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23.1  INTRODUCTION 

Human disturbance alters key attributes of aquatic ecosystems such as water quality, habitat 

structure, hydrological regime, energy flow, and biological interactions (Karr and Dudley 1981; 

Sparks 1995; Ward and Stanford 1989).  In great rivers, this is particularly evident since they are 

disproportionately degraded (Karr et al. 1985a; Simon and Sanders 1999; Gammon and Simon 
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2000) by habitat alteration (Poff et al. 1997; Ward and Stanford 1995) and industrial and 

municipal discharges (Pearson and Krumholz 1984; Simon and Stahl 1998).  Water quality 

degradation as a result of point and non-point source pollution further impacts the ecological 

integrity of large rivers such as the Ohio River (Sparks et al. 1990; Bayley 1995).  By examining 

patterns in the response of fish assemblages to potential stressors associated with point-source 

discharges, it may be possible to assess the extent that pollution alters water quality and affects 

biotic integrity (Karr and Dudley, 1981; Bayley 1995; Yoder and Rankin 1995a).   

 

The index of biological integrity (IBI) assesses the condition of water bodies by direct evaluation 

of biological attributes (Karr 1981; Karr et al. 1986).  It integrates structural, ecological, trophic, 

and reproductive attributes of fish assemblages at multiple levels of organization (Fausch et al. 

1990).  The IBI was originally developed for assessment of Midwestern warmwater streams and 

has been modified for use in other regions and waters (Miller et al. 1988; Simon 1992; Simon 

and Lyons 1995; Hughes and Oberdorff 1999; Simon and Stahl 1998), including the upper Ohio 

River basin (Simon and Emery 1995; Emery et al. 1999; Simon and Sanders 1999; Emery et al., 

in review).  

 

Emery and Thomas (Chapter 9) found that point source effects on biological communities of the 

Ohio River are limited to the immediate influence of the outfall.  Typically, studies of the 

impacts of point source discharges to aquatic ecosystems have been limited to comparisons of 

the impacted area to an upstream, unimpaired “reference” condition.  They described an 

approach of incrementally sampling outfalls that was intended to detect gradients of fish 

assemblage responses to effluents.  This traveling zone (T-zone) approach was based on the 
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computation of an IBI based on fish assemblage metrics from ten continuous 100 m segments.  

Data can be aggregated and metrics calculated to show incremental changes in response to the 

effects from point source discharges.  These metrics can be evaluated individually or combined 

to form a multimetric index of biological integrity for the Ohio River.  The purpose of this paper 

is to compare the responses of select metrics to three types of industrial and municipal 

wastewater discharges using data collected by the T-zone approach. 

 

23.2  METHODS 

23.2.1 Study Area 

The Ohio River begins at the confluence of the Monongahela and Allegheny Rivers at 

Pittsburgh, PA (Rkm 0) and flows southwesterly to the confluence with the Mississippi River 

near Cairo, IL (1578.4 km) (Fig. 23.1).  The Ohio River crosses four ecoregions (i.e., Western 

Allegheny Plateau, Interior Plateau, Interior River Lowland and Mississippi Alluvial Plain 

(Omernik 1987)).  Nearly 10 percent of the nation’s population, which is more than 25 million 

people, resides in the Ohio River basin.  The Ohio River has over 600 permitted discharges to its 

waters including industrial, power generating facilities, and municipalities.  Twenty navigational 

dams provide a 2.75 m minimum depth on the Ohio River for commercial navigation that 

transports approximately 250 million tons of cargo annually.   

 

23.2.2 Sample Collection and Comparison of Outfall and Control Sites 

Field collections were conducted at eleven outfall sites in 1999 by boat night electrofishing from 

early July until late October when the Ohio River is at stable low- to moderate-flow.  We 

selected large, point source discharges with effluent plumes discharged at or near the surface. 
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These discharge locations were relatively unaffected by other anthropogenic disturbance. We 

measured habitat characteristics at each outfall site and selected upstream control sites with 

similar conditions.  Control sites were chosen that were upstream of the discharge plume, were 

least disturbed by human activities, and possessed similar habitat type and composition. Boat 

night electrofishing was conducted at the outfall and control locations along a continuous 1000 m 

of shoreline, using the T-zone approach described by Emery and Thomas (Chapter 9). This 

approach provides a spatial resolution (at 100m increments) of the response of the fish 

assemblage to discharges and the equivalent of two contiguous 500 m electrofishing zones.   

Each outfall locations was broken into ten 100 m samples, which provides six 500 m T-zones 

(Table 23.1). 

 

23.2.2  Data Analysis 

We evaluated 13 metrics for each T-Zone for their response to disturbance (Table 23.2).  We 

used the ANOVA GLM procedure in SAS (SAS Institute, Cary, NC) to calculate the least 

squares means differences of metric and index scores between control and outfall sites.  We 

compared control and outfall sites (standard 500 m zones) and control vs. outfall sites for 

differences among T-zones.  Only probabilities associated with pre-planned comparisons were 

used.  Plots of mean scores for each metric in each T-zone were used to graphically depict 

differences between control and outfall sites. 

 

23.3 RESULTS 

23.3.1 Gradient Patterns Among the T-zones 
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Nine metrics show initial impairment closest to the outfall (i.e., within 700 m) followed by 

recovery to levels approximating those found at control sites (Figure 23.2).  Four metrics (e.g., 

number of native species, number of sucker species, number of intolerant species, and number of 

deformities, eroded fins, lesions and tumors (DELT anomalies)) showed little or no response to 

discharges.  Eight metrics exhibited a u-shaped response, indicating an immediate response at the 

discharge point with higher expectations immediately falling off and then recovering over the 

remainder of the zone. 

 

23.3.2 Differentiating Between Control Condition and Outfall Effects 

We found significant (p<0.05) differences between control and outfall sites for eight of the 13 

metrics (Table 23.3).  The metric scores were significantly higher (p<0.0001) at control sites.  

Two metrics did not respond as predicted (Table 23.3).  The percent individuals as non-

indigenous species and the percent individuals as tolerant species were greater at control sites 

with higher quality habitats. When comparing the first 500 m sample reach immediately below 

an outfall to the second contiguous 500m at the same location, no significant differences were 

observed between the two samples for any of the metrics. 

 

23.3.3 Gradient Patterns Among Outfall Types 

We were not able to make statistical comparisons across outfall types due to insufficient sample 

sizes.  However, some metrics responded more strongly to particular types of outfalls than was 

indicated by the mean scores at outfalls.  We used results from individual sampling events to 

graphically display these response ‘signatures’ and distinguish between summer and fall 

collections. At chemical outfall sites, the percent individuals as invertivore species declined 
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between the first and second transect but then increased with distance away from the outfall 

(Figure 23.3), a pattern reflected in both the summer and fall samples.  The percentage of 

individuals as lithophilous spawning species did not recover until the most downstream zone, 

and were not present at all during the summer sampling period.  At sites with thermal discharges, 

the number of species and catch-per-unit-of-effort (CPUE) increased with distance from outfalls 

(Figure 23.3) in both the summer and fall samples, with summer expectations being much lower.  

Sites affected by wastewater effluent show either no change in values for CPUE or percent 

individuals as tolerant species or a decrease with distance from outfall (Figure 23.3).   

Habitat quality in the vicinity of outfalls has an effect on biological integrity.  For 

example, habitat quality may mitigate the deleterious effects of outfalls.  Habitats with coarse 

substrates (good) tend to have greater diversity, even at outfalls, than shallow habitats (poor) 

with fine substrates (Figure 23.4).   

 

23.4 DISCUSSION 

23.4.1 Differentiating Between Control Condition and Outfall Effects 

Outfalls on the Ohio River have a definable effect on the fish community present. Eight of the 

thirteen metrics detect significant differences between control sites and outfall sites. There are 

several reasons why some metrics did not respond as expected.  The non-indigenous species 

metric was not intended to detect pollution but to track influence of invasive aquatic species on 

fish assemblages in the Ohio River.  Less than 100 years ago, the common carp was the only 

species considered as exotic or as a non-native species (Fuller et al. 1999).  Currently, there are 

12 species that are considered as either exotic or non-indigenous in the Ohio River.  As exotic 

and non-indigenous species increase at a site, the biological integrity decreases.  The metric will 
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be important for measuring improvements in the conservation of native species.  Fish species 

classified as tolerant that are comprise the percent individuals as tolerant species metric are 

highly pollution tolerant and reflect water quality conditions that prevailed prior to the 1980s.  

As conditions in the Ohio River improved following the passage of the Clean Water Act of 1972, 

Emery et al (1999) reported that tolerant species have become increasingly scarce as impacts are 

becoming more localized. The number of sucker species, number of intolerant species, and 

number of deformities, eroded fins, lesions, and tumor (DELT) anomalies metrics all responded 

in a predictable manner, although not significantly so.  In multi-metric indices not all of the 

metrics need to respond at the same time in order to distinguish between impacted and non-

impacted conditions. The IBI was developed to respond to a number of environmental 

disturbances, point source impacts are just one of the many types of perturbations to which the 

index responds.   

 

23.4.2 Gradient Patterns Among T-zones 

The T-zone approach detected gradients at the outfalls that were not evident in the two 

sequential (upper vs. lower) 500 m zones.  Most metrics showed distinct differences between 

control and outfall sites, even among sequential T-zones.  The ability to detect a response 

gradient and indicate community recovery is essential to establishing cause and effect 

relationships, recommending future actions, and monitoring the success of pollution reduction 

efforts.  

Most of the metrics indicate a community response within the first 700m. As compared to 

the area of impact seen on smaller streams or rivers this is a relatively short distance for 

community recovery (Karr et al. 1985b; Simon 1992; Simon et al., Chapter 22; Dufour et al., 
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Chapter 24).  Some metrics recover more quickly than others and some show little or no 

response.  Seven of the metrics (Figure 23.2) display a u-shaped response, indicated by slightly 

inflated values at the point of discharge that rapidly decrease over the next 100 to 200m, then 

began to recover to background levels. This phenomenon may be due to transient individuals 

moving into the zone from upstream of the effluent, artificially inflating the values represented at 

the point of discharge.  Similarly, in areas of poor habitat quality, the discharge structure itself 

may provide attractive fish cover for some species. Fish may be drawn to the area due to the 

increased flow or modified habitats typical of outfalls. Some type of bank stabilization usually in 

the form of rip-rap (cobble to boulder sized rock) or the outfall structure itself may offer some 

type of cover otherwise not found in the vicinity of the discharge. 

 

23.4.3 Gradient Patterns Among Outfall Types 

We examined the response of fish assemblage metrics at each of the three major types of 

discharges sampled (Figure 23.3).  We found differences between summer and fall results from 

each type.  Chemical facilities showed a slight u-shaped response with summer expectations 

being much lower than those observed in the fall months.  Thermal effluents typically show a 

much stronger response during the summer months due to the increased thermal stress.  

Municipal wastewater treatment plants showed opposite effects during summer and fall periods.  

Summer samples show enrichment nearest the outfall with the observed effects diminishing with 

increased distance from the source.  During the fall months, little or no effect is observed.   

Outfall effects are sometimes masked by habitat quality so that response to disturbance is 

mitigated (Fig. 23.4).  Higher quality outfall sites may have greater expectations than control 

sites with lower quality habitat.  Figure 23.4 shows that thermal effects are equal across habitats, 
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while chemical effects are similar across habitats but cause a greater response at the higher 

quality substrate sites. Wastewater effects are dramatically different between poor and good 

quality habitats probably as a result of soft sediments causing shifts in macroinvertebrate  

assemblage structure and function.  

  The response resolution of most fish assemblage metrics to discharge effects at finer 

scales suggests that any deleterious impacts are restricted to a few hundred meters.  The use of 

the T-zone method diagnoses the response to the stressor, provides a more robust sampling 

approach, and identifies responses that may have otherwise been overlooked.   We view this 

paper as a preliminary effort to initially test candidate Ohio River fish index metrics response to 

particular point source discharges.  We do not have sufficient data to adequately test the 

statistical significance of each outfall type to individual IBI metrics.  

 

23.5 CONCLUSIONS 

The T-zone approach is similar to the Area Degradation Value (ADV) of Yoder and Rankin 

(1995b) since both are designed to measure the decline or recovery of the community 

immediately downstream of a discharge.  Both approaches are successful in determining the 

extent and magnitude of impacts from point source discharges.  However, the T-zone approach 

allows the dissection of specific impacts within large rivers.  We developed a technique for 

evaluating fish community response, applicable for situations in which the zone of impairment is 

too small to be adequately represented by a standard sized boat-electrofishing zone.  By 

collecting data in 100 m increments along a continuous 1000 m we are able to construct traveling 

zones, or T-zones, each 500 m in length and incrementally 100 m further from the point of 

impact. This technique requires the sampling effort of two standard sized boat-electrofishing 
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zones, but provides the equivalent of six standard sized boat-electrofishing zones. This 

overlapping technique provides a 100 m resolution, increasing the researcher’s ability to 

document community response usually missed by standard 500 m zones.  We examined the 

responsiveness of select metrics to changes in water quality associated with point source 

discharges.  We conducted night electrofishing at sites immediately downstream of point-source 

discharges and at upstream control sites, maintaining uniform habitat conditions between test and 

control locations.  We employed an electrofishing method utilizing overlapping sampling zones 

to reveal indicator response along a gradient of human disturbance. Our results showed that 

eleven of the thirteen metrics responded to disturbance in a predictable manner.  We were able to 

differentiate high-quality fish assemblages at control sites from ones with lower biotic integrity 

along disturbance gradients. 
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Table 23.1.   

Outfall types, numbers of each type and number of samples collected.  Control sites were paired 

with outfalls at each outfall location.  Two control sites could not be sampled during one of the 

rounds of sampling. 

              

Outfall Type Number of Sites Number of Events 

Chemical 4 12 

Thermal 4 12 

Wastewater 3 9 

Controls 11 31 
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Table 23.2.   

Fish assemblage metrics tested for responsiveness to point source discharges and predicted 

responses to disturbance. 

            

Metric 

Expected response to 

disturbance 

Native Species Richness Decrease 

Number of Sucker Species Decrease 

Number of Centrarchid Species Decrease 

Number of Great River Species Decrease 

Number of Intolerant Species Decrease 

Percentage of Tolerant Individuals Increase 

Percentage of Simple Lithophils Decrease 

Percentage of Invertivores Decrease 

Percentage of Detritivores Increase 

Percentage of Piscivores Decrease 

Percentage of Non-indigenous Species Increase 

Number of DELT Anomalies Increase 

CPUE Decrease 
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Table 23.3.   

Least square mean probability values based on comparisons of control and outfall data for point-

source outfalls sampled during 1999 using the TZONE design and for non-overlapping 500m 

zones.  Bold values indicate metric response values that are contrary to our a priori predictions 

(i.e., higher at control sites).  Upper vs. lower outfall comparisons represent non-overlapping 

500m zones at outfall sites. 

              

Metric Control vs. 

Outfall 

Upper vs. Lower 

500 m Outfall  

Native Species Richness     0.01 0.30 

Number of Sucker Species     0.36 0.55 

Number of Centrarchid Species     0.007 0.52 

Number of Great River Species     0.006 0.51 

Number of Intolerant Species     0.42 0.64 

Percentage of Tolerant Individuals     0.0001 0.76 

Percentage of Simple Lithophils     0.0001 0.33 

Percentage of Invertivores     0.004 0.79 

Percentage of Detritivores     0.01 0.70 

Percentage of Piscivores     0.0001 0.37 

Percentage of Non-indigenous Species     0.001 0.68 

Number of DELT Anomalies     0.62 0.42 

CPUE     0.008 0.10 
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FIGURE CAPTIONS 

 

Figure 1.  Map of the Ohio River with outfall study locations. 

Figure 2.  Response of ORFIn metric and index values by traveling zone. 

Figure 3.  Responses of selected ORFIn metrics by traveling zone at a chemical, thermal and 

wastewater discharge.   

Figure 4.  Response of the number of native species at reference and outfall sites for three types 

of discharges.  Sites with “poor” habitat quality are shallow with sandy substrates.  Sites with 

“good” habitat quality are deep with coarse substrates.  
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Figure 1. 
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Figure 2. 
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Figure 2 (continued). 
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Figure 2 (continued). 
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Figure 3.  
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Figure 4.  
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