random, probability-based survey design was used to select sampling site locations within each Ohio River navigational pool. The target areas of our surveys are both shorelines of each pool from the upstream dam to the downstream dam. The survey design provides coordinates for 15 sites (500 m long) in each of the selected pools. Biological and environmental data are then collected from these 15 sites and used to assess the biological condition of the pool.

Collecting the Fish

To maintain consistency across different sampling years, fish surveys are conducted between July $1^{\text {st }}$ and October $31^{\text {st }}$ and when water levels are within 2 ft of "normal flat pool". The fish are collected by a non-lethal method called boat electrofishing using an 18 ft aluminum johnboat equipped with a generator and an electrofishing unit (standard equipment used by federal and state agencies). Using the electrofishing unit to regulate the output from the generator, a mild current is applied to the water with an effective range of up to 20ft. Because of our limited range, sites are fished at night along the shoreline when species are most active. This allows us to maximize the number of individuals and species captured, thus providing us with an accurate representation of the fish community at each site.

Sampling is conducted in a downstream manner for a minimum of 1800 seconds, during which all available habitats are sampled within 100 ft from shore. When fish encounter the electric field, their muscles contract and they rise to the surface. The fish are then netted and placed into a live well were they remain until the entirety of the 500 m zone is sampled. Each fish is measured, inspected for anomalies, and identified to lowest possible taxonomic level (e.g. species) before being returned to the water. Small fish (less than 4 cm) that cannot be confidently identified in the field (e.g. minnows) are preserved and identified in the laboratory. All recorded fish information is reviewed and imported into a database from which fish index scores are later generated.

Collecting Macroinvertebrates

Two sampling methods are used to collect macroinvertebrates (macros); Hester-Dendy (HD) samplers and multi-habitat kicks (MH). HD samplers are constructed of tempered masonite cardboard cut into 3 in square plates and 1 in square spacers. Eight large plates and 12 spacers are stacked on a metal eyebolt to provide varying degrees of space for macro colonization. Five HDs are attached, in a ring, to a concrete paver. The paver is then placed on the river bottom in 10 ft of water at the downstream end of each 500 m sampling site and secured to the shore. Similar to the fish, macro sampling is restricted to a defined season within each year. HDs are deployed for six weeks, beginning September $1^{\text {st }}$ allowing adequate time for macro colonization. After the six week colonization period, HDs are retrieved and MH kick surveys are conducted.

Characterizing Instream Habitat

Intensive habitat surveys are conducted which include measures of woody cover, depth, and prevalence of substrate types at each site. Woody cover (submerged brush, logs, and stumps) is estimated visually. More quantitative measures of depth and substrate proportions are obtained through the use of a 20 ft copper pole. The pole is used to probe the bottom of the river to determine exact depth and the proportions of substrate types (boulder, cobble, gravel, sand, fines, and hardpan) that occur at each site.

It is important to classify the instream habitat at each of our sites because different fish and macro species prefer different habitat types, creating index score variability. Using the habitat survey data, we assign each site to one of five statistically derived habitat classes simply named: ' A ', ' B ', ' C ', ' D ' and ' E '. The five habitat classes represent a gradient from highly coarse Class ' A ' habitats with high amounts of cobble and gravel, to the
 predominantly sandy/fine substrates of habitat classes 'D' and 'E' (which differ by water depth, see below).

Water Quality and Hydrology

Basic measures of water quality, such as water temperature, clarity, pH , dissolved oxygen (DO), and conductivity, are measured at each site prior to electrofishing. Water chemistry samples may also be collected at the downstream end of each 500 m zone approximately 100 ft from shore to measure various water quality parameters (e.g. nutrient levels and hardness). River stage is monitored using data obtained from the U.S. Army Corps of Engineers. They also provide measures of predicted daily average flow volumes and velocities from the nearest upstream modeled location to any particular site. These data are compiled to help interpret index results.

A Look At Our Five Habitat Classes

Assessing Biological Condition

ORSANCO uses two biological indices to assess the condition of the Ohio River. The modified Ohio River Fish Index (mORFIn) and the Ohio River Macroinvertebrate Index (ORMIn using HD data only) were established in 2003 and 2012, respectively. Both indices include various measures (metrics) of the fish and macro communities such as: diversity, abundance, feeding and reproductive guilds, pollution tolerance, habits, and health.

13 metrics used to generate mORFIn scores	
Fish Metric	Definition
Native Species	Number (No.) of species native to the Ohio River
Intolerant Species	No. of species intolerant to pollution and habitat degradation
Sucker Species	No. of sucker species (e.g. redhorse and buffalo)
Centrarchid Species	No. of black bass, sunfish, and crappie species
Great River Species	No. of species primarily found in large rivers
\% Piscivores	\% of individuals (ind.) that consume other fish
\% Invertivores	\% of ind. that consume invertebrates
\% Detritivores	$\%$ of ind. that consume detritus (dead plant material)
\% Tolerants	\% of ind. tolerant to pollution and habitat degradation
\% Lithophils	\% of ind. belonging to breeding groups that require clean substrates for spawning
\% Non-natives	\% of ind. not native to the Ohio River, including both exotics and hybrids
No. DELT anomalies	No. of ind. with Deformities, Erosions, Lesions, and Tumors present
Catch per unit effort (CPUE)	Total abundance of ind. (minus exotics, hybrids, and tolerants)

\left.| 8 metrics used to generate ORMIn scores | |
| :--- | :--- |
| Macro Metric | Definition |$\right]$| No. Taxa | Number (No.) of unique taxa
 EPT Taxa |
| :--- | :--- |
| | No. of taxa that belong to are either the
 Ephemeroptera, Plecoptera, or Trichoptera orders |
| Predator Taxa | No. of taxa that are predators
 \% Collector- |
| \% of taxa that feed on fine particulate organic
 Gatherer Taxa
 \% Caenids | matter
 \% of individuals (ind.) that belong to the pollution
 tolerant Caenidae family of Ephemeropterans |
| \% Odonates | \% of ind. that belong to the Odonata order
 \% of ind. intolerant to pollution and habitat |
| \% Intolerants | degradation
 \% of ind. that cling to instream habitat |
| \% Clingers | |

Each navigational pool is separately assessed with each index based upon the biological and environmental data collected from its 15 randomly selected sites. This involves a multi-step approach (depicted top right) that converts average metric scores (0-100) of each individual site into final index scores (0-60), based on varying expectations of the five different habitat classes. Index scores of the 15 sites are then averaged to provide an overall score and rating for the navigational pool specific to each index.

The presence of five distinct habitat classes (' A ', ' B ', ' C ', ' D ', and ' E ') coupled with the range of habitat preferences exhibited by individual fish and macro taxa required the translation of metric scores into relative index scores. By removing the effect of habitat, index scores can then be averaged within a pool to represent the overall condition of the biological community in question.

The averaged scores for both the mORFIn and ORMIn are then compared to a biocriterion. The $25^{\text {th }}$ percentile is the statistical threshold commonly used by regulatory agencies for establishing biocriteria. Using this threshold, our established biocriterion (i.e. a representation of healthy Ohio River fish communities) is set at an average index score of 20.0.

A pool is assessed to be in full support of its aquatic life-use (ALU) designation (i.e. possessing intact biological communities) if both the mORFIn and ORMIn scores are greater than or equal to 20.0 (i.e. a biological rating of 'Fair', 'Good', 'Very Good', or 'Excellent'). A pool is in partial support of its ALU designation if only one of the indices' scores greater than or equal to 20.0, while the other index score falls within 10.0-19.9 (i.e. a 'Poor' rating). Any pool in which both indices score below a 20.0, or in which at least one index scores below 10.0 (i.e. a 'Very Poor' rating), would be considered in non-support of its ALU designation.

For more detailed information pertaining to our programs including survey design, field methods, past \& present assessment results, or biological data contact one of our staff or visit: www.orsanco.org/biological-programs

2016 POOL SURVEY RESULTS

The results of the 2016 biological surveys are detailed in the following pages (relative pool locations shown below). Included are brief descriptions of the land use \& hydrology, site level mORFIn \& ORMIn ratings, summaries of notible catches \& instream habitat, and the overall biological condition of each pool.

For more detailed catch, metric, and index scores visit www.orsanco.org/programs/biological-programs

Greenup pool (2016) - healthy condition

MIDGES 12.8%

SNAILS 2.7%

BOULDER
AQUATIC INVASIVES WATCH

SURVEY SUMMARY

This page summarizes the 2015 fish and macroinvertebrate (macro) surveys conducted by ORSANCO biologists in the Greenup Pool of the Ohio River. Fish are collected via non-lethal electrofishing in the summer. Macros are collected in the fall from artificial substrate samplers placed in the water in late summer. Greenup Pool is 61.8 miles long, extending from Robert C. Byrd Locks and Dam (ORM 279.2) to Greenup Locks and Dam (ORM 341.0). The pool is bordered by the states of West Virginia and Ohio at the upper end and by Ohio and Kentucky downstream of the Big Sandy River. This pool is heavily influenced by industry with a large amount of barge activity near urban centers. Greenup Pool receives water from several tributaries (Guyandotte, Big Sandy, and Little Sandy rivers). These watersheds are primarily forested, but also have significant urban influences including the cities of Huntington, WV and Ashland, KY. Green Bottom Wildlife Management Area (WV) and the mouth of the Little Sandy River (KY) also provide great wetland and backwater habitat for rare mainstem species like the bowfin.

DOMINANT FISH FAMILIES

Electrofishing sampling occurred after a rain event as high waters were receding. While average water clarity was lower than normal (20 inches) and water velocities were slightly elevated, neither negatively affected sampling. Notable catches include numerous Channel Shiners (Notropis wickliffi), the Ohio state threatened Channel Darter (Percina copelandi), and species of special concern River Redhorse (Moxostoma carinatum, WV and OH) and Highfin Carpsucker (Carpiodes velifer, OH). Notable macroinvertebrate collections include a high percentage of non-native filter-feeding scuds (Apocorophium lascustre) and tolerant caddisflies (Cyrnellus fraternus). Independent biological indices were used to apply numeric values to important components of fish and macro assemblages and assess their relative status. The results (see above map) show that, on average, fish in Greenup Pool were in 'Good' condition and the macros were in 'Fair' condition. Overall, while these results indicate that Greenup Pool harbored healthy aquatic communities, close attention will be paid to macroinvertebrates in the future for signs of chronic degradation.

OTHER 1.4°

CONCLUSIONS

Pool Surveys

The 2016 pool surveys for fish populations were successfully completed between July $20^{\text {th }}$ and August $6^{\text {th }}$ as the river recovered from unseasonably high early summer flows. Macro sampling was completed between September $3^{\text {rd }}$ and October 15th. ORSANCO's Biological Water Quality Subcommittee recommended that all three pools surveyed during the 2016 field season be assessed as meeting their aquatic life-use designations (i.e. containing healthy fish and macro communities).

Assessment Comparison

Between 2005 and 2014, all 19 Ohio River navigational pools were surveyed and assessed twice. Both cycles revealed the majority of the river to be in 'Good' condition, even though some pools changed in condition rating between surveys. The 2016 surveys continued the third cycle which enhances our ability to detect riverwide patterns. Some of the index and species variability observed across pools (see final table, pg 14) may be due in part to variations in natural distributions, instream habitat, invasive species distributions, annual variations in flow, weather conditions and water quality differences.

Past vs. Present Assessments

The focus of ORSANCO's biological assessments is to determine whether each pool 'meets' or 'fails to meet' its designated aquatic life use. To aid in interpretation, we apply six ratings (from 'Very Poor' to 'Excellent') to the pools based on the relative condition of their fish communities. Shifts between years in these condition ratings may be due to variations in environmental factors other than water quality. By examining these factors (invasive species, flows, etc.) and their effects on mORFIn metrics, we attempt to provide defensible explanations for the differences in final condition ratings observed between years.

$$
1=1^{\text {st }} \text { cycle (2005-2009) } 2=2^{\text {nd }} \text { cycle (2009-2014) } 3=3^{\text {rd }} \text { cycle (2015-2021) }
$$

Willow Island (2006, 2011, 2016)
(Fish = GOOD, Macros = VERY GOOD)

Variable	2006	2011	2016
Environmental Factors			
Avg. seasonal flow (cfs)	low	moderate	very low
Avg. Conductivity	350	412	482
Avg. Secchi Depth	48.3	42.6	58.3
Avg. Sucker Score	75.2	49.6	66.5
Golden Redhorse	277	63	219
Avg. Species Score	78.8	77.4	81.7
Avg. \% Non-Native Score	86.8	66.3	92.7
Banded Killifish	1	30	14
Common Carp	22	40	11
Avg. Intolerant Score	59.4	45.7	57.3
Logperch	306	532	1173
Avg. \% Simple Lithophyl Score	65.5	8.6	18.8
Logperch	108	16	73
Golden Redhorse	277	63	219
Silver Redhorse	51	12	42
Assessment Result			
Avg. mORFIn Score	39.4	27.7	35.8
Fish Condition Rating	Good	Fair	Good

The Willow Island Pool was sampled and assessed in 2006, 2011 and 2016. Fish condition ratings varied with flow regimes. Average mORFIn score in 2006 was 39.4 (Good) under low flow conditions, 27.6 (Fair) in 2011 under moderate flows and, 35.8 (Good) in 2016 under very low flow condition. The primary drivers behind metric score decline, from 2006 to 2011 and the rebound in 2016, were Sucker Score, Species Score, \% Non-Native score, Intolerant Score and \% Simple Lithophyl Score. The Fair fish condition rating observed in 2011 reflects fewer suckers (namely Redhorses) and a higher number of Common Carp observed in the surveys. Increasing Hydrilla verticillata presence within the pool corresponds to an increased substrate for aquatic macroinvertebrates This may have positive effects on Redhorse species and thus influence metric performance as these species factor into \% Invertivore, Sucker and Simple Lithophyl scores.

Greenup Pool (2006, 2011, 2016)
(Fish = VERY GOOD, Macros = GOOD)

Variable	2006	2011	2016
Environmental Factors			
Avg. seasonal flow (cfs)	moderate	low	high
Avg. Conductivity	352	423	333
Avg. Secchi Depth	24.1	40.2	19.4
Avg. CPUE Score (0-100)	9.4	41.4	32.8
Channel Shiner	61	944	2017
Emerald Shiners	50	1557	221
Golden Redhorse	39	34	124
Avg. Species Score	46.8	70.9	76.8
Avg. Centrarchid Score	51.1	75.6	72.2
Bluegill	112	337	205
Spotted Bass	43	127	59
Avg. Intolerant Score	34.4	41.2	53.6
Channel Shiner	61	944	2017
Avg. \% Invertivore Score	35.5	63.8	91.1
Channel Shiner	61	944	2017
Redhorses	87	101	227
Assessment Result			
Avg. mORFIn Score	32.3	38.0	44.5
Fish Condition Rating	Good	Good	Very Good

The Greenup Pool was sampled and assessed in 2006, 2011 and 2016. Over the course of the three assessments, fish condition ratings steadily improved despite varying flow conditions. Average mORFIn scores increased from 32.3 in 2006 (Good), under moderate flow conditions, to 38 (Good), under low flow, in 2011. High flows and corresponding low average Secchi depth readings ($12^{\prime \prime}-24^{\prime \prime}$) in 2016 had no negative effects on fish condition rating as the average mORFIn score increased to 44.5 (Very Good). The primary metric score drivers behind increased fish condition were Species Score, CPUE Score, \% Tolerant Score, \% Detritivore and \% Invertivore Score. Increased numbers of Redhorses in 2011, and especially in 2016, had a positive effect on fish condition ratings. The effect of submerged aquatic vegetation (namely Hydrilla verticillata) on final fish condition ratings is still being explored. As the invasive plant provides substrate for numerous aquatic macroinvertebrate species, invertivores such as Redhorses are likely to take advantage of increased forage availability. Thus metric scores corresponding to these species could see an increase.

Cannelton Pool (2006/7, 2011, 2016)
(Fish = VERY GOOD, Macros = GOOD)

Variable	2006/2007	2011	2016
Environmental Factors			
Avg. seasonal flow (cfs)	high/low	moderate	moderate
Avg. Conductivity	494	461	347
Avg. Secchi Depth	55.6	29.7	24.9
Avg. CPUE Score (0-100)	38.9	75.0	39.5
Gizzard Shad	3527	709	378
Emerald Shiners	1331	2195	407
Avg. \% Non-Native Score	89.8	94.4	77.0
Common Carp	5	4	3
Redear Sunfish	16	15	20
Silver Carp	0	0	3
Avg. \% Invertivore Score	37.2	81.3	96.7
Channel Shiner	195	2787	1822
Bluegill	103	247	65
Avg. Species Score	47.7	75.8	60.8
Assessment Result			
Avg. mORFIn Score	39.6	43.6	41.8
Fish Condition Rating	Good	Very Good	Very Good

The Cannelton Pool was sampled in 2006 and again in 2007 due to high flow conditions during the 2006 index period. The 15 sites sampled in each year were combined as a single 30 -site assessment for 2006/2007. The pool was again assessed in 2011 and 2016, each under more moderate flow conditions. Fish condition ratings were Good, Very Good and Very Good respectively, with mORFIn scores averaging 39.6, 43.6 and 41.8, respectively. The primary metric score drivers for the improved fish condition ratings in 2011 and 2016 were Species Score, \% Invertivore Score and CPUE Score. When sampled and assessed under moderate flow regimes, the Cannelton Pool's fish community reflects higher condition ratings.

Another Biological Indicator

A third five year cycle of surveys and assessments was initiated in 2014 and continued in 2015. It will be during this new cycle that ORSANCO Biological staff will incorporate an additional indicator into the annual assessment process...macroinvertebrates.

Macroinvertebrates (macros) are organisms that lack a true backbone and can be seen with the naked eye. They include aquatic insects, molluscs, arachnids, crustaceans, and worms. They can range from large adult forms (e.g. crayfish), to very small larval forms of terrestrial insects (e.g. flies).

Look for our mobile 2,200 gallon educational aquarium displays at festivals and events along the Ohio River filled with fishes from local areas

To request a
"Life Below the Waterline"
display at your event, contact
Steve Braun (sbraun@orsanco.org)
for pricing and scheduling

River-wide Catch Comparison (data from most recent survey year shown

$\begin{aligned} & \text { 을 } \\ & \frac{0}{3} \\ & \frac{0}{0} \\ & \hline 0.0 \end{aligned}$	Species (common name)		m n $\frac{\pi}{0}$ 0 0 0 π 0															John T. Myers '15		
	Longnose Gar	23	19	11	19	16	64	34	28	64	25	42	18	28	24	50	16	16	11	61
	Spotted Gar															1	1		2	
¢	Shortnose Gar																12	12	28	101
	Skipjack Herring		1				1	2			1		18		1	2	79	5	2	1
¢	Gizzard Shad	3417	37	26	1097	5092	43	154	117	147	176	158	17703	274	54	378	10834	650	557	278
壳	Threadfin Shad																7		14	74
	Common Carp	48	70	45	19	36	46	11	26	3	32	7	9	5	4	3	7	8	7	2
	Grass Carp								1											1
	Silver Carp														1	3		15	17	25
	Bighead Carp																			
\bigcirc	Goldfish								1									1		
¢	Carp x Goldfish	1																		
	Cyprinidae sp.																			
	Golden Shiner								1											1
	Striped Shiner				1	7									5					
	Spottail Shiner			4	2			11	2	4	1	2			3					
	Spotfin Shiner	77	35	68	21	62	72	295	58	127	19	52	26	10	28	73	39	112	218	14
	Notropis sp.																			
	Emerald Shiner	848	46	216	1525	892	79	1085	240	1208	172	221	1837	470	227	407	720	102	86	20
	Silverband Shiner																			
	Sand Shiner																			
	Channel Shiner	492	108	323	685	481	167	1173	410	733	684	2017	689	897	609	1822	465	255	102	47
	River Shiner								5			16	34	156	30	145	64	104	8	15
	Shoal Chub																			
	Silver Chub				2				1		1	11	24	33	51	32	22	10	12	10
	Streamline Chub	11	1																	
	River Chub																			
	Gravel Chub																			
	Creek Chub											1								
	Central Stoneroller						1	9						1	3					
	Mississippi Silvery																		15	
3	Suckermouth Minnow																			
\sum_{2}	Bluntnose Minnow	120	1	30	98	28	98	227	8	12		2	4	4	2		8	9		2
	Bullhead Minnow							12	5		1	17	25	2	1	11	13	24	1	6

River－wide Catch Comparison（data from most recent survey year shown）

	Species（common name）	Emsworth '12	m n n 0 0 0 0 π 0					Willow Island＇16				$\begin{aligned} & 0 \\ & \text { - } \\ & \text { 을 } \\ & \stackrel{1}{0} \\ & \text { U } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \frac{\pi}{\pi} \\ & \frac{\pi}{0} \\ & \underset{\sim}{0} \end{aligned}$			$\begin{aligned} & 0 \\ & \text { On } \\ & \text { ᄃ } \\ & \text { IN } \\ & \text { ट} \\ & \widetilde{N} \end{aligned}$	Newburgh '12	John T．Myers＇15	Smithland＇13	
	Silverjaw Minnow																			
	Ictiobinae sp．																			
	Ictiobus sp．																1			
	Smallmouth Buffalo	51	84	82	68	58	40	26	38	33	32	19	44	89	31	17	10	32	106	32
	Bigmouth Buffalo											1						4	4	5
	Black Buffalo	1	4	18			4	3	7			3	1	5	4	2	2	2		10
	Carpiodes sp．					1			1					1		1				1
	Quillback	1	13	6	14	9	14	9	7	3	12	3	12	61	9	3	9	7	31	5
	River Carpsucker	8	47	47	23	36	33	18	33	20	26	38	172	221	161	19	146	187	263	139
	Highfin Carpsucker	5	14	12	5	1	5		3	8	1	6	8	4	4		2	3	91	3
	Northern Hog Sucker	3		6	2	6	6	8	1	5	2	1	1		6					
	Moxostoma sp．						3				1									
	Shorthead Redhorse																			10
	Smallmouth Redhorse	33	153	27	11	16	54	41	61	11	22	38	14	44	31	40	1			
	Silver Redhorse	75	252	215	70	23	59	42	31	16	22	39	19	19	14	5	1			
	River Redhorse	14	65	23		2	12	1		2	6	25			1	4				
	Black Redhorse	8	10	25		3	16	6												
	Golden Redhorse	56	155	156	216	93	273	219	64	56	56	124	44	26	67	17	10	8		1
$\stackrel{\stackrel{\rightharpoonup}{山 己}}{\stackrel{4}{u}}$	Spotted Sucker						4	13	8	1		2		1	1					
$\underset{\sim}{n}$	White Sucker																			
	Yellow Bullhead														1					
	Brown Bullhead																			
	Northern Madtom																			
	Blue Catfish													2		4		1	5	
先	Channel Catfish	35	63	83	201	54	83	35	177	52	114	61	70	112	122	46	223	106	478	65
$\underset{\mathbf{~}}{\mathbf{K}}$	Flathead Catfish	19	6	8	15	47	39	22	36	24	40	29	24	21	19	10	14	20	30	12
	Lepomis sp．													2	2					5
	Warmouth														3					
	Rock Bass	75	89	22	15	24	64	11	2											
	Bluegill	154	34	88	192	131	523	540	391	220	254	205	212	207	89	65	94	65	270	41
	Green Sunfish	3	3	1		3	2	1	1	4	4	2	2	1	1	2	3	1		4
エ	Pumpkinseed	4	4	3	2	2	33	14		2	6									
$\stackrel{4}{4}$	Orangespotted Sunfish				2		5	197		5		5	2			2		6	1	
$\stackrel{5}{n}$	Longear Sunfish	2	1		2	8	242	18	24	13	56	15	73	71	65	31	293	137	207	16

River-wide Catch Comparison (data from most recent survey year shown)

$\begin{aligned} & \text { 을 } \\ & \text { 은 } \\ & \text { ò } \end{aligned}$	Species (common name)		n $\stackrel{m}{1}$ $\frac{n}{0}$ 0.0 $=1$ 0 0		New Cumberland '11		Hannibal '13	$\begin{aligned} & 0 \\ & -1 \\ & 0 \\ & \frac{1}{6} \\ & \frac{10}{n} \\ & 3 \\ & 0 \\ & \vdots \end{aligned}$			Robert C. Byrd '13	$\begin{aligned} & \circ \\ & -1 \\ & \text { 을 } \\ & \stackrel{\rightharpoonup}{0} \\ & \frac{1}{0} \\ & \hline \end{aligned}$					$\begin{aligned} & \text { N } \\ & \text { N } \\ & \frac{5}{00} \\ & \frac{1}{7} \\ & 0 \\ & 3 \\ & 0 \end{aligned}$	John T. Myers '15	Smithland '13	
$\begin{aligned} & \text { I } \\ & \text { n } \\ & \vdots \\ & \vdots \end{aligned}$	Redear Sunfish		1					2	7	2	3	4		2	1	20	3	1	32	
	Lepomis Hybrid					1	2		1		2			1					2	
	Bluegill X Longear																			
	Bluegill X Green									1										
	Longear X Green																			
	Morone sp.	50		3	22	110	12	49	79	8	15	35	289	11	81	28	361	72	86	733
	White Perch																			
	Striped Bass								1		1						4			
	White Bass	6	65	7	37	2	28	4	16	1	71	16	1	18	18	20	60	13	83	34
	Yellow Bass															1			15	25
	Hybrid Striped Bass	1	5	2			2		3	1	2	6	3	3	1	13	22	2	6	10
$\underset{\sim}{4} \underset{\infty}{\text { y }}$	Micropterus sp.	57	1					5			9		79	10	18	12	3	14		16
	Smallmouth Bass	167	250	184	155	431	270	198	27	41	38	24	30	19	15	13	33	2	2	7
	Largemouth Bass	8	3	12	2	8	7	20	10	19	18	18	21	12	10	4	72	2	10	6
	Spotted Bass	24	18	6	48	77	99	46	26	17	60	59	86	51	38	48	252	133	48	26
$\frac{\text { 宸 }}{4}$	Johnny Darter			1																
	Greenside Darter					8	1													
	Variegate Darter																			
	Rainbow Darter			2		1		1							1					
	Fantail Darter													1	1					
	Bluebreast Darter																			
	Banded Darter																			
	Dusky Darter	1																		
	Channel Darter	1			1		1	1	1			1	1							
	Blackside Darter																			
	Slenderhead Darter												1							
	River Darter						2							1						
	Logperch	29	15	26	17	40	89	73	5	9	5	16	2	14	9	2		2		2
$\begin{aligned} & \text { I } \\ & \text { 足 } \\ & \text { U } \end{aligned}$	Yellow Perch			44	5		5	7	3											
	Walleye	20	74	68	2	2	10	1	13	1			2		1			5		
	Saugeye	2	11	42			1		25	25				22	8	2	11	4	4	6
	Sauger	39	264	110	29	39	147	73	89	15	128	194	124	116	226	94	44	225	23	46
MISC.	Silver Lamprey											1								
	Ohio Lamprey		2						1											

River-wide Catch Comparison (data from most recent survey year shown)

	Species (common name)												$\begin{aligned} & \text { N } \\ & \frac{N}{N} \\ & \frac{\pi}{0} \\ & \mathbf{N} \end{aligned}$					John T. Myers '15		
	Goldeye														1			10	1	
	Mooneye	10	1	26	11	2	2	2			3	2	6	5	1	5	4	1		1
	Paddlefish																1			
	Northern Pike					1														
	Muskellunge		1																	
	White Crappie	2						1	4	2	1	6		4	1	3	2	7	2	1
	Black Crappie	1	4	9	1	1	1	4	6	6		6		2				7	5	
	Inland Silverside																		16	14
	Brook Silverside	14			11	10	3	1							1		5	1	1	
	Atlantic Needlefish																			
	Trout-Perch		11	137					2											
	Banded Killifish						5	14	1											
	Western Mosquitofish																	1		
	Bowfin																			
	Freshwater Drum	55	136	36	201	239	47	16	82	36	89	116	686	146	238	47	507	114	328	746
	Total No. of Individuals	6071	2177	2260	4849	8103	2819	4755	2190	2957	2211	3666	22416	3207	2345	3507	14480	2518	3230	2680
	Total No. of Species	46	38	42	39	42	48	49	52	40	33	45	41	47	54	43	44	47	36	46

River-wide Catch Comparison (data from most recent survey year shown)

$\begin{aligned} & \text { O. } \\ & \text { O} \\ & \text { O} \\ & \text { 은 } \end{aligned}$	Species (common name)		n $\frac{0}{0}$ 0 0 0 0 0				Hannibal '13	Willow Island '16			Robert C. Byrd '13		$\begin{aligned} & \underset{N}{N} \\ & \frac{\Gamma}{\Gamma} \\ & \frac{\pi}{0} \\ & \Sigma \end{aligned}$					John T. Myers '15		
	Longnose Gar	23	19	11	19	16	64	34	28	64	25	42	18	28	24	50	16	16	11	61
	Spotted Gar															1	1		2	
ভ	Shortnose Gar																12	12	28	101
	Skipjack Herring		1				1	2			1		18		1	2	79	5	2	1
	Gizzard Shad	3417	37	26	1097	5092	43	154	117	147	176	158	17703	274	54	378	10834	650	557	278
¢	Threadfin Shad																7		14	74
	Common Carp	48	70	45	19	36	46	11	26	3	32	7	9	5	4	3	7	8	7	2
	Grass Carp								1											1
	Silver Carp														1	3		15	17	25
	Bighead Carp																			
	Goldfish								1									1		
$\underset{\substack{4 \\ 4}}{ }$	Carp x Goldfish	1																		
	Cyprinidae sp.																			
	Golden Shiner								1											1
	Striped Shiner				1	7									5					
	Spottail Shiner			4	2			11	2	4	1	2			3					
	Spotfin Shiner	77	35	68	21	62	72	295	58	127	19	52	26	10	28	73	39	112	218	14
	Notropis sp.																			
	Emerald Shiner	848	46	216	1525	892	79	1085	240	1208	172	221	1837	470	227	407	720	102	86	20
	Silverband Shiner																			
	Sand Shiner																			
	Channel Shiner	492	108	323	685	481	167	1173	410	733	684	2017	689	897	609	1822	465	255	102	47
	River Shiner								5			16	34	156	30	145	64	104	8	15
	Shoal Chub																			
	Silver Chub				2				1		1	11	24	33	51	32	22	10	12	10
	Streamline Chub	11	1																	
	River Chub																			
	Gravel Chub																			
	Creek Chub											1								
	Central Stoneroller						1	9						1	3					
	Mississippi Silvery																		15	
3	Suckermouth Minnow																			
\sum_{2}	Bluntnose Minnow	120	1	30	98	28	98	227	8	12		2	4	4	2		8	9		2
Σ	Bullhead Minnow							12	5		1	17	25	2	1	11	13	24	1	6

River-wide Catch Comparison (data from most recent survey year shown)

$\begin{aligned} & \text { 을 } \\ & \text { 은 } \\ & \text { ò } \end{aligned}$	Species (common name)		n n n 0 0 0 0 0 0					Willow Island '16			Robert C. Byrd '13	$\begin{aligned} & 0 \\ & -1 \\ & \text { 을 } \\ & \frac{1}{0} \\ & 0 \\ & \hline \mathbf{U} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \hline \underset{N}{N} \\ & \frac{\pi}{0} \\ & \sum \end{aligned}$				Newburgh '12	John T. Myers '15		
	Silverjaw Minnow																			
	Ictiobinae sp.																			
	Ictiobus sp.																1			
	Smallmouth Buffalo	51	84	82	68	58	40	26	38	33	32	19	44	89	31	17	10	32	106	32
	Bigmouth Buffalo											1						4	4	5
	Black Buffalo	1	4	18			4	3	7			3	1	5	4	2	2	2		10
	Carpiodes sp.					1			1					1		1				1
	Quillback	1	13	6	14	9	14	9	7	3	12	3	12	61	9	3	9	7	31	5
	River Carpsucker	8	47	47	23	36	33	18	33	20	26	38	172	221	161	19	146	187	263	139
	Highfin Carpsucker	5	14	12	5	1	5		3	8	1	6	8	4	4		2	3	91	3
	Northern Hog Sucker	3		6	2	6	6	8	1	5	2	1	1		6					
	Moxostoma sp.						3				1									
	Shorthead Redhorse																			10
	Smallmouth Redhorse	33	153	27	11	16	54	41	61	11	22	38	14	44	31	40	1			
	Silver Redhorse	75	252	215	70	23	59	42	31	16	22	39	19	19	14	5	1			
	River Redhorse	14	65	23		2	12	1		2	6	25			1	4				
	Black Redhorse	8	10	25		3	16	6												
	Golden Redhorse	56	155	156	216	93	273	219	64	56	56	124	44	26	67	17	10	8		1
岗	Spotted Sucker						4	13	8	1		2		1	1					
$\stackrel{u}{n}$	White Sucker																			
	Yellow Bullhead														1					
	Brown Bullhead																			
	Northern Madtom																			
	Blue Catfish													2		4		1	5	
N্ড	Channel Catfish	35	63	83	201	54	83	35	177	52	114	61	70	112	122	46	223	106	478	65
$\stackrel{\stackrel{\rightharpoonup}{J}}{\prime}$	Flathead Catfish	19	6	8	15	47	39	22	36	24	40	29	24	21	19	10	14	20	30	12
	Lepomis sp.													2	2					5
	Warmouth														3					
	Rock Bass	75	89	22	15	24	64	11	2											
	Bluegill	154	34	88	192	131	523	540	391	220	254	205	212	207	89	65	94	65	270	41
	Green Sunfish	3	3	1		3	2	1	1	4	4	2	2	1	1	2	3	1		4
エ	Pumpkinseed	4	4	3	2	2	33	14		2	6									
$\stackrel{N}{\square}$	Orangespotted Sunfish				2		5	197		5		5	2			2		6	1	
\cdots	Longear Sunfish	2	1		2	8	242	18	24	13	56	15	73	71	65	31	293	137	207	16

River-wide Catch Comparison (data from most recent survey year shown)

$\begin{aligned} & \text { 을 } \\ & \text { 은 } \\ & \text { ò } \end{aligned}$	Species (common name)		n $\stackrel{m}{1}$ $\frac{n}{0}$ 0.0 $=1$ 0 0		New Cumberland '11		Hannibal '13	$\begin{aligned} & 0 \\ & -1 \\ & 0 \\ & \frac{1}{6} \\ & \frac{10}{n} \\ & 3 \\ & 0 \\ & \vdots \end{aligned}$			Robert C. Byrd '13	$\begin{aligned} & \circ \\ & -1 \\ & \text { 을 } \\ & \stackrel{\rightharpoonup}{0} \\ & \frac{1}{0} \\ & \hline \end{aligned}$					$\begin{aligned} & \text { N } \\ & \text { N } \\ & \frac{5}{00} \\ & \frac{1}{7} \\ & 0 \\ & 3 \\ & 0 \end{aligned}$	John T. Myers '15	Smithland '13	
$\begin{aligned} & \text { I } \\ & \text { n } \\ & \vdots \\ & \vdots \end{aligned}$	Redear Sunfish		1					2	7	2	3	4		2	1	20	3	1	32	
	Lepomis Hybrid					1	2		1		2			1					2	
	Bluegill X Longear																			
	Bluegill X Green									1										
	Longear X Green																			
	Morone sp.	50		3	22	110	12	49	79	8	15	35	289	11	81	28	361	72	86	733
	White Perch																			
	Striped Bass								1		1						4			
	White Bass	6	65	7	37	2	28	4	16	1	71	16	1	18	18	20	60	13	83	34
	Yellow Bass															1			15	25
	Hybrid Striped Bass	1	5	2			2		3	1	2	6	3	3	1	13	22	2	6	10
$\underset{\sim}{4} \underset{\infty}{\text { y }}$	Micropterus sp.	57	1					5			9		79	10	18	12	3	14		16
	Smallmouth Bass	167	250	184	155	431	270	198	27	41	38	24	30	19	15	13	33	2	2	7
	Largemouth Bass	8	3	12	2	8	7	20	10	19	18	18	21	12	10	4	72	2	10	6
	Spotted Bass	24	18	6	48	77	99	46	26	17	60	59	86	51	38	48	252	133	48	26
$\frac{\text { 宸 }}{4}$	Johnny Darter			1																
	Greenside Darter					8	1													
	Variegate Darter																			
	Rainbow Darter			2		1		1							1					
	Fantail Darter													1	1					
	Bluebreast Darter																			
	Banded Darter																			
	Dusky Darter	1																		
	Channel Darter	1			1		1	1	1			1	1							
	Blackside Darter																			
	Slenderhead Darter												1							
	River Darter						2							1						
	Logperch	29	15	26	17	40	89	73	5	9	5	16	2	14	9	2		2		2
$\begin{aligned} & \text { I } \\ & \text { 足 } \\ & \text { U } \end{aligned}$	Yellow Perch			44	5		5	7	3											
	Walleye	20	74	68	2	2	10	1	13	1			2		1			5		
	Saugeye	2	11	42			1		25	25				22	8	2	11	4	4	6
	Sauger	39	264	110	29	39	147	73	89	15	128	194	124	116	226	94	44	225	23	46
MISC.	Silver Lamprey											1								
	Ohio Lamprey		2						1											

River-wide Catch Comparison (data from most recent survey year shown)

	Species (common name)												$\begin{aligned} & \text { N } \\ & \frac{N}{N} \\ & \frac{\pi}{0} \\ & \mathbf{N} \end{aligned}$					John T. Myers '15		
	Goldeye														1			10	1	
	Mooneye	10	1	26	11	2	2	2			3	2	6	5	1	5	4	1		1
	Paddlefish																1			
	Northern Pike					1														
	Muskellunge		1																	
	White Crappie	2						1	4	2	1	6		4	1	3	2	7	2	1
	Black Crappie	1	4	9	1	1	1	4	6	6		6		2				7	5	
	Inland Silverside																		16	14
	Brook Silverside	14			11	10	3	1							1		5	1	1	
	Atlantic Needlefish																			
	Trout-Perch		11	137					2											
	Banded Killifish						5	14	1											
	Western Mosquitofish																	1		
	Bowfin																			
	Freshwater Drum	55	136	36	201	239	47	16	82	36	89	116	686	146	238	47	507	114	328	746
	Total No. of Individuals	6071	2177	2260	4849	8103	2819	4755	2190	2957	2211	3666	22416	3207	2345	3507	14480	2518	3230	2680
	Total No. of Species	46	38	42	39	42	48	49	52	40	33	45	41	47	54	43	44	47	36	46

Our assessments would not be possible without the guidance of our committee and hard work from our seasonal interns and contractual employees. For information on our yearly internships, available to current and recently graduated students, contact Rob Tewes (rtewes@orsanco.org).

