

OR DALVCO RIVER LA REVER LA RE

Ohio River Valley Water Sanitation Commission

RELATIONSHIPS BETWEEN OHIO RIVER WATER QUALITY AND DRINKING WATER QUALITY FOR SELECTED PROVISIONS OF THE SAFE DRINKING WATER ACT

Ohio River Valley Water Sanitation Commission Cincinnati, Ohio

TABLE OF CONTENTS

1.0	INTRC		1
	1.1	OBJECTIVE	1
	1.2	BACKGROUND	1
	1.3	SAFE DRINKING WATER ACT	2
2.0	SCOP	Ε	7
3.0	DATA		8
	3.1	DATA GATHERING	8
	3.2	DATA ANALYSIS	8
	3.3	OHIO RIVER INSTREAM DATA	10
	3.4	TREATED DRINKING WATER DATA	20
40	SUMM		20
1.0	4 1		30
	4.1		30
	4.2	BENZENE	30
	4.0		30
	4.4		30
	4.5		31
	4.0		31
	4.7 1 Q		31
	4.9	TOTAL TRIHALOMETHANES	31
50	SUMM	ARY OF DRINKING WATER QUALITY BY PARAMETER	32
	5.1		32
	5.2	LEAD	32
	5.3		32
	5.4		32
	5.5		32
	5.6		33
	5.7		33
	5.8 5.0		33
	0.0		00
6.0	SUMM	ARY OF FINISHED WATER MCL EXCEEDANCES VS. OHIO RIVER WATER	
	QUALI	ΤΥ	34
7.0	CONC	LUSIONS	38
80	BECO	MMENDATIONS	30

TABLE 1	OHIO RIVER PUBLIC DRINKING WATER INTAKES	3
TABLE 2	SUMMARY OF PUBLIC WATER SUPPLIES USING THE OHIO RIVER	4
TABLE 3	PROPOSED, INTERIM AND FINAL MCLs AND MCLGs	5
TABLE 4	OHIO RIVER INSTREAM LEVELS FOR 1986 THROUGH 1988- CADMIUM	11
TABLE 5	OHIO RIVER INSTREAM LEVELS FOR 1986 THROUGH 1988- LEAD	12
TABLE 6	OHIO RIVER INSTREAM LEVELS FOR 1986 THROUGH 1988- BENZENE	13
TABLE 7	OHIO RIVER INSTREAM LEVELS FOR 1986 THROUGH 1988- CARBON TETRACHLORIDE	14
TABLE 8	OHIO RIVER INSTREAM LEVELS FOR 1986 THROUGH 1988- 1,2-DICHLOROETHANE	15
TABLE 9	OHIO RIVER INSTREAM LEVELS FOR 1986 THROUGH 1988- TRICHLOROETHYLENE	16
TABLE 10	OHIO RIVER INSTREAM LEVELS FOR 1986 THROUGH 1988- TETRACHLOROETHYLENE	17
TABLE 11	OHIO RIVER INSTREAM LEVELS FOR 1986 THROUGH 1988- 1,2-DICHLOROPROPANE	18
TABLE 12	OHIO RIVER INSTREAM LEVELS FOR 1986 THROUGH 1988- TOTAL TRIHALOMETHANES	19
TABLE 13	MONITORING RESULTS FOR TREATED DRINKING WATER FROM OHIO RIVER WATER TREATMENT FACILITIES-CADMIUM	21
TABLE 14	MONITORING RESULTS FOR TREATED DRINKING WATER FROM OHIO RIVER WATER TREATMENT FACILITIES-LEAD	22
TABLE 15	MONITORING RESULTS FOR TREATED DRINKING WATER FROM OHIO RIVER WATER TREATMENT FACILITIES-BENZENE	23
TABLE 16	MONITORING RESULTS FOR TREATED DRINKING WATER FROM OHIO RIVER WATER TREATMENT FACILITIES- CARBON TETRACHLORIDE	24
TABLE 17	MONITORING RESULTS FOR TREATED DRINKING WATER FROM OHIO RIVER WATER TREATMENT FACILITIES- 1,2-DICHLOROETHANE	25

TABLE 18	MONITORING RESULTS FOR TREATED DRINKING WATER FROM OHIO RIVER WATER TREATMENT FACILITIES- TRICHLOROETHYLENE	26
TABLE 19	MONITORING RESULTS FOR TREATED DRINKING WATER FROM OHIO RIVER WATER TREATMENT FACILITIES- TETRACHLOROETHYLENE	27
TABLE 20	MONITORING RESULTS FOR TREATED DRINKING WATER FROM OHIO RIVER WATER TREATMENT FACILITIES- 1,2-DICHLOROPROPANE	28
TABLE 21	MONITORING RESULTS FOR TREATED DRINKING WATER FROM OHIO RIVER WATER TREATMENT FACILITIES- TOTAL TRIHALOMETHANES	29
TABLE 22	SUMMARY OF FINISHED WATER MCL EXCEEDANCES VS. OHIO RIVER INSTREAM CONDITIONS	35
TABLE 23	SUMMARY OF FINISHED WATER TOTAL TRIHALOMETHANE CONCENTRATIONS GREATER THAN 100 μ g/L	36

APPENDIX A WATER TREATMENT PLANT TREATMENT SCHEMES

1.0 INTRODUCTION

1.1 OBJECTIVE

The objective of this survey is to identify instances in which public water supplies, using the Ohio River as a source, experience difficulty meeting selected provisions of the federal Safe Drinking Water Act, and to evaluate relationships between Ohio River and drinking water quality under such circumstances.

Finished water quality data from all water treatment plants using the Ohio River as a surface water supply are presented and compared to certain requirements of the federal Safe Drinking Water Act (maximum contaminant levels). Secondly, Ohio River water quality data from Commission monitoring stations are presented and compared to the same requirements. These comparisons are conducted for a number of water quality parameters including cadmium, lead, benzene, carbon tetrachloride, 1,2-dichloroethane, trichloroethylene, tetrachloroethylene, 1,2-dichloropropane, and total trihalomethanes over the period from 1986 through 1988. Although Safe Drinking Water Act requirements apply to drinking water, comparisons of Ohio River water quality to these requirements has been undertaken to evaluate the river's suitability as a water source.

The Commission classifies the entire river as a source for potable water, not just at the point of withdrawal of drinking water intakes. As such, the entire river should be maintained suitable for use as a source for drinking water. MCLs are one way in which ORSANCO can evaluate the Ohio River's suitability as a source of drinking water. U.S. EPA-established water quality criteria for the protection of human health are more restrictive than MCLs. Instream contaminants identified to impair the Ohio River's use as a source for providing treated drinking water will be given the highest priority during the Commission's intensified Ohio River segment investigations conducted under its Toxic Substances Control Program.

1.2 BACKGROUND

The Ohio River Valley, because of its water, energy and transportation resources, is now and will continue to be an attractive location for many industries. As such, the existing and potential presence of toxic substances in its surface waters is of primary concern to the Ohio River Valley Water Sanitation Commission. In addition, the Ohio River provides a source of drinking water to nearly three million people from communities of all sizes having facilities with varying levels of water treatment sophistication.

In recognition of the special concerns raised by the multiple and competing uses of the river, the Commission has established a Toxic Substances Control Strategy. The goal of the strategy is:

To protect and enhance the water quality of the Ohio River Basin so that the designated uses of public health and aquatic life, and as a source of supply for potable uses after reasonable treatment, will not be adversely impacted by toxic substances.

A total of thirty Water Treatment Plants (WTPs) serve 29 communities along the Ohio River (Louisville, Kentucky has two facilities) with populations ranging in size from 1,000 to 800,000 people. These communities combined use more than 500,000,000 gallons of river water on a daily basis. Table 1 identifies each of the water treatment plants using Ohio River surface water, the intake mile point (Pittsburgh Is at M.P. 0.0), pumping rates and approximate population served. Table 2 summarizes the number of water treatment plants by state and by population served.

1.3 SAFE DRINKING WATER ACT

The federal Safe Drinking Water Act (SDWA) was enacted in 1974 with a significant amendment occurring on June 19, 1986. Through this Act, the federal government was authorized for the first time to establish national drinking water regulations. These regulations apply to public water supplies as defined by the Act. Key elements of the Act include a process to promulgate national drinking water quality regulations, procedures for states to assume primacy, procedures for obtaining variances and exemptions, and enforcement provisions.

A primary provision of the national drinking water regulations is the promulgation of maximum levels of certain water quality parameters (organic and inorganic chemicals; microbiological; and radionuclides) permissible in drinking water for public water supplies; they are called maximum contaminant levels (MCLs). Maximum contaminant levels are enforceable. A MCL is developed following two basic steps. A maximum contaminant level goal (MCLG) is established at a concentration for which no known or anticipated adverse health effects will occur. MCLGs are human health goals and are not enforceable. A MCL is then established for that parameter as close as is feasibly possible to the MCLG, where feasibility is a function of technology and cost.

The Safe Drinking Water Act, as amended in 1986, requires the U.S. Environmental Protection Agency to establish additional MCLs and MCLGs for 83 water quality parameters by June 19, 1989 (not all have been promulgated to date). MCLs and MCLGs are proposed prior to enactment as final standards.

		TABLE 1 OHIO RIVER PUBLIC DRINKING WATE	R INTAKES	
MILE POINT	ST	INTAKE	PUMPING RATE IN MGD	POPULATION SERVED
4.5	PA	WEST VIEW	20.0	200,000
8.6	PA	ROBINSON TOWNSHIP	2.0	10,400
36.2	PA	MIDLAND	3.1	7,000
40.2	OH	EAST LIVERPOOL	3.0	18,000
59.1	OH	TORONTO	0.7	7,400
65.1	WV	WEIRTON	2.0	30,000
65.2	OH	STEUBENVILLE	6.5	40,000
86.8	WV	WHEELING	8.0	70,000
137.1	WV	SISTERSVILLE	0.2	2,000
304.2	WV	HUNTINGTON	15.0	120,000
319.7	KY	ASHLAND	7.0	29,000
327.0	OH	IRONTON	2.0	15,000
350.8	OH	PORTSMOUTH	6.0	50,400
408.5	KY	MAYSVILLE	1.3	13,000
462.8	OH	CINCINNATI	124.0	800,000
462.9	KY	KENTON CO WATER (FT. THOMAS)	20.0	175,000
463.5	KY	NEWPORT	8.0	84,000
594.5	KY	LOUISVILLE	125.0	350,000
600.6	KY	HENDERSON	125.0	350,000
609.0	IN	MT. VERNON	4.5	40,000
791.5	IN	MORGANFIELD	30.0	140,000
803.2	KY	UNIONTOWN	5.0	42,000
829.2	IN	STURGIS	2.0	8,000
839.9	KY	ROSICLARE	1.8	200,000
842.5	KY	GOLCONDA	0.1	10,400
871.3	KY	PADUCAH	0.3	7,000
891.3	IL	CAIRO	0.2	1,800
902.5	IL	EAST LIVERPOOL	0.1	1,000
935.5	KY	TORONTO	6.5	55,000
977.8	IL	WEIRTON	1.4	6,000
		TOTAL	530.7	2,883,800

TABLE 2 SUMMARY OF PUBLIC WATER SUPPLIES USING THE OHIO RIVER										
		F	POPULATION SERVE)						
STATE	# OF PWS	>10,000	3,300-10,000	<3,300						
ILLINOIS	3	0	1	2						
INDIANA	3	2	1	0						
KENTUCKY	10	10	1	0						
OHIO	6	5	1	0						
PENNSYLVANIA	3	2	1	0						
WEST VIRGINIA	4	3	0	1						
TOTAL	30	22	5	3						

f7

Proposed standards are not enforceable. Interim MCLs were established for 26 parameters starting in 1974 upon enactment of the Safe Drinking Water Act. All interim primary drinking water regulations became primary drinking water regulations through the June 19, 1986 amendments.

Table 3 shows the parameters studied in this survey with their current regulations. Cadmium, lead, total trihalomethanes, benzene, carbon tetrachloride, 1,2-dichloroethane and trichloro-ethylene have final MCLs and MCLGs. Tetrachloroethylene and 1,2-dichloropropane have proposed MCLs and MCLGs; unless standards are reproposed, these values will become final.

TABLE 3 PROPOSED, INTERIM AND FINAL MCLs AND MCLGs (as of February 1989)											
CONTAMINANT (µg/L)	MCL	MCLG	PROPOSED MCL	PROPOSED MCLG							
CADMIUM	10 (Interim)	None	5	5							
LEAD	50 (Interim)	None	5	0							
BENZENE	5	0	None	None							
CARBON TETRACHLORIDE	5	0	None	None							
1,2-DICHLOROETHANE	5	0	None	None							
TRICHLOROETHYLENE	5	0	None	None							
TETRACHLOROETHYLENE	None	None	5	0							
1,2-DICHLOROPROPANE	None	None	5	0							
TOTAL THMs	100										

SDWA information obtained from Fact Sheet - Drinking Water Regulations Under the Safe Drinking Water Act, February 1989.

Concerning compliance with the Safe Drinking Water Act, finished water samples with parameter concentrations greater than the corresponding MCL do not necessarily indicate a violation of the Safe Drinking Water Act. For the VOCs investigated in this report, the MCL is to be applied to the annual average of four quarterly samples. The MCL for total trihalomethanes applies to the running average of the last four quarterly samples.

Compliance monitoring requirements of the SDWA for volatile organic compounds in finished water have been established for three classes of water utilities based on population served. A compli-ance monitoring timetable for the three classes of facilities is as follows.

Size	VOC Quarterly Sampling Completed By
> 10,000	December 31, 1988
3,300-10,000	December 31, 1989
<3,300	December 31, 1991

Of the 30 water treatment facilities using the Ohio River, 22 are in the largest class, five are in the middle class and three are in the smallest class. The amount of VOC data is therefore greatest for the 22 largest facilities; the three utilities in the smallest class are not yet required to monitor levels of volatile organic compounds in their finished water.

2.0 <u>SCOPE</u>

This study focuses in on two inorganics, six individual volatile organic chemicals (VOCs) and total trihalomethanes (chloroform, bromoform, bromodichloromethane, and dibromochloro-methane). The two inorganics are cadmium and lead. The six VOCs are benzene, carbon tetrachloride, 1,2-dichloroethane, trichloro-ethylene, tetrachloroethylene and 1,2-dichloropropane. Total trihalomethane concentration is the sum of the concentrations of the four trihalomethanes. These parameters along with their proposed, interim and/or final regulatory levels are listed in Table 3.

Six of the contaminants were identified as parameters of concern in the 1987 Commission report; <u>The Presence of Toxic Substances in the Ohio River: An Assessment of the Results of Stream Monitoring</u> <u>from 1976 to 1985 on the Ohio River and Certain Major Tributaries</u>. That work identified cadmium, lead, benzene, carbon tetrachloride, 1,2-dichloroethane, and trichloroethylene as instream parameters with concentrations, at times, greater than their respective drinking water standards (MCL). Two additional unregulated VOCs were identified as occasionally having concentra-tions greater than the proposed MCLs or MCLGs in the Ohio River; tetrachloroethylene and 1,2-dichloropropane. The trihalomethanes were included in this study because of their known production during the disinfection process. In addition, three of the trihalomethanes are frequently detected in the Ohio River and often exceed stream criteria.

The parameters considered in this survey may not be the only parameters present in the Ohio River for which MCLs have been proposed or established. Vinyl chloride has an MCL but is not monitored by the Commission.

Every water treatment plant using the Ohio River as a surface water source is included in this survey (see Table 1). Data for this report are compiled from 1986 through 1988 for both Ohio River raw water and finished drinking water. Commission monitoring data have been used to characterize Ohio River levels of the parameters considered.

3.0 <u>DATA</u>

3.1 DATA GATHERING

State officials were contacted and requests were submitted for finished water data on the parameters of concern for the WTPs in their jurisdiction. Information on treatment schemes was also requested. In addition, each public water supply received a written request for finished water data. They were also asked to review general information concerning their facility in order to identify errors relating to treatment schemes, chemical additions, etc. Unit process flow diagrams were also requested.

Instream parameter concentrations were obtained from the Commission's Organics Detection System and Manual Sampling network for 1986 through 1988. The Organics Detection System generates daily parameter concentrations for VOCs. Manual sampling network provides monthly sample results for the inorganics of concern. These data were retrieved from the U.S. EPA's STORET computer data base using SAS for simple statistical analyses.

3.2 DATA ANALYSIS

Data are presented for both raw and treated Ohio River water. Tables are prepared for each parameter of concern and summarized over the period from 1986 through 1988. Tables contain sampling location with Ohio River mile point, number of samples taken, number of samples with detectable concentrations, maximum concentration, average concentration of the detections (non-detections are excluded from the averaging), and number of samples greater than the MCL.

For benzene, carbon tetrachloride, 1,2-dichloroethane and trichloroethylene, finished water samples with concentrations greater than the MCL does not necessarily represent a violation of the Safe Drinking Water Act. Compliance with VOC MCLs is based upon the annual average of four quarterly samples. The MCL for total trihalomethanes, however, applies to the running average of the last four quarterly samples and is only applicable to public water supplies serving populations of 10,000 or more. An individual sample with a total trihalomethane concentration greater than the MCL therefore does not represent a violation of the Safe Drinking Water Act. For tetrachloroethylene and 1,2-dichloropro-pane, proposed MCLs and MCLGs exist. Samples exceeding proposed limits do not represent violations of the Safe Drinking Water Act.

Detection of a certain water quality parameter in a sample results in a measured concentration of that parameter. No detection of a parameter does not indicate the absence of that parameter since detections are in part a function of analytical instrumentation sensitivity. The number of detections reported is not only a function of the parameter's concentration, but also of the detector sensitivity. Detection limits are a function of analytical instrumentation and methodology and may vary between laboratories or within the same laboratory over time.

The detection limit for organic chemicals from the Commission's Organics Detection System is 0.1 μ g/L. The detection limits for cadmium and lead from the Commission's manual monitoring stations are 1.0 μ g/L and 5.0 μ g/L, respectively. In review of finished water data, the detection limits for organics were generally in the range of 0.5 μ g/L to 1.0 μ g/L. In comparison, the raw water data generally has lower detection limits than finished water data for the parameters studied in this report. There are instances in which the finished water detection limit is five to ten times greater than a detected concentration in the raw water. The result is that finished water data cannot be evaluated with the same accuracy as the Ohio River instream data.

3.3 OHIO RIVER INSTREAM DATA

•

TABLES 4 THROUGH 12

.

Ohio River Instream Concentrations for 1986 through 1988 with Comparison to Drinking Water Maximum Contaminant Levels.

# SAMPLES EXCEEDING MCL	0.0	, . D. O	0	0	0	0	0	0	0	0	0	0	0,2,0	0	0	0	· · · · · · · · · · · · · · · · · · ·	0	· · · · · · · · · · · · · · · · · · ·	0	
AVG CONC	1	1.0		2.2	2.2	1	1.5	1.0	1.0	1.5	T T T	Î	Ť	1.0		444 A44 A44	1.0	1.0	1.0	1	2.8
MAX CONC	0.1 0.1 0.0	0.1> 1.0	2.0	4.0	3.0	<1.0	4.0	1.0	1.0	2.0	<1.0	1.0	2.0	1.0	1.0	<1.0	1.0	1.0	1.0	1.0	8.0
TOTAL # OF DETECTIONS	0 0	5 0	-	5	2	0	13	2	ო	0	0	-	-	2	•	0	9.	5	7		4
TOTAL # OF <u>SAMPLES</u>	36 26	30 27	36	36	36	34	36	36	27	26	25	35	36	35		35	36	36	36	36	ب 35 ر
<u>STATION</u>	SOUTH HEIGHTS	EAST LIVERFOUL	HANNIBAL L&D	WILLOW ISLAND	BELLEVILLE	ADDISON	GALLIPOLIS	HUNTINGTON	ASHLAND	PORTSMOUTH	MAYSVILLE	CINCINNATI	NORTH BEND	MARKLAND		WEST POINT	CANNELTON.	EVANSVILLE	UNIONTOWN L&D	SMITHLAND L&D	JOPPA
MILE	15.2 20 0	86.8	137.1	161.8	203.9	260.0	279.2	306.9	319.7	350.7	408.5	462.8	490.0	531.6	600.6	625.9	720.7	791.5	846.0	918.5	952.3¥

11

OHIO RIVER INSTREAM LEVELS FOR 1986 THROUGH 1988

AVG & MAX concentrations reported in ug/l.

*

****** ---- Indicates not applicable or not available.

******* AVG concentration is the average of detected samples.

# SAMPLES	EXCEEDING MCL	0	0	0	0	0	0	0	S	0	0	0	0	0	0 x	0			0	0	0	•	
AVG	CONC	10.9	12.8	11.3	10.3	10.6	12.5	12.5	26.1	11.9	12.4	13.4	12.5	12.8	11.3	11.6	11.1	12.9	15.4	13.9	13.0	15.7	13.0
MAX	CONC	18.0	24.0	16.0	14.0	12.0	20.0	28.0	84.0	24.0	26.0	34.0	20.0	28.0	20.0	18.0	18.0	28.0	36.0	28.0	22.0	68.0	24.0
TOTAL # OF	DETECTIONS	20	21	12	21	17	20	23	30	19	11	10	13	24	20	19	21	24	22	28	23	30	21
TOTAL # OF	SAMPLES	36	36	26	35	35	35	36	36	36	27	26	25	35	36	35	36	35	36	36	36	36	35
	<u>STATION</u>	SOUTH HEIGHTS	EAST LIVERPOOL	WHEELING	HANNIBAL L&D	WILLOW ISLAND	BELLEVILLE	ADDISON	GALLIPOLIS	HUNTINGTON	ASHLAND	PORTSMOUTH	MAYSVILLE	CINCINNATI	NORTH BEND	MARKLAND	LOUISVILLE	WEST POINT	CANNELTON	EVANSVILLE	UNIONTOWN L&D	SMITHLAND L&D	
MILE	POINT	15.2	40.2	86.8	137.1	161.8	203.9	260.0	279.2	306.9	319.7	350.7	408.5	462.8	490.0	531.6	600.6	625.9	720.7	791.5	846.0	918.5	952.3

12

^{*} AVG & MAX concentrations reported in ug/l.

^{}** --- Indicates not applicable or not available.

^{*}** A VG concentration is the average of detected samples.

OHIO RIVER INSTREAM LEVELS FOR 1986 THROUGH 1988

BENZENE

# SAMPLES	EXCEEDING MCL	0	9	0	0	0	0	0	° 0	0	
AVG	CONC	0.2	0.8	1.2	0.3	0.2	0.2	0.1	0.3	0.2	- - - - - - - - - - - - - - - - - - -
MAX	CONC	1.5	18.1	4.6	0.7	1.1	0.5	0.3	0.9	0.7	<0.1
TOTAL # OF	DETECTIONS	79	149	32	8	62	19	39	5	45	0
TOTAL # OF	SAMPLES	402	331	480	129	484	237	355	541	366	320
	<u>STATION</u>	WEST VIEW	EAST LIVERPOOL	WHEELING	PARKERSBURG	HUNTINGTON	PORTSMOUTH	CINCINNATI	FOUSVILLE	EVANSVILLE	҂ ҝҎѧҏѱҫ҄ѧӈ _҂ ҂
MILE	POINT	4.5	40.2	86.8	190.3	306.9	350.7	462.8	600.6	791.5	935,5

- * AVG & MAX Concentrations reported in ug/l.
 - ****** < indicates sample is below dection limit.
- *** --- indicates not applicable or not available.

**** AVG concentration is the average of detected samples.

-

1988
JGH
'HRO(
1986 1
OR
LSF
EVE
AM L
TRE/
INS ⁻
VER
O RI
ЭНО

CARBON TETRACHLORIDE

# SAMPLES	0		0	0	4	0	0	0	0	
AVG	1 1 1	4.0	0.2		1.6		0.1	0.4	0.1	0.6
MAX	<0.1	9.1	0.4	<0.1	5.4	<0.1	0.2	0.4	0.1	3.4
TOTAL # OF	0	က	7	0	9	0	4	-		
TOTAL # OF SAMPLES	1022	558	995	288	871	704	1076	1084	1092	822
STATION	WEST VIEW	EAST LIVERPOOL	WHEELING	PARKERSBURG	HUNTINGTON	PORTSMOUTH	CINCINNATI	LOUISVILLE	EVANSVILLE	RADUCAH
MILE POINT	4.5	40.2	86.8	190.3	306.9	350.7	462.8	600.6	791.5	935.5

14

- * AVG & MAX Concentrations reported in ug/l.
- ****** < indicates sample is below dection limit.
- ******* --- indicates not applicable or not available.

1988
DUGH
3 THR
R 1986
S FOI
LEVEI
REAM
RINST
RIVEF
OHO

1,2-DICHLOROETHANE

# SAMPLES EXCEEDING MCL	00	0	00	• • • •	0	0	0	
AVG	0.3 0.2	0.3		0.5	0.4		1	5.0°.
MAX CONC	0.5 0.3	0.5	0.1 0.1	1.3	0.7	<0.1	<0.1	26.7
TOTAL # OF DETECTIONS	4 /	5	0 0	20	e	0	0	2 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
TOTAL # OF <u>SAMPLES</u>	1022 558	995	288 871	704	1076	1084	1092	,
STATION	WEST VIEW EAST LIVERPOOL	WHEELING	PARKERSBURG HUNTINGTON	PORTSMOUTH	CINCINNATI	LOUISVILLE	EVANSVILLE	PADUCAH
MILE <u>POINT</u>	4.5 40.2	86.8	190.3 306.9	350.7	462.8	600.6	791.5	935.5

* AVG & MAX Concentrations reported in ug/l.

** < indicates sample is below dection limit.

*** ---- indicates not applicable or not available.

OHIO RIVER INSTREAM LEVELS FOR 1986 THROUGH 1988

TRICHLOROETHYLENE

.

MILE <u>POINT</u>	STATION	TOTAL # OF <u>SAMPLES</u>	TOTAL # OF DETECTIONS	MAX CONC	AVG	# SAMPLES EXCEEDING MCL
4.5	WEST VIEW	1022	S	0.5	0.4	0
40.2	EAST LIVERPOOL	558	7	0.5	0.2	0
86.8	WHEELING	995	24	2.5	0.3	0
190.3	PARKERSBURG	288	0	<0.1		0
306.9	HUNTINGTON	871	6	3.0	0.6	0
350.7	PORTSMOUTH	704	က	0.3	0.2	0
462.8	CINCINNATI	1076	6	0.2	0.1	0
600,6	LOUISVILLE	1084		0.1	***	0
791.5	EVANSVILLE	1092	ო	0.3	0.3	0
935.5	PADUCAH	822	°,	1.9	1.0	0

16

- * AVG & MAX Concentrations reported in ug/l.
 - ****** < indicates sample is below dection limit.
- *** --- indicates not applicable or not available.

1988
UGH
THRO
1986 -
FOR
/ELS
A LEV
NSTREAN
VER IN
HIO RI
0

TETRACHLOROETHYLENE

# SAMPLES EXCEEDING MCL	00	0	*	0	*	0	0	0	
AVG CONC	0.4 0.5	0.3	2.9	0.2	0.5	0.1	0.2	0.1	
MAX CONC	1.8 2.1	1.8	9.7	0.9	10.6	0.5	6.0	0.3	2.3
TOTAL # OF DETECTIONS	46 21	57	9	32	118	12	34	8	·
TOTAL # OF <u>SAMPLES</u>	1022 558	995	288	871	704	1076	1084	1092	822
<u>STATION</u>	WEST VIEW EAST LIVERPOOL	WHEELING	PARKERSBURG	HUNTINGTON	PORTSMOUTH	CINCINNATI	FOUSVILLE	EVANSVILLE	ADUCAH
MILE POINT	4.5 40:2	86.8	190.3	306.9	350.7	462.8	600.6	791.5	935.5

- * AVG & MAX Concentrations reported in ug/l.
- ** < indicates sample is below dection limit.
- *** ---- indicates not applicable or not available.
- **** A VG concentration is the average of detected samples.

1988
DUGH
THRC
1986
S FOR
EVELS
AM LI
ISTRE
/ER IN
IO RIV
HO

1,2-DICHLOROPROPANE

MILE POINT	STATION	TOTAL # OF <u>SAMPLES</u>	TOTAL # OF DETECTIONS	MAX CONC	AVG	# SAMPLES EXCEEDING MCL
4.5	WEST VIEW	1022	0	<0.1	1	0
40.2	EAST LIVERPOOL	558	0	<0.1		0
86.8	WHEELING	995	С	0.7	0.4	0
190.3	PARKERSBURG	288		0.1	0.1	0
306.9	HUNTINGTON	871	2	0.1	0.1	0
350.7	PORTSMOUTH	704	0	<0.1	t I t	0
462.8	CINCINNATI	1076	0	<0.1		0
600.6	LOUISVILLE	1084	0	<0.1		0
791.5	EVANSVILLE	1092	0	<0.1		0
935.5	PADUCAH	822	0	<0.1		
						•

18

AVG & MAX Concentrations reported in ug/l.

*

- ****** < indicates sample is below decton limit.
- *** ---- indicates not applicable or not available.

1988
NGH
THRC
1986
FOR
NELS
AM LE
STRE/
ER IN
O RIV
NHO

TOTAL TRIHALOMETHANES

# SAMPLES EXCEEDING MCL	0	0	0	0	0	0	0	0	0	
AVG	1.1	1.7	0.9	1.2	0.7	0.4	0.3	0.2	0.3	0.3
MAX CONC	21.5	34.6	9.6	2.4	10.0	1.9	2.3	0.9	10.1	4.4
TOTAL # OF DETECTIONS	57	368	814	8	297	341	515	271	693	چ <mark>کور</mark> کوع ِ ر
TOTAL # OF <u>SAMPLES</u>	1022	558	995	288	871	704	1076	1084	1092	822
<u>STATION</u>	WEST VIEW	EAST LIVERPOOL	WHEELING	PARKERSBURG	HUNTINGTON	PORTSMOUTH	CINCINNATI	LOUISVILLE	EVANSVILLE	. ВАDUČAH
MILE	4.5	40.2	86.8	190.3	306.9	350.7	462.8	600.6	791.5	935.5

- * AVG & MAX Concentrations reported in ug/l.
- ** < indicates sample is below dection limit.
- *** ---- indicates not applicable or not available.

3.4 TREATED DRINKING WATER DATA

TABLES 13 THROUGH 21

Drinking Water Concentrations for 1986 through 1988 with Comparison to Maximum Contaminant Levels

MONITORING RESULTS FOR TREATED DRINKING WATER FROM OHIO RIVER WATER TREATMENT FACILITIES	1986 - 1988
---	-------------

**
,s''
5
D,
Đ,
Q
S

> MCL	-	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	O	0	0	0	0	0	o	0	`` ,0	0	o O
<u>AVG</u> #	28.6		-				-		+		1		1						1	1			† 	 						
MAX	80 0	<0.5	<5.0	<1.0	<1.0		<1.0	<0.1	<01	<0.2	1.0	<1.0	<0.5	1.0	<1.0	<1.0	<1.0	2.0	2.0	<2.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<3.0	<3.0	<1.0	<3.0
DETECTIONS	ę	a	0	0	0		0	0	0	0		0	0		0	. 0	0	-		0	0	0	0	0	0	0	0	0	0	0
SAMPLES	ო	ო	ო	01	с Ю	0	4	ო	4	5	S	4	က	4	ო	7	က	119	118	e S	ო	N N		R	-	CN .	ო	2	ო	S
ILE EACILITY	5 WEST VIEW	6 CORINSON TOWNSHIP	2 MIDLAND	2 EAST LIVERPOOL	1 TORONTO	1 WEIRTON	2 STEUBENVILLE	B WHEELING	I SISTERSVILLE		7 ASHLAND	D IPONTON	PORTSMOUTH	5 🚕 🙀 MAÝSVILLE	3 CINCINNATI	KENTON COUNTY	5 NEWPORT	5 🕢 👻 (QUISVILLE	TOUISVILLE	D 🔰 👘 NEW ALPANY 🐘	5 EVANSVILLE	2 State HENDERSON	MT. VERNON	J CALLETO AND READ	UNIONTOWN	BACK STURGIS	B ROSICLARE	i conda	PADUCAH	Service CAIRO
RIVER M	4.5	8.6	36.2	40.2	59.1	65.1	65.2	86.5	137.1	304.2	319.7	327.(350.6	408.5	462.6	462.5	463.5	594,5	600.6	609.0	791.5	803.2	829.2	839.9	842.5	871.3	891.3	902.5	935.5	8.776

21

AVG concentration is the average of detected samples. MAX and AVG concentrations in ug/l. . :

•

--- indicates missing data or not applicable. ***

Catagory #>MCL is no. of sumples greater than max contam. level.

•

NITOHING RESULTS FOR TREATED DRINKING WATER	FROM OHIO RIVER WATER TREATMENT FACILITIES	1986 - 1988	est straight
MUNITURING HE	FROM OHIO R		

# > MCL	0	0	o	0	0	· · · · ·	0	0	0	Q	0	0	0	0	0	Ö	0	0	0	0		o	0	» 0	0	: 0	0	0	0	0
AVG	1	19.0	1	1	1			1	1	1	45	5.7		1		1	1		1	1	1	1	1	t 1 1	**	1				
MAX	31.0	30.0	<10.0	<7.0	4.0		5.5	<1.0	2.0	<5.0	7.0	8.0	<7.0	1.0	<5.0	<1.0	<1.0	5.4	4.3	<10.0	<10.0	<5.0	<6.0	<1.0	<1.0	<1.0	<5.0	<5.0	<1.0	<5.0
DETECTIONS	-	~	0	0	-		-	0	-	0	5	e	0		0	0	0	L L L		0	0	0	0	0	0	0	0	0	0	0
SAMPLES	ო	س	ო	0	ო	0	4	ო	4	5	11	4	с С	4	ო	7	ო	116	122	ັຕ	ო	5	-	e C	0	27	ი	0	ε	, Ś
ALE FACILITY	.5 WEST VIEW	LG 🔬 💡 ROBINSON TOWNSHIP	1.2 MIDLAND	I.2 EAST LIVERPOOL	TORONTO		STEUBENVILLE	.8 WHEELING	.1 SISTERSVILLE	.2 HUNTINGTON	.7 ASHLAND	.0 IRONTON	.8 PORTSMOUTH			.9 KENTON COUNTY	.5 NEWPORT	,5 Weight Louisvirte	9. FOUISVILLE	.0 🔶 🚺 NEW ALBANY	.5 EVANSVILLE	.2 HENDERSON	.2 MT. VERNON		.5 UNIONTOWN	.3 STURGIS	.3 ROSICLARE	.5 € * S C CONDA : 3 €	.5 PADUCAH	.e e calbo e calbo
RIVER	ব	ų	36	40	33	99	99	86	137	304	315	327	350	405	462	462	463	294	600	609	791	803	826	830	842	871	891	306	936	116

22 -

MAX and AVG concentrations in ug/l.

AVG concentration is the average of detected samples. . :

---- indicates missing data or not applicable. ***

**** Catagory #>MCL is no. of samples greater than max. contum level. ******** < Indicates sumple is below detection level.

MONITORING RESULTS FOR TREATED DRINKING WATER FROM OHIO RIVER WATER TREATMENT FACILITIES 1986 – 1988

# > WCL	• • •		<u>ට</u> ෆ	0	0	O		0	0	0	0	0	0	0	0	0	o		0	0 _م ر کرد م		Ö	-		0	O	0	0
AVG			4.1		1	1	1111	. 1	1		1	, <u> </u>	0.3		1									-	1		1	,
MAX	<0.5 < 5.0		5.7 8.7	4.0	<1.0	<0.5		<1.0	<1.0	<1.0	<1.0	<1.0	0.5	<1.0	<1.0	<0,5	<1.0	<1.0	<1.0	<1.0		<1.0	1	1	<1.0	<1.0	<1.0	<1.0
DETECTIONS	00		0 7	-	0	0		0	0	0	0	0	S	0	0	0	0	0	0	0		0	1	ſ 1	0	0	0	0
SAMPLES	4 8	0 -	- 81	13	4	4	0	ъ	5	4	4	4	26	4	5	29	64		С	4	0	دى	0	0	2	5	S	8
RIVER MILE EACILITY	4.5 WEST VIEW 8.6 AND ROBINSON TOWNSHIP			65.1 WEIRTON	65.2 STEUBENVILLE	86.8 👡 🕵 WHEELING	137.1 SISTERSVILLE	304.2 HUNTINGTON	319.7 ASHLAND	327.0 IRONTON	350.8 PORTSMOUTH	408.5 WAYSVILLE	462.8 CINCINNATI	462.9 4 KENTON COUNTY	463.5 NEWPORT	- 594.5. 2 2 2 2 UISVILLE	600.6 LOUISVILLE	609.0 NEW ALBANY	791.5 EVANSVILLE	803.2 Contraction HENDERSON	829.2 MT. VERNON	839.9 200 200 MORGANFIELD	842.5 UNIONTOWN	871.3 2 5 TURGIS	891.3 ROSICLARE	902.5 Start GOLCONDA	935.5 PADUCAH	

23

MAX and AVG concentrations in ng/l.

+

AVG concentration is the average of detected sumples.
 --- indicates missing data or not applicable.

**** Catagory #>MCL is no. of sumples greater than max. contam. level.

MONITORING RESULTS FOR TREATED DRINKING WATER FROM OHIO RIVER WATER TREATMENT FACILITIES 1986 – 1988 CARBON TETRACHLORIDE

# > WCL	0	0	1	0	0	0	. 0	0	1	0	. 0	0		0 0	0	0	0	, 0	Ō)) 0	• C	, 0			13 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	* 1 *	Ċ		0 0	0
AVG		r 1 1	1	1 1 1	1		1	1	1	1	- 1	1		4	1			0.3				 # 			Ĭ		1	1	1	
MAX	<0.5	<5.0		<0.5	<0.5	<1.0	<0.5	<5.0		<1.0	<1.0	<0.5	<0.5	<1.0	0.1	<1.0	<1.0	0.4	<1.0	<0.5	<0.5	<1.0		<1.0	1	1	<1.0	<1.0	<1.0	<1.0
DETECTIONS	0	0		0	0	0	0	o		0	0	0	0	0		0	0	ო	0	0	0	0		~ O	1	-	0	0	0	0
SAMPLES	4	9	0	-	ო	13	4	4	0	S	£	4	4	4	33	4	5	38	74	-	e	4	0	ß	0	0	2	21	5	21
FACILITY	WEST VIEW	ROBINSON TOWNSHIP	MIDLAND	EAST LIVERPOOL	TORONTO	WEIRTON	STEUBENVILLE	WHEELING	SISTERSVILLE		ASHLAND	IRONTON	PORTSMOUTH	Sarah Sultie	CINCINNATI	KENTON COUNTY	NEWPORT	S C TONISAILLE	LOUISVILLE	NEW ALBANY	EVANSVILLE	See HENDERSON	MT. VERNON	MORGANFIELD	UNIONTOWN		ROSICLARE	GOLCONDA	PADUCAH	CAIRO CAIRO
RIVER MILE	4.5	8.6 -	36.2	40.2	59.1	65.1	65.2	86.8	137.1	304.2 🦿	319.7	327.0	350.8	408.5	462.8	462.9	463.5	594:5 2	600.6	0.609	791.5	803.2 🔅	829.2	839.9	842.5	871.3	891.3	902.5	935.5	977.8

24

****** AVG concentration is the average of detected samples.

******* ---- indicates missing data or not applicable.

******** Catagory #>AfCL is no. of samples greater than max. contum. level. ********* < Indicates sample is below detection level.

MONITORING RESULTS FOR TREATED DRINKING WATER	FROM OHIO RIVER WATER TREATMENT FACILITIES	1986 - 1988
---	--	-------------

CONTRACTOR OF THANE

v

# > WCL	0	0	844 - 1 844	0	0	0	0	a		0	0	a	0	0	0	0	0	0	0.	0	0	0		0	1	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	0	0	36	0
AVG				l I L	1	1	1	1		1			1					+ + +				ł		1	5mm 2009 200				2.5	1.0
MAX	<0 5	<5.0 ,		<0.5	<0.5	<1.0	<0.5	<2.0	1	<1.0	<10	<0.5	<0.5	<1.0	<0.3	<1.0	<1.0	<0.5	<1.0	<0.5	<0.5	<1.0		<1.0		1	<1.0	<1.0	18.9	1.0
DETECTIONS	0	0		0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	o ,	0	O ^r	1	0			0	0	160	
SAMPLES	4	9	0	-	ო	13	4	4	0	5	5	4	4	4	33	4	5	33	74	• • •	ო		0	ິດ	0	Ö	2	2	206	21
FACILITY	WEST VIEW	ROBINSON TOWNSHIP	MIDLAND	EAST LIVERPOOL	TORONTO	WEIRTON	STEUBENVILLE	WHEELING	SISTERSVILLE	HUNTINGTON	ASHLAND	IRONTON	PORTSMOUTH	MAYSVILLE	CINCINNATI	KENTON COUNTY	NEWPORT	, ronisvirte	TOUISVILLE	NEW ALBANY	EVANSVILLE	HENDERSON	MT. VERNON	MORGANFIELD.	UNIONTOWN	STURGIS	ROSICLARE	GOLCONDA	PADUCAH	CAIRO
RIVER MILE	4.5	8.6	36.2	40.2	59.1	65.1	65.2	86.8	137.1	304.2	319.7	327.0	350.8	408.5	462.8	462.9	463.5	594.5	600.6	609.0	791.5	803.2	829.2	839.9	842.5	871.3	891.3	902.5	935.5	977.8

25

MAX and AVG concentrations in ug/l.

AVG concentration is the average of detected samples. --- indicates missing data or not upplicable. *** . :

**** Catagory #>MCL is no. of samples greater than max contam. level.

TABLE 17

.

.

MONITORING RESULTS FOR TREATED DRINKING WATER FROM OHIO RIVER WATER TREATMENT FACILITIES 1986 - 1988

Ň # > MCI े **०** 0 0 0 0 0 000 00000 0 0.0 0 AVG ດ MAX <0.5 <5.0 <0.5 <0.5 <1.0 <0.5 <2:0 <1.0 <1.0 <0.5 <0.5 <0.2 <1.0 <1.0 <0.5 <0.5 0.6 1 0.5 5.5 0.7 <1.0 <1.0 <1.0 <1.0 1.0 1 . . . DETECTIONS 00 0 00 0 0 - 0 0 0 0 ž SAMPLES $\frac{1}{2}$ 36 ¢ ŝ ŝ 000 0 ŝ 122 **ROBINSON TOWNSHIP** 977.8 CAIRO EAST LIVERPOOL KENTON COUNTY MORGANFIELD ш SISTERSVILLE PORTSMOUTH STEUBENVILLI HUNTINGTON MAYSVILLE **NEW ALBANY** WHEELING (*) *HENDERSON* **NNONTOWN** FACILITY MT. VERNON EVANSVILLE GOLCONDA STURGIS ROSICLARE CINCINNATI **WEST VIEW** ORONTO VEWPORT PADUCAH ASHLAND WEIRTON MIDLAND RONTON 304.2 炎 🕬 ŝ ar 56 in 1 839,9 🛒 **RIVER MILE** 65.1 🕅 462.9 902.5 🔅 803.2 829.2 8.6 137.1 4.5 36.2 40.2 59.1 65.2 86.8 327.0 350.8 408.5 462.8 463.5 609.0 791.5 842.5 871.3 935.5 319.7 594.5 600.6 891.3 8

26

MAX and AVG concentrations in ug/l.

AVG concentration is the average of detected sumples.

2

*** ---- indicates missing data or not applicable.

**** Catagory #>AtCL is no. of samples greater than max contam level ***** < Indicates sample is below detection level.</p>

MONITORING RESULTS FOR TREATED DRINKING WATER FROM OHIO RIVER WATER TREATMENT FACILITIES 1986 - 1988

TETRACHLOROETHYLENE

. . .

<u># > MCL</u>	0	0		0	0		0	0		0	0	0	0	0	0	0	0	0	0			•		`````,0 ```````````````````````````````	, I I		0	 O 	0	0
AVG	1	ň.	*	י ד <u>ר</u> יי י					1	والمحادثة والمحاد			1	1 1 t	1	1 [[2 						1	Ì≪ I I~		1	 			
MAX	<0.5	<5.0 ·		<0.5	<0.5		<0.5	<4.0	1	<1.0	<1.0	<0.5	<0.5	<1.0	<0.2	<1.0	<1.0	<0.5	<1.0	<2.0	<0.5	<1.0	1 1 1	<1,0	[<1.0	×1.0	<1.0	<1.0
DETECTIONS	0	o		0	0		0	0		0	0	0	 0	0	0	0	0	0.	0	0	0	0		0	1	ľ.	0	· · 0	0	0
SAMPLES	4	9	0	-	ო	0	4	4	0	ъ С	5	4	4	4	33	4	5	248	274		, CO	4	0	ی م	0	0	2	N-	S	21
RIVER MILE FACILITY	4.5 WEST VIEW	8.6 CONTOWNSHIP	36.2 MIDLAND	40.2 Second EAST LIVERPOOL	59.1 TORONTO	65.1 STORENTON	65.2 STEUBENVILLE	86.8 WHEELING	137.1 SISTERSVILLE	304.2 Star HUNTINGTON	319.7 ASHLAND	327.0 IRONTON	350.8 PORTSMOUTH	408.5 MAYSVILLE	462.8 CINCINNATI	462.9 *** KENTON COUNTY	463.5 NEWPORT	594.5 LOUISVILLE	600.6 LOUISVILLE	609.0 SEWALBANY	791.5 EVANSVILLE	803.2 HENDERSON	829.2 MT. VERNON	839,9 5 2 MORGANFIELD	842.5 UNIONTOWN	871,3 STURGIS	891.3 ROSICLARE	902.5	935.5 PADUCAH	977,8 Service CAIRO

27

MAX and AVG concentrations in ug/l. :

•

AVG concentration is the average of detected samples. ---- indicates missing data or not applicable. ***

**** Catagory #>MCL is no. of sumples greater than max. contam. level.

MONITORING RESULTS FOR TREATED DRINKING WATER FROM OHIO RIVER WATER TREATMENT FACILITIES 1986 - 1988

# > WCL	0	0		Ö	0		C	0		0	0) C				0	0	, 0 0) 0	0	r 0	0	1	0	~ I	·~ . * *	, 	r I I	0	°~~≻ 0 ~ ~ ~ ~
AVG					1	1					1		1					ř I I		1 1 E	1	1			8	11 1				1.0
MAX	<0.5	<5.0	1	<0.5	<0.5		<0.5	<2.0	1	<1.0	<1.0	<1.0	<0.5	<1.0	<0.5	<1.0	<1.0	<0.5	<1.0	<1.0	<0.5	<1.0	1	<1.0			1		<1.0	1.0
DETECTIONS	0	0	1 	0	0		0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	I I I			0	4 .
SAMPLES	4	9	0	-	e	0	4	4	0	e	5	4	4	4	ო	4	5	29	74		e B	4	0	5	0	0	0	0	5	15
FACILITY	WEST VIEW	ROBINSON TOWNSHIP	MIDLAND	EAST LIVERPOOL	TORONTO	WEIRTON	STEUBENVILLE	WHEELING	SISTERSVILLE	HUNTINGTON	ASHLAND	IRONTON	PORTSMOUTH	MAYSVILLE	CINCINNATI	KENTON COUNTY	NEWPORT	FOUSVILLE	LOUISVILLE	NEW ALBANY	EVANSVILLE	HENDERSON	MT. VERNON		UNIONTOWN	STURGIS	ROSICLARE	GOLCONDA	PADUCAH	CAIRD Contraction Contraction
RIVER MILE	4.5	8.6	36.2	40.2	59.1	65.1	65.2	86.8	137.1	304.2	319.7	327.0	350.8	2 408.5 2	. [∞] 462.8	462,9	463.5	594.5	600.6	609. 0 / %	791.5	803.2	829.2	839.9	842.5	871.3	891.3	902.5	935.5	977.8

.

MAX and AVC concentrations in ug/l.
 AVC concentration is the average of Aut

AVG concentration is the average of detected samples.

--- indicates missing data or not applicable.

**** Catagory #>MCL is no. of sumples greater than max. contam level ******** < Indicates sumple is below detection level.

MONITORING RESULTS FOR TREATED DRINKING WATER FROM OHIO RIVER WATER TREATMENT FACILITIES 1986 - 1988 - 1988 Lotalitànas

9 a 4

<u># > 100 ug/l</u>	0	0	-	73	0	0	თ		*** *** 88	G	4	ۍ ۲	0	4		9	9	Y AL		0	7	444			-		0	0	0	
AVG	31.1	13.0		61.8	30.2	57.4	63.9	53.7		70.2	62.0	59.0	22.4	76.3	50.5	57.4	70.3	33.5	26.7	44.5	74.6	55.8	800 GAO BAO	70.6		-	227.0	57.5	1	47.6
MAX	0 69	17.0 .		112.3	66.1	81.0	151.0	127.8	1	119.0	162 0	145.6	31.2	133.0	128.4	130.0	192.0			90.7	168.3	113.0		106.0		** ***	233.0	87.0	64.6	112.0
DETECTIONS	10	σ		13	10	8	15	12	**	48	37	17	4	16	32	120	19			48	36	4		ŝ		1	0	2	100 vin 100	37
SAMPLES	10	9	0	13	10	14	15	12	0	48	37	17	4	16	32	120	19	269	326	48	36	4	0	ŝ	0	0	5	N		37
RIVER MILE FACILITY	4.5 WEST VIEW	8.6 Second ROBINSON TOWNSHIP	36.2 MIDLAND	40.2 EAST LIVERPOOL	59.1 TORONTO	65.1 WEIRTON	65.2 STEUBENVILLE		137.1 SISTERSVILLE	304.2 HUNTINGTON	319.7 ASHLAND	327,0 CIRONTON	350.8 PORTSMOUTH	408.5 MAYSVILLE	462.8 CINCINNATI	462.9 KENTON COUNTY	463.5 NEWPORT	594.5 Set COUISVILLE	600.6 LOUISVILLE	609.0 NEW ALBANY	791.5 EVANSVILLE	803.2 HENDERSON	829.2 MT. VERNON	839.9 See MORGANFIELD	842.5 UNIONTOWN	871.3 🗇 👘 STURGIS	891.3 ROSICLARE	902,5 GOLCONDA	935.5 PADUCAH	

---- indicates missing data or not applicable. ***

AVG concentration is the average of detected sumples.

* *

MAX and AVG concentrations in ug/l.

**** Catagory #>100 ug/l is no. of samples greater than 100 ug/l.

:

4.0 SUMMARY OF OHIO RIVER INSTREAM CONDITIONS

4.1 CADMIUM

No instream samples from the Commission's manual monitoring stations had concentrations greater than the MCL of 10 μ g/L during 1986 through 1988. The highest instream concentration was 8.0 μ g/L at Joppa (M.P. 952.3). Cadmium was detected most frequently at Gallipolis (M.P. 279.2) with an average concentration of 13 detections equaling 1.5 μ g/L. Instream levels at Joppa have exceeded the proposed MCL; this may be a future concern should the proposed MCL be promulgated.

4.2 LEAD

Five samples from Gallipolis and one sample from Smithland L&D had concentrations of lead greater than the MCL of 50 μ g/L. The maximum instream concentration was 84.0 μ g/L which occurred at Gallipolis. Lead was detected most frequently at both Gallipolis and Smithland L&D with average concentrations of the detections equaling 26.1 μ g/L and 15.7 μ g/L respectively. Instream levels at all Commission manual monitoring locations have exceeded the proposed MCL; this may be a future concern should the proposed MCL be promulgated.

4.3 BENZENE

Six samples from East Liverpool had concentrations of benzene greater than the MCL of 5.0 μ g/L. The Commission's spills data base indicates that these six samples were taken during a spill event. The maximum concentration was 18.1 μ g/L while the average of 149 detections was 0.8 μ g/L.

4.4 CARBON TETRACHLORIDE

One sample from East Liverpool and one sample from Huntington had instream carbon tetrachloride concentrations greater than the MCL of 5.0 μ g/L. The greatest concentration was 9.1 μ g/L at East Liverpool. Carbon tetrachloride was detected most frequently at Paducah with an average of 10 detected samples equaling 0.6 μ g/L.

4.5 1,2-DICHLOROETHANE

Two hundred and thirty samples from Paducah had instream 1,2-dichloroethane concentrations greater than the MCL of 5.0 μ g/L. These concentrations are the result of a ground water/soil contamination problem on the Tennessee River just upstream from its confluence with the Ohio River. The maximum concentration reached 26.7 μ g/L, while the average of 668 detections equaled the MCL value of 5.0 μ g/L.

4.6 TRICHLOROETHYLENE

No instream samples had concentrations greater than the MCL of 5.0 μ g/L. The maximum instream trichloroethylene concentration was 3.0 μ g/L at Huntington. Trichloroethylene was detected most frequently at Wheeling with an average of 24 detections equaling 0.3 μ g/L.

4.7 TETRACHLOROETHYLENE

One sample from Parkersburg and one sample from Portsmouth had concentrations of tetrachloroethylene greater than the proposed MCL of 5.0 μ g/L. The maximum instream concentration was 10.6 μ g/L at Portsmouth. Tetrachloroethylene was most often detected at Portsmouth; 118 detections had an average concentration of 0.5 μ g/L.

4.8 1,2-DICHLOROPROPANE

No instream samples had concentrations of 1,2-dichloropropane greater than the proposed MCL of 5.0 μ g/L. The maximum instream concentration was 0.7 μ g/L at Wheeling. 1,2-dichloropropane was most frequently detected at Wheeling; three detections had an average concentration of 0.4 μ g/L.

4.9 TOTAL TRIHALOMETHANES

No instream samples had total trihalomethane concentrations greater than 100 μ g/L. The maximum instream concentration was 34.6 μ g/L at East Liverpool. Trihalomethanes are detected instream at most Ohio River locations with the notable exception of Parkersburg. Trihalomethanes were detected instream at Parkersburg seven times less frequently than any other monitoring location. The greatest average of detections was 1.7 μ g/L at East Liverpool.

5.0 SUMMARY OF DRINKING WATER QUALITY BY PARAMETER

5.1 CADMIUM

The MCL of 10 μ g/L for cadmium was exceeded once at West View with a maximum concentration of 80.0 μ g/L. Cadmium was also detected most frequently at West View. Cadmium was also detected at Ashland, Maysville and Louisville. Cadmium currently has no MCLG.

5.2 LEAD

No lead samples had concentrations greater than the MCL of 50.0 μ g/L. The greatest lead concentration was 31.0 μ g/L at West View. Lead was detected most frequently at Ironton; the average of three detections was 5.7 μ g/L. Lead was also detected at Robinson Township, Toronto, Steubenville, Sistersville, Ashland, and Maysville. Lead currently has no MCLG.

5.3 BENZENE

Three benzene samples at Toronto had concentrations greater than the MCL; the maximum concentration was 8.7 μ g/L. Benzene was also detected most frequently at Toronto; the average of 14 detections was 4.1 μ g/L. Benzene was also detected at Weirton and Cincinnati. All detected samples represent concentrations greater than the MCLG of zero.

5.4 CARBON TETRACHLORIDE

No samples reported had concentrations of carbon tetrachloride greater than the MCL of 5.0 μ g/L. The maximum concentration was 0.4 μ g/L at Louisville. Carbon tetrachloride was detected most frequently at Louisville; the average of three detections was 0.3 μ g/L. Carbon tetrachloride was also detected once at Cincinnati. All detections represent concentrations greater than the MCLG of zero.

5.5 1,2-DICHLOROETHANE

Thirty-six samples at Paducah had concentrations greater than the MCL for 1,2-Dichloroethane; the maximum concentration was 18.9 μ g/L. 1,2-Dichloroethane was detected most frequently at Paducah; the average of 160 detections was 2.5 μ g/L. 1,2-Dichloroethane was not detected at any other water treatment plants. All detections represent values greater than the MCLG of zero.

5.6 TRICHLOROETHYLENE

One sample at Louisville had a concentration greater than the MCL for trichloroethylene; the maximum concentration was 5.5 μ g/L. Trichloroethylene was detected most frequently at Louisville; the average of three detections was 1.9 μ g/L. Trichloroethylene was also detected at Maysville, Kenton County, Henderson, and Golconda. All detections represent values greater than the MCLG of zero.

5.7 TETRACHLOROETHYLENE

No samples had concentrations greater than the proposed MCL of 5.0 μ g/L; tetrachloroethylene was not detected at any water treatment plants.

5.8 1,2-DIÇHLOROPROPANE

No samples had concentrations of 1,2-dichloropropane greater than the proposed MCL of 5.0 μ g/L; 1,2-dichloropropane was only detected at Cairo; the average of four detections was 1.0 μ g/L. All detections represent values greater than the proposed MCLG of zero.

5.9 TOTAL TRIHALOMETHANES

The MCL for total trihalomethanes is 100 μ g/L. This MCL applies to the running average of the last four quarterly samples such that any one concentration greater than the MCL does not necessarily represent a violation of the MCL standard for trihalomethanes. This MCL only applies to public water supplies serving populations of 10,000 people or more.

Samples with concentrations greater than 100 μ g/L are as follows: East Liverpool (2), Steubenville (3), Wheeling (1), Huntington (3), Ashland (4), Ironton (3), Maysville (4), Cincinnati (1), Kenton County (6), Newport (6), Evansville (7), Henderson (1). Morganfield (1), Rosiclare (2), and Cairo (1). The maximum total trihalomethane concentration was 233.0 μ g/L at Rosiclare. The lowest average of detections was 13.0 μ g/L at Robinson Township. There is no health goal established for total trihalomethanes.

6.0 SUMMARY OF FINISHED WATER MCL EXCEEDANCES VERSUS OHIO RIVER WATER QUALITY

Table 22 summarizes all finished water samples with parameter concentrations greater than current MCLs. Ohio River water quality from Commission monitoring stations are presented for those instances. Table 23 presents a comparison of finished water to Ohio River water for instances in which finished water total trihalomethanes were greater than 100 μ g/L.

Cadmium was detected three times in the finished water at West View; one sample was greater than the MCL. Cadmium was not detected in the Ohio River at the nearest station to West View from 1986 to 1988. Numerous hypotheses could explain the presence of cadmium in the treated water while being absent from Ohio River samples 11 miles downstream. The ambient monitoring sampling location may be inappropriate for the identification of water quality conditions at the West View intake, or the sampling times may have randomly occurred at times of low cadmium concentrations.

Benzene was detected 14 times in the finished water at Toronto; six of these exceeded the MCL. All finished water detections at Toronto coincide with an April 1988 spill to the Ohio River which contained benzene. Benzene is detected frequently in the Ohio River at the Commission's monitoring station located 19 miles upstream from Toronto. This station had six samples with benzene concentrations greater than the MCL; they all also coincided with an April 1988 Ohio River spill containing benzene.

1,2-Dichloroethane is detected frequently in the finished water at Paducah; these samples include 36 which are greater than the MCL with a maximum concentration almost four times the MCL. Two hundred thirty Ohio River samples from Paducah had 1,2-dichloroethane concentrations greater than the MCL with a maximum concentration of more than five times the MCL. The average concentration of 668 Ohio River detections at Paducah from 1986 to 1988 equals the MCL for 1,2-dichloroethane. The source of 1,2dichloroethane in such concentrations is known to originate from a soils and groundwater contaminated site on the Tennessee River just upstream from its confluence with the Ohio River.

Trichloroethylene was detected three times in the finished water at Louisville; one of those detections was greater than the MCL. Trichloroethylene was detected in the Ohio River once with a concentration well below that of the finished water sample.

Finished water total trihalomethane concentrations greater than 100 μ g/L occurred numerous times at approximately one half of the water treatment plants surveyed. One finished water concentration greater than 100 μ g/L does not constitute a violation of the federal Safe Drinking Water Act. The MCL for total

ល
б
Ē
Ž
8
ş
Ĕ
STF
ž
Ш
Ĩ
õ
Ξ
сі С
š
Щ
ž
à
Щ
X
F
ĭ
EB
AT
Š
Ē
<u>IS</u>
N I
Ē
ĭ
IAB
MN
SU
-

NSN	- 4 	* `	63-	•. •	
AVG. OF DETECTIOI	28.6 	0.8 4.1 1.2	2.5 5.0	1.9	
NO. OF DETECTIONS		149 14 32	160 668	σ -	
MAX CONC	80 <1.0	18.1 8.7 4.6	18.9 26.7	5.5 0.1	
# SAMPLES <u>> MCL</u>	- 0	ဖက္ဝ	36 230	- 0	
TREATMENT <u>PLANT</u>	WEST VIEW	TORONTO	PADUCAH	FOUISVILLE	
RIVER	4.5 15.2	40.2 59.1 86.8	935.5 935.5	594.5 600.6	
PARAMETER	CADMIUM	BENZENE	1,2-DICHLOROETHANE	TRICHLOROETHYLENG	
SAMPLE TYPE	FINISHED WATER Construction	OHIO RIVER UPSTREAM FINISHED WATER · · · · · · · · · · · · · · · · · · ·	FINISHED WATER OHIO RIVER © INTAKE	FINISHED OHIO RIVER DOWNSTREAM	

AVG & MAX Concentrations reported in ug/l.
 indicates sample is below dection limit.
 --- indicates not applicable or not available.
 *** Finished water samples highlighted.

35

SUMMARY OF FINISHED WATER TOTAL TRIHALOMETHANE CONCENTRATIONS GREATER THAN 100 ug/I VS.

CONDITIONS	
INSTREAM	
HIO RIVER	

•

SAMPLE TYPE	RIVER	TREATMENT <u>PLANT</u>	# SAMPLES <u>> MCL</u>	MAX CONC	NO. OF DETECTIONS	AVG. OF <u>DETECTIONS</u>
FINISHED WATER OHIO RIVER @ INTAKE	40.2 40.2	E. LIVERPOOL	0 5	112.3 34.6	13 368	61.8 1.7
ohio River Upstream Finished Water Finished Water Ohio River Downstream or @ Intake	40.2 65.2 86.8 86.8	STEUBENVILLE WHEELING	0 ~ ~ 0	34.6 151.0 127.8 9.6	368 15 814	1.7 63,9 53.7 0.9
ohio River Upstream or © Intake Finished Water Finished Water Finished Water Dhio River Downstream	306.9 306.9 319,7 327.0 350.7	HUNTINGTON ASHLAND IRONTON	0 0 4 0 0	10.0 119.0 162 145.6 1.9	297 48 37 341	0.7 70.2 62.0 59.0 0.4
ohio River Upstream Finished Water Ohio River Downstream	350.7 408.5 462.8	MAYSVILLE	040	1.9 133.0 2.3	341 16 515	0.4 76.3 0.3
DHIO RIVER UPSTREAM OR @ INTAKE FINISHED WATER FINISHED WATER	462.8 462.8 462.9 463.5	CINCINNATI KENTON COUNTY NEWPORT	0-00	2.3 128.4 130.0 192.0	515 32 120	0.3 50.5 57.4 70.3
DHIO RIVER UPSTREAM OR @ INTAKE FINISHED WATER FINISHED WATER FINISHED WATER	791.5 791.5 803.2 839.9	EVANSVILLE HENDERSON MORGANFIELD	0 N - F	10.1 168.3 113.0 106.0	693 5 4 36	0.3 74.6 55.8 70.6
FINISHED WATER (Control of Contr	891.3 935.5	ROSICLARE	0 0	233.0 4.4	2 293	227.0° - (*) 0.3
OHIO RIVER UPSTREAM FINISHED WATER 이 등 등을 한다. 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이	935.5 977.8	CAIRO	0 🗝	4.4 112.0	293 37	0.3 ••, 47.6

36

AVG & MAX Concentrations reported in ug/l.
 Finished water samples highlighted.

trihalomethanes applies to the running average of the last four quarterly samples for public water supplies serving populations of 10,000 or more. No violations of the MCL for total trihalomethanes were observed. Trihalomethanes are detected frequently in the Ohio river, but typically in concentrations averaging less than 1.0 μ g/L.

7.0 CONCLUSIONS

Two instances were identified for which high concentrations of a certain parameter in the Ohio River corresponded with a finished water sample greater than the MCL; benzene at the Toronto water treatment plant and 1,2-dichloroethane at the Paducah water treatment plant. The benzene occurrence at Toronto was spill related while conditions relating to 1,2-dichloroethane at Paducah are continuing. Two other finished water samples with concentrations greater than the MCL were identified with no corresponding levels in the Ohio River, which is not to say that high corresponding levels were not present.

In general, it appears that water treatment facilities are providing water with concentrations below their MCLs for the parameters surveyed. although trihalomethanes do appear to be present at relatively high concentrations in the finished water of several water supplies. It also appears that, in general, the Ohio River is quite suitable as a raw water source for the parameters surveyed. There are instances where these conclusions do not apply.

Instream lead levels may present difficulties for water treatment facilities if the proposed MCL is promulgated. Lead concentrations three times or greater than the proposed MCL have been found at every Commission monitoring location on the Ohio River.

The most significant case of adverse raw water impacts on finished water quality involves 1,2dichloroethane in the Paducah area. The Kentucky Division of Water is actively pursuing abatement of this contamination at the source.

8.0 <u>RECOMMENDATIONS</u>

Based on the observations and conclusions derived in this report, the following recommendations are suggested:

- 1. The Commission should continue to review its monitoring programs and emerging Safe Drinking Water Act regulations in light of MCLs established for new parameters.
- 2. Instream monitoring should be initiated for any new parameters with MCLs that are not currently being evaluated to further determine the river's suitability as a water source.
- 3. As new MCLs are established for currently monitored parameters, the Commission should evaluate instream data to identify parameters of concern for future studies similar to this one.
- 4. Instream parameters with concentrations greater than the MCL should be included in the Commission's intensified segment investigations of toxics. Instances in which instream levels exceed the MCL are outlined in tables 4 through 12.
- 5. For instances in which the MCL has been exceeded in finished water, modelling should be performed, accounting for a particular water treatment plant's removal capabilities, to determine the approximate instream level of a particular parameter that will result in a finished water MCL exceedance. This could be done for water treatment plants on an individual basis for parameters with finished water MCL exceedances.
- 6. Lead characteristics in the Ohio River should be further examined in light of the proposed MCL. Measurements of total and dissolved lead would provide information on treatability, as dissolved lead is more difficult to remove. Water supplies might then know what levels of lead removal to expect and determine if the proposed MCL will create future difficulties.
- 7. Ambient monitoring for cadmium in the Ohio River should be conducted at the West View intake to investigate sources of high cadmium levels in West View's finished water. If no unusual cadmium levels are found instream and West View is still experiencing high finished water concentrations, then West View may wish to investigate internal sources. If high Ohio River levels are found, then a full investigation of potential sources should be undertaken along with a re-examination of ORSANCO's location of ambient monitoring in the West View area.

APPENDIX A

WATER TREATMENT PLANT TREATMENT SCHEMES

The following tables present general information regarding each treatment plant included in this survey along with treatment schemes indicating the unit processes and chemical additions. The following paragraphs provide a brief description of information found in the following tables.

Mile point indicates the location of the WTP by the number of river miles downstream from the head, which occurs at the confluence of the Allegheny and Monongahela Rivers in Pittsburgh, Pennsylvania. Intake depth refers to the depth below river level that the intake is located. This depth will vary with varying river pool stages. Plant capacity refers to the volume of water that can be treated; this value is expressed as MGD (million gallons per day). Storage capacity is the quantity of treated drinking water that can be reserved and it is expressed as volume in millions of gallons. Storage capacity is valuable during instances in which treatment facilities must cease operation, which may occur for a variety of reasons. Average production is the average quantity of water treated expressed as MGD and this value will be somewhat less than plant capacity, which is the maximum quantity of water that can be treated and also expressed as MGD.

Concerning treatment schemes, the treatment process is presented along with chemical additives. The treatment process begins with "raw" Ohio River water entering the plant from the river intake and ends with treated water in the distribution system which transports the potable water to its customers. In between are the unit processes that treat the raw water, and these processes are marked with a Y (yes) or a N (no) indicating whether the treatment plant employs that particular process.

Settling is a process used to remove suspended solids in the raw water. The raw water collects in a settling basin where gravity acts to "settle out" the larger suspended particles. After primary settling which removes the larger suspended particles, rapid mixing is employed to quickly and homogeneously disperse coagulant for the coagulation process. Coagulation is the process by which particulates are destabilized and aggregated, thus enhancing particulate removal above that of gravity or primary settling. Coagulants such as alum and polymer are rapidly mixed throughout the water just prior to flocculation. Flocculation is the transport process by which small particles group together to form larger particles. These larger particles can then be removed by gravity settling or to enhance filtration. Sedimentation is similar to gravity or primary settling, although several techniques may be employed to enhance particle removal. Filtering is typically accomplished using a granular media such as sand. Filtering usually follows coagulation, flocculation and sedimentation, and it removes finer particulate matter than gravity settling techniques. Chlorine is usually added as a disinfectant, and the clearwells function as holding tanks prior to distribution along with providing chlorine contact time.

The following is a brief description of typical substances added during the treatment process. Alum and polymers are coagulants used to destabilize dissolved solids and are added prior to filtering. Chlorine along with copper sulfate is used as algicides or disinfectants. Fluoride is added to treated water to prevent tooth decay. Powder activated carbon (PAC) is an adsorbent used to remove organic contaminants.

UTILITY NAME:Neville Island Treatment PlantOWNER:West View Water Authority

MILE POINT:	4.5	STATE: PA COUNTY:	Allegheny
INTAKE DEPTH (ft):	15	POPULATION SERVED:	200,000
PLANT CAPACITY (MGD):	40	AVG. PRODUCTION (MGD):	20
STORAGE CAPACITY:	34.3 MG 1.8 days	· · · · ·	
CONTACT:	Joe Dinkel	PLANT PHONE:	412-931-3292
ADDRESS:	Neville Island Treat. Plt.	ALT. PHONE:	412-331-4723
	Pittsburgh, PA 15225		

COMMENTS: Wells as secondary source

TREATMENT

PROCESS	Y/A		
River Settling Rapid Mix Flocculation Sedimentation Filters Clearwell Distribution	Y Y Y Y	CHEMICALS:	ferric chloride, lime, potassium permanganate soda ash, chlorination (pre- and post-), and fluoridation GAC filters used.

UTILITY NAME: Robinson Township OWNER: Robinson Township Municipal Authority

MILE POINT:	8.6	STATE: PA COUNTY:	Allegheny
INTAKE DEPTH (ft):	15	POPULATION SERVED:	10,400
PLANT CAPACITY (MGD):	3.0	AVG. PRODUCTION (MGD):	2.0
STORAGE CAPACITY:	1.8 MG 0.9 days max.		
CONTACT:	Chuck Neil	PLANT PHONE:	412-264-9520
ADDRESS:	Station St. & Louis Av.	ALT. PHONE:	412-787-2333
	Pittsburgh, PA 15225		

COMMENTS: Wells as secondary source

PROCESS	Y/A		
River Settling Rapid Mix Flocculation Sedimentation Filters Clearwell Distribution	Y Y Y Y	CHEMICALS: COMMENTS:	potassium permanganate. PAC. coagulant, chlorination, and fluoridation

UTILITY NAME: Midland OWNER: Municipal Authority of the Borough of Midland

MILE POINT:	36.2	STATE: PA	County:	Beaver
INTAKE DEPTH (ft):	15	POPULATION SERV	'Ed:	7,000
PLANT CAPACITY (MGD):	4.4	AVG. PRODUCTION	(MGD):	3.1
STORAGE CAPACITY: CONTACT: ADDRESS:	4.5 MG 1.5 days avg. use Dick McCaffie 10th St. & Railroad Ave. Midland, PA 15059	PLANT PHONE: ALT. PHONE:		412-643-4920

COMMENTS: ----

TREATMENT

PROCESS	Y/A		
River Settling Rapid Mix Flocculation Sedimentation Filters Clearwell Distribution	Y Y Y Y	CHEMICALS: COMMENTS: CHEMICALS:	$FeSO_4$, CaCO ₃ , KMnO ₄ , (PAC) Anthracite coal and rapid sand Both pre- and post- Cl_2

UTILITY NAME:	East Liverpool Water Treatment Plant
OWNER:	City

MILE POINT: INTAKE DEPTH (ft):	40.2 Variable	STATE: OH COUNTY: POPULATION SERVED:	Columbiana 18,000
PLANT CAPACITY (MGD): STORAGE CAPACITY:	5.0 7 MG in system	AVG. PRODUCTION (MGD):	3.0
CONTACT:	Bob Disch	PLANT PHONE:	216-385-5050
ADDRESS:	2220 Michigan Avenue	ALT. PHONE:	216-386-4377
	East Liverpool, OH 43920		

COMMENTS: ----

PROCESS	Y/A		
River Settling Rapid Mix Flocculation Sedimentation Filters Clearwell Distribution	N Y Y Y Y	CHEMICALS: COMMENTS:	potassium permanganate, alum, PAC, sodium hydroxide, pre- and post-chlorination Anthracite and sand in rapid sand filters

UTILITY NAME: Toronto Water Department OWNER: City of Toronto

MILE POINT:	59.1	STATE: OH	COUNTY:	Jefferson	
INTAKE DEPTH (ft):	19.5	POPULATION S	ERVED:	7,000	
PLANT CAPACITY (MGD):	15	1 5 AVG. PRODUCTION (MGD):			
STORAGE CAPACITY:	3 MG				
CONTACT:	George Wise	PLANT PHONE:		614-537-2591	
ADDRESS:	P.O. Box 352	614-537-2428			
	Toronto, OH 43964				

COMMENTS' Test well 70,000-80,000 GPD for secondary source.

TREATMENT

PROCESS	Y/A		
River Settling Rapid Mix Flocculation Sedimentation Filters Clearwell	Y Y Y Y	CHEMICALS [.] COMMENTS.	alum, lime, PAC, chlorination (pre- and post-), and fluoridation Rapid sand filters.
Distribution			

UTILITY NAME:	Weirton Water Treatment Plant
OWNER:	City of Weirton

MILE POINT:	65.1	STATE: WV COUNTY:	Brooke
INTAKE DEPTH (ft):	4.0	POPULATION SERVED:	30,000
PLANT CAPACITY (MGD):	4.5	AVG. PRODUCTION (MGD):	2.0
STORAGE CAPACITY:	.3 MG 2.5 MGD city		
CONTACT:	Larry Coxen	PLANT PHONE:	304-797-8566
ADDRESS:	Station 3031 Birch Drive	ALT. PHONE:	304-797-8593
	Weirton, WV 26062		

COMMENTS: Also on groundwater.

PROCESS	Y/A		
River Settling Rapid Mix Flocculation Sedimentation Filters Clearwell Distribution	N Y Y Y Y	CHEMICALS.	ferric sulfate, lime, soda tripolyphosphate, chlorination (pre- and post-), and fluoridation Dual media (anthracite/sand) filters

UTILITY NAME: Steubenville Water Works OWNER: City

MILE POINT:	65.2	STATE: OH	COUNTY:	Jeffersonville
INTAKE DEPTH (ft):	18	POPULATION SE	RVED:	40,000***
PLANT CAPACITY (MGD):	10.0	AVG. PRODUCTI	ON (MGD):	6.5
STORAGE CAPACITY:	2 MG C.W. (1 MG, 2x350 1	G) - in city		
CONTACT:	James McMinimum	PLANT PHONE:		614-283-6040
ADDRESS:	1565 University Blvd.	ALT. PHONE:		614-282-0845
	Steubenville, OH 43952			

COMMENTS: ----

••• With satellites.

TREATMENT

PROCESS	Y/A		
River Settling Rapid Mix Flocculation Sedimentation Filters Clearwell Distribution	Y Y Y Y Y	CHEMICALS: COMMENTS:	lime, alum, copper, sulfate (optional), chlorination (pre- and post-), and fluoridation 6/3 lined, rainwater, reservoir, rapid sand filters

UTILITY NAME: Wheeling Water Treatment Plant OWNER: City of Wheeling

MILE POINT:	86.6	STATE: WV	COUNTY:	Ohio
INTAKE DEPTH (ft):	4	POPULATION SERV	'ED:	70.000
PLANT CAPACITY (MGD):	14	AVG. PRODUCTION	(MGD):	8.0
STORAGE CAPACITY. CONTACT: ADDRESS:	5 MG Phil Kowalski N. 13th & Richland Av. Wheeling, WV 26003	PLANT PHONE: ALT. PHONE:		304-234-3834 304-234-3835

ŧ

COMMENTS: ----

PROCESS	Y/A		
River Settling Rapid Mix Flocculation Sedimentation Filters Clearwell Distribution	Y Y Y Y Y	CHEMICALS: COMMENTS.	ferric sulfate, lime, potassium permanganate. PAC, chlorination (pre- and post), chlorine dioxide, polymers (with ferric sulfate and lime), sodium triphosphate and fluoridation Rapid sand filters.

UTILITY NAME: Sistersville Municipal Water OWNER: Community of Sistersville

MILE POINT: INTAKE DEPTH (ft): PLANT CAPACITY (MGD): STORAGE CAPACITY:	137.1 8 2.2 400,000 planning another	STATE: WV POPULATION SE AVG. PRODUCTI 600.000 in spring 198	COUNTY: RVED: ON (MGD): 89	Tyler 2,000 0.2
CONTACT: ADDRESS:	Gene Patterson 200 Diamond Square Sistersville, WV 26175	PLANT PHONE: ALT. PHONE:		304-652-6361 304-652-1214

COMMENTS: Plant was built in 1898. Plans are being made for new plant.

TREATMENT

PROCESS	Y/A		
River Settling Rapid Mix Flocculation Sedimentation Filters Clearwell Distribution	N Y Y Y	CHEMICALS: COMMENTS.	lime, alum, potassium permanganate, PAC, calgon, chlorination (pre- and post-), soda ash, and fluoridation Rapid sand filter

UTILITY NAME: Huntington Division OWNER: West Virginia-American Water Company

MILE POINT:	304.2 & 306.9	STATE: PA COUNTY:	Cabell
INTAKE DEPTH (ft):	15	POPULATION SERVED:	120,000
PLANT CAPACITY (MGD):	20.0	AVG. PRODUCTION (MGD):	15.0
STORAGE CAPACITY:	10.2 MG in plant and distribut	ion system	
CONTACT:	Tom Holbrook	PLANT PHONE:	304-525-8193
ADDRESS:	P.O. Box 525	ALT. PHONE:	304-529-7802
	Huntinaton, WV 25710		

COMMENTS: ----

PROCESS	Y/A		
River Settling Rapid Mix Flocculation Sedimentation Filters Clearwell Distribution	N Y Y Y Y Y	CHEMICALS: COMMENTS:	ferric sulfate, lime, potassium permanganate, PAC, polymer, zinc phosphate, chlorination (pre- and post-), and fluoridation GAC filters

UTILITY NAME: Ashland Water Works OWNER: City of Ashland

MILE POINT:	319.7	STATE: KY	COUNTY:	Boyd
INTAKE DEPTH (ft):	4 Variable	POPULATION SEF	RVED:	29,000
PLANT CAPACITY (MGD):	12.0	AVG. PRODUCTIC	N (MGD):	7.0
STORAGE CAPACITY:	Expanding		. ,	
CONTACT:	Charles Riggs	PLANT PHONE:		606-327-2058
ADDRESS:	Ashland Utilities Dept. Ashland, KY 41101	ALT. PHONE:		606-327-2006

COMMENTS: Raw water reserve of 25 MG

TREATMENT

PROCESS	Y/A		
River Settling Rapid Mix Flocculation Sedimentation Filters Clearwell Distribution	Y Y Y Y Y	CHEMICALS: COMMENTS:	alum, lime, PAC, chlorination (pre- and post-), and fluoridation Presettling in 25 MG raw water

UTILITY NAME:	Iront
OWNER:	City

ronton Water Supply City of Ironton

MILE POINT: INTAKE DEPTH (ft): PLANT CAPACITY (MGD): STORAGE CAPACITY:	327.0 18+12'below 4 6 MG Fin	STATE: OH COUNTY: POPULATION SERVED: AVG. PRODUCTION (MGD):	Lawrence 15,000 2.0
CONTACT: ADDRESS:	Wendell Jenkins P.O. Box 704 Ironton, OH 45638	PLANT PHONE: ALT. PHONE:	614-532-3412 614-532-3353

COMMENTS: ----

PROCESS	Y/A		
River Settling Rapid Mix Flocculation Sedimentation Filters Clearwell Distribution	Y N Y Y Y	CHEMICALS: COMMENTS	alum, lime, PAC, potassium permanganate, sodium chlorite, chlorination (pre- and post-), and fluoridation 600,000 gallon presettling, mixing occurs in-pipe, rapid sand filters

UTILITY NAME: Portsmouth Water Treatment Plant OWNER: City of Portsmouth

MILE POINT:	350.8	STATE: OH	COUNTY:	Scioto
INTAKE DEPTH (ft):	18	POPULATION SE	ERVED:	50.000
PLANT CAPACITY (MGD):	16.0	AVG. PRODUCTI	ON (MGD):	6
STORAGE CAPACITY:	22 MG Reservoir			-
CONTACT.	John Sayler	PLANT PHONE:		614-456-6855
ADDRESS:	P.O. Box 1304	ALT. PHONE:		614-354-7515
	Portsmouth, OH 45662			•••••••••

COMMENTS: ----

TREATMENT

PROCESS	Y/A		
River Settling Rapid Mix Flocculation Sedimentation Filters Clearwell Distribution	Y Y Y Y Y	CHEMICALS: COMMENTS	alum, lime, potassium permanganate, soda ash, zinc, orthophosphate, optional PAC. chlorination (post), and fluoridation They have two flash mixes with a presettling between them.

UTILITY NAME:	Maysville Utility Commission
OWNER:	City of Maysville

MILE POINT: INTAKE DEPTH (ft):	408.5 12	STATE: KY POPULATION SERV	COUNTY: /ED:	Mason 13.000
PLANT CAPACITY (MGD):	2.8	AVG. PRODUCTION	I (MGD):	1.3
STORAGE CAPACITY:	3.6 MG			
CONTACT:	Kenneth Crump	PLANT PHONE:		606-564-3531
ADDRESS:	City P.O. Box I	ALT. PHONE:		606-564-4046
	Maysville, KY 41056			

COMMENTS: Plant built in 1954 - updates.

PROCESS	Y/A		
River Settling Rapid Mix Flocculation Sedimentation Filters Clearwell Distribution	N Y Y Y Y	CHEMICALS: COMMENTS:	alum, lime, potassium permanganate, PAC, chlorination (pre- and post-), and fluoridation New dual media filters, rapid mixing, flocculation and sedimentation done in baffled chambers

UTILITY NAME: Cincinnati Water Works OWNER: City of Cincinnati

	460.9	STATE OU	COUNTY	Hamilton
	404.0	STATE. UH	COONTI.	riamitori
INTAKE DEPTH (ft):	24	POPULATION SI	ERVED:	800,000
PLANT CAPACITY (MGD):	235	AVG. PRODUCT	ION (MGD):	125.9
STORAGE CAPACITY:	184.8			
CONTACT:	Jack DeMarco	PLANT PHONE:		513-352-4651
ADDRESS:	5651 Kellogg Avenue	ALT. PHONE:		513-231-7825
	Cincinnati, OH 45228			

COMMENTS: ----

TREATMENT

.

PROCESS	Y/A		
River Settling Rapid Mix Flocculation Sedimentation Filters Clearwell Distribution	Y Y Y Y Y	CHEMICALS:	alum, polymer, lime, fluoride, ferric sulfate, pre- and post- chlorine, PAC

UTILITY NAME: Ft. Thomas Treatment Plant OWNER: Kenton County Water District No. 1

MILE POINT:	462.9	STATE: KY COUNTY	Campbell
INTAKE DEPTH (ft):	25	POPULATION SERVED:	175,000
PLANT CAPACITY (MGD):	33.0	AVG. PRODUCTION (MGD).	24.0
STORAGE CAPACITY:	6.5 MG		
CONTACT:	Bari Joslyn	PLANT PHONE:	606-441-0482
ADDRESS:	700 Alexandria Pike	ALT. PHONE:	606-291-5666
	Ft. Thomas, KY 41075		

COMMENTS: ----

PROCESS	Y/A		
River Settling Rapid Mix Flocculation Sedimentation Filters Clearwell Distribution	Y Y Y Y Y	CHEMICALS:	alum, lime, potassium permanganate, coagulant aid, chlorination (pre- and post-), and fluoridation Multimedia filters

UTILITY NAME: Newport Water Works OWNER: City of Newport

MILE POINT: INTAKE DEPTH (ft): PLANT CAPACITY (MGD): STORAGE CAPACITY:	463.6 22 10.5 40 MG 4 days avg.	STATE: KY COUNTY: POPULATION SERVED: AVG. PRODUCTION (MGD):		Campbell 85,000 8.0	
CONTACT: ADDRESS:	David N. Bloesing 2055 Memorial Parkway Newport, KY 41075-1367	PLANT PHONE: ALT. PHONE:		606-441-0763 606-292-3618	

COMMENTS: ----

TREATMENT

PROCESS	Y/A		
River Settling Rapid Mix Flocculation Sedimentation Filters Clearwell Distribution	Y Y Y Y Y	CHEMICALS: COMMENTS:	ferric sulfate. lime, potassium permanganate, PAC, copper sulfate, sodium hydroxide. rapid chlorination (pre- and/or post), and fluoridation Dual media filters.

UTILITY NAME: B.E. Payne Water Treatment Plant OWNER: Louisville Water Company

MILE POINT: INTAKE DEPTH (ft): PLANT CAPACITY (MGD): STORAGE CAPACITY	594.5 - 60	STATE: KY COUNTY: POPULATION SERVED: AVG. PRODUCTION (MGD):	Jefferson 700,000*** 20.0
CONTACT: ADDRESS:	John L. Huber 435 S. 3rd St. Louisville, KY 40202	PLANT PHONE: ALT. PHONE:	502-569-3600

COMMENTS: ----

•••With both plants.

TREATMENT				
PROCESS	Y/A			
River Settling Rapid Mix Flocculation Sedimentation Filters Clearwell Distribution	Y Y Y Y Y	CHEMICALS: COMMENTS.	copper sulfate, potassium permanganate, PAC, alum, ferric chloride polymer, lime, soda ash, carbon dioxide, chlorination (with ammonia pre- and post-), and fluoridation Dual media (anthracite/sand) filters.	

•

Crescent Hill Purification Plant UTILITY NAME: Louisville Water Company OWNER:

MILE POINT:	600.6	STATE: KY	County:	Jefferson
INTAKE DEPTH (ft):	-	POPULATION SEF	RVED:	700,000***
PLANT CAPACITY (MGD):	240.0	AVG. PRODUCTIO	IN (MGD):	125.0
CONTACT: ADDRESS:	John L. Huber 435 S. 3rd St. Louisville, KY 40202	PLANT PHONE: ALT. PHONE:		502-569-3600

COMMENTS: ----

***With both plants.

TREATMENT

PROCESS	Y/A		
River Settling Rapid Mix Flocculation Sedimentation Filters Clearwell Distribution	Y Y Y Y Y	CHEMICALS: COMMENTS:	copper sulfate, potassium permanganate, PAC, alum, ferric chloride, polymer, lime, soda ash, carbon dioxide, chlorination (with ammonia: pre- and post-), and fluoridation Dual media filters; optional lime soda, CO ₂ softening step

UTILITY NAME: Indiana Cities (New Albany) OWNER: Indiana Cities Water Corporation

MILE POINT:	609.0	STATE: IN COUNTY:	Floyd
INTAKE DEPTH (ft):	15	POPULATION SERVED:	40,000
PLANT CAPACITY (MGD):	7.0	AVG. PRODUCTION (MGD):	4.5
STORAGE CAPACITY:	1.25 MG		
CONTACT:	David Eblesisor	PLANT PHONE:	812-945-7492
ADDRESS:	1001 Penn Street	ALT. PHONE:	812-282-8204
	Jeffersonville, IN 47130		

COMMENTS: Secondary source of 1.5 MGD from wells

PROCESS Y/A River CHEMICALS: alum, sodium aluminate, polymers, phosphate, chlorination Settling Υ (with ammonia pre- and post-), PAC, and fluoridation Rapid Mix Y Flocculation Y COMMENTS: Rapid seed dual media filters Y Sedimentation Filters Y Y Clearwell Distribution

UTILITY NAME: Evansville Water Works OWNER: Municipality

MILE POINT: INTAKE DEPTH (ft): PLANT CAPACITY (MGD): STORAGE CAPACITY:	791.5 10 60 7.5 MG at plant	STATE: IN POPULATION SERV AVG. PRODUCTION	COUNTY: /ED: { (MGD):	Vanderburgh 140,000 30.0
CONTACT: ADDRESS:	Mark Griese P.O. Box 19 Evansville, IN 47740	PLANT PHONE: ALT. PHONE:		812-428-0568

COMMENTS: ----

TREATMENT

PROCESS	Y/A		
River Settling Rapid Mix Flocculation Sedimentation Filters Clearwell Distribution	Y Y Y Y Y	CHEMICALS.	alum, lime, PAC, potassium permanganate, chlorination, and fluoridation Both primary and secondary settling is used. The filters are dual media, rapid sand

UTILITY NAME: OWNER:

Henderson Water Treatment Plant City of Henderson

MILE POINT: INTAKE DEPTH (ft): PLANT CAPACITY (MGD). STORAGE CAPACITY	803.2 30 6 0 1 2 MG Clearwell 1 MG 2x 5 MG	STATE: KY POPULATION SERV AVG. PRODUCTION	COUNTY: /ED: N (MGD):	Henderson 42,000 5.0
CONTACT: ADDRESS:	Bobby Gish P O. Box 341 Henderson, KY 42420	PLANT PHONE: ALT. PHONE:		502-826-2421

COMMENTS: Plant will be doubled in 1989

PROCESS	Y/A		
River Settling Rapid Mix Flocculation Sedimentation Filters Clearwell Distribution	Y Y Y Y Y	CHEMICALS: COMMENTS:	alum, lime, potassium permanganate, sodium hydroxide, chlorination, fluoridation, aquaolene (see Appendix for proposed 1989) Dual media filters are used. Plant is proposed to be doubled in 1989

UTILITY NAME: Mt. Vernon Water Department OWNER: Municipality

MILE POINT:	829.2	STATE: IN	COUNTY:	Posey
INTAKE DEPTH (ft):	45	POPULATION SE	RVED:	8,000
PLANT CAPACITY (MGD):	2.8	AVG. PRODUCTI	ON (MGD):	2.0
STORAGE CAPACITY:	350,000			
CONTACT:	Harold Cox	PLANT PHONE:		812-838-3726
ADDRESS:	P.O. Box 19	ALT. PHONE:		812-838-2136
	Mt. Vernon, IN 47620			

COMMENTS: ----

TREATMENT

PROCESS	Y/A		
River Settling Rapid Mix Flocculation Sedimentation Filters Clearwell Distribution	Y Y Y Y Y	CHEMICALS: COMMENTS:	alum, polymer, lime, chlorination (pre- and post-), and fluoridation Dual media filters.

UTILITY NAME: OWNER:

Morganfield Water Works City of Morganfield

MILE POINT:	839.9	STATE: KY COUNTY:	Union
INTAKE DEPTH (ft):	18	POPULATION SERVED.	8,000
PLANT CAPACITY (MGD):	6.0	AVG. PRODUCTION (MGD):	1.8
STORAGE CAPACITY:	1.5 MG 2x500.000, 1 400,000		
CONTACT:	John Coffman	PLANT PHONE:	502-389-1695
ADDRESS:	P.O. Box 420	ALT. PHONE:	
	Morganfield, KY 42437		

COMMENTS: ----

PROCESS	Y/A		
River Settling Rapid Mix Flocculation	Y Y Y	CHEMICALS:	lime, alum, PAC, polymer, chlorination (pre- and post-), and fluoridation
Sedimentation Filters Clearwell Distribution	Y Y Y		Dual media filters are used.

UTILITY NAME: Uniontown Water Works OWNER: City of Uniontown

MILE POINT:	842.5	STATE: KY	COUNTY:	Union
INTAKE DEPTH (ft):	5	POPULATION SI	ERVED:	1.500
PLANT CAPACITY (MGD):	0.36	AVG. PRODUCT	ION (MGD):	0.1
STORAGE CAPACITY:	170,000 gal.			
CONTACT:	John Stevens	PLANT PHONE:		502-822-9118
ADDRESS:	Main Street, Box 548	ALT. PHONE:		502-822-4277
	Uniontown, KY 42461			

COMMENTS: ----

TREATMENT

PROCESS	Y/A		
River Settling Rapid Mix Flocculation Sedimentation Filters Clearwell Distribution	N Y Y Y Y	CHEMICALS: COMMENTS:	alum, lime, PAC, chlorination (pre- and post-), and fluoridation Rapid sand filters.

UTILITY NAME: Sturgis Water Plant OWNER: City of Sturgis

MILE POINT:	871.3	STATE: KY COUNTY:	Union
INTAKE DEPTH (ft):	16	POPULATION SERVED.	3,000
PLANT CAPACITY (MGD).	1.2	AVG. PRODUCTION (MGD)	0.3
STORAGE CAPACITY:	1 MG		
CONTACT:	Fred Williamson	PLANT PHONE:	502-333-4453
ADDRESS:	602 W. 6th St.	ALT. PHONE:	502-333-2166
	Sturgis, KY 42459		

COMMENTS: ----

PROCESS	Y/A		
River		CHEMICALS:	alum, lime, potassium permanganate, PAC, phosphate (as
Settling	N		needed), and chlorination (pre- and post-)
Rapid Mix	Y		•
Flocculation	Y	COMMENTS:	Rapid sand/anthracite sand filters
Sedimentation	Y		
Filters	Y		
Clearwell	Y		
Distribution		1	

UTILITY NAME: Rosiclaire OWNER: City of Rosiclaire

	891.3	STATE: IL	COUNTY:	Hardin
INTAKE DEPTH (ft):	15	POPULATION SI	ERVED:	1,800
PLANT CAPACITY (MGD):	0.403	AVG. PRODUCT	ION (MGD):	0.160
STORAGE CAPACITY:	0.150 MG			
CONTACT:	Norman Cubley	PLANT PHONE:		618-285-6201
ADDRESS:	P.O. Box 608	ALT. PHONE:		618-285-3445
	Rosiclaire, IL 62982			

COMMENTS: ----

TREATMENT

PROCESS	Y/A		
River Settling Rapid Mix Flocculation Sedimentation Filters Clearwell Distribution	N Y Y Y Y Y	CHEMICALS: COMMENTS.	lime, alum, PAC, chlorination, and fluoridation Rapid sand filters.

UTILITY NAME:	Golconda
OWNER:	City of Golconda

MILE POINT:	902.5	STATE: IL (COUNTY:	Pope
INTAKE DEPTH (ft):	31	POPULATION SERVI	ED:	1,000
PLANT CAPACITY (MGD):	0.369	AVG. PRODUCTION	(MGD):	0.1
STORAGE CAPACITY:	0.351 MG			
CONTACT.	Roger Wallace	PLANT PHONE:		618-683-4331
ADDRESS.	Box 511	ALT. PHONE:		618-683-3341
	Golconda, IL 62938			

COMMENTS. ----

PROCESS	Y/A		
River Settling Rapid Mix Flocculation Sedimentation Filters Clearwell Distribution	N Y Y Y Y	CHEMICALS: COMMENTS:	alum, lime, PAC, chlorination (pre- and post-), and fluoridation Rapid sand filters

UTILITY NAME: Paducah Water Works OWNER: City of Paducah

MILE POINT:	935.9	STATE: KY	COUNTY:	McCracken
INTAKE DEPTH (ft):	16.5	POPULATION SEF	RVED:	55.000
PLANT CAPACITY (MGD):	12.0	AVG. PRODUCTIC	N (MGD):	6.5
STORAGE CAPACITY:	11.3 MG			
CONTACT:	Marvin G. Devers	PLANT PHONE:		502-442-2746
ADDRESS:	P.O. Box 2377 Paducah, KY 42002-2377	ALT. PHONE:		502-442-4747

COMMENTS: ----

TREATMENT

PROCESS	Y/A		
River Settling Rapid Mix Flocculation Sedimentation Filters Clearwell Distribution	N Y Y Y Y	CHEMICALS: COMMENTS:	alum, copper sulfate, PAC, sodium hydroxide, chlorination (pre- and post-), and fluoridation

UTILITY NAME: Cairo OWNER: Illinois-American Water Co.-Southern Division

MILE POINT:	977.5	STATE: IL COUNTY:	Alexander
INTAKE DEPTH (ft):	10	POPULATION SERVED:	6,000
PLANT CAPACITY (MGD):	4.06	AVG. PRODUCTION (MGD).	1.4
STORAGE CAPACITY:	0.325 MG		
CONTACT:	Herbert Hodges	PLANT PHONE:	618-734-4045
ADDRESS:	618 Commercial Avenue	ALT. PHONE:	618-734-1211
	Cairo, IL 62914		

COMMENTS: ----

TREATMENT

PROCESS	Y/A		
River Settling Rapid Mix Flocculation Sedimentation Filters Clearwell Distribution	N Y Y Y Y	CHEMICALS:	alum, polymer, PAC, zinc polyphosphate, chlorination (pre- and post-), and fluoridation

•

Ohio River Valley Water Sanitation Commission 49 E. Fourth St., Suite 300 Cincinnati, OH 45202 (513) 421-1151

Printed on Recycled Paper