## Water Quality Trends Ohio River And Its Tributaries



**Ohio River Valley Water Sanitation Commission** 

Water Quality Trends Ohio River And Its Tributaries

Statistical analyses of data resulting from water quality monitoring conducted by ORSANCO

Water Quality Assessment Program

Ohio River Valley Water Sanitation Commission Cincinnati, Ohio

November 1990



## TABLE OF CONTENTS

| INTRODUCTION                                                                                                                                                                                                                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DATA AVAILABILITY 2<br>Commission Monitoring Activities 2<br>Parameters Investigated 3<br>Manual Monitoring System Stations 4<br>Record Length 4<br>Sample Collection Techniques 6                                                                                                                      |
| SEASONAL KENDALL TEST       6         Problems Using Tests of Trend       6         Description of the Seasonal Kendall Test       6         Advantages to Using Seasonal Kendall Test       8         Limitation of the Seasonal Kendall Test       9         Seasonal Kendall Slope Estimator       9 |
| RESULTS9Total Suspended Solids11Total Dissolved Solids16Hardness16Sulfate16Total Phosphorous16Ammonia Nitrogen17Total Kjeldahl Nitrogen17Nitrate/Nitrite Nitrogen17Total Nitrogen17Phenolics18Copper18Iron18Lead18Mercury18Zinc19                                                                       |
| DISCUSSION                                                                                                                                                                                                                                                                                              |
| CONCLUSION                                                                                                                                                                                                                                                                                              |
| LITERATURE CITED                                                                                                                                                                                                                                                                                        |

## TABLES

| Table 1 Manual Monitoring Stations Used for Trend Assessment                      | 5  |
|-----------------------------------------------------------------------------------|----|
| Table 2 Sampling Techniques Used for Collecting Manual Monitoring Data            | 7  |
| Table 3 Seasonal Kendall Test on Flow-Adjusted Concentration                      | 10 |
| Table 4 Seasonal Kendall Slope Estimator Test on Flow-Adjusted Concentration      | 12 |
| Table 5 Trend Category Counts and Weighted Values                                 | 13 |
| Table 6 Number of Comparisons on Flow-Adjusted Concentration                      | 20 |
| Table 7 Dischargers on the Ohio River with Permit Limits for the Study Parameters | 21 |

## FIGURES

| Figure 1 Difference Between Seasonal Kendall Test and Kendall's Tau              | 8  |
|----------------------------------------------------------------------------------|----|
| Figure 2 Map of Total Suspended Solids                                           | 14 |
| Figure 3 Bar Charts of Total Suspended Solids - Trend Assessment Slope Estimator | 15 |

## APPENDICES

| Appendix A | Quality Assurance Plan for Manual Sampling          |
|------------|-----------------------------------------------------|
| Appendix B | Seasonal Kendall Test Methodology and Formulas      |
| Appendix C | Sample Pages of Residuals Analyses for Three Models |
| Appendix D | Annual Mean of Concentration for Each Station       |
| Appendix E | Z-Statistic Table                                   |
| Appendix F | Trend Direction Maps and Slope Magnitude Bar Charts |

## PREFACE

The Seasonal Kendall Test has been used for evaluating trends in water quality data by several government agencies including the United States Geological Survey, Pennsylvania Department of Environmental Resources and Maryland Department of the Environment. The evaluation of trends of Ohio River water quality was based on the U.S. Geological Survey paper, "A Study of Trends in Total Phosphorus Measurements at NASQAN Stations," written by Richard A. Smith, Robert M. Hirsch and James R. Slack (1982). Information regarding the appropriate use of the Seasonal Kendall Test was derived from this paper. Software used for the evaluation was a LOTUS123<sup>®</sup> macro originally developed by Rod Kime of the Pennsylvania Department of Environmental Resources. Modifications to the macro were required to accommodate our study design. Permission to use the LOTUS123<sup>®</sup> macro is greatly appreciated. J. Shermer Garrison from Maryland Department of the Environment generously shared computer programs of his trends assessment study methodology and some of his experiences with the Seasonal Kendall Test.



## INTRODUCTION

Trend studies are undertaken to determine the effectiveness of water pollution control efforts. This is an important question for agencies like the Ohio River Valley Water Sanitation Commission (ORSANCO). Large amounts of money have been spent on water pollution control efforts in the Ohio River Basin and ORSANCO is responsible for many standards which dischargers to the Ohio River must meet. Being able to statistically quantify improvements in water quality is a means of measuring the benefit of the money spent on water pollution control.

Applying the Seasonal Kendall Test to monthly monitoring data collected by the Commission establishes if trends in water quality exist in the Ohio River based on statistical tests. The test also determines if those trends are decreasing or increasing trends. A trend has been defined as a steady increase or decrease in data observations over time (Bauer et al., 1984).

## **Requirements for Tests of Trend**

Assessment of long-term trends testing requires a consistent data set over time and a testing method which accounts for water quality parameters that vary seasonally and with stream flow. The Commission's Manual Monitoring System has produced a substantial data set resulting from the analysis of samples. The samples are collected monthly in a consistent manner which provides a database suitable to test for trends.

The Seasonal Kendall Test provides methods which screen out any variations of a parameter concentration due to flow. This makes the test superior to other trend assessment methods.

## Objective

The objective of the long term trends program is to identify quantifiable trends in the Ohio River Basin water quality over time. This allows an identification of successes in water quality improvement and of problems yet to be addressed. The Seasonal Kendall Test was selected to establish trends for Ohio River Basin water quality. The results of the Seasonal Kendall Test indicate the statistical probability of a trend at a particular station for a specific parameter and the direction of that trend.

1

## DATA AVAILABILITY

## **Commission Monitoring Activities**

The Commission operates several water quality monitoring systems, including a Water Users Network, Electronic Monitors, Organic Detection System (ODS), Manual Monitoring System (MMS), Fish Population survey and Fish Tissue Contaminant monitoring. Unfortunately, because a consistent and sufficient data base is required for doing trends assessments, the MMS data is best suited for analysis of trends using the Seasonal Kendall Test.

The Water Users Network has provided data from as early as 1908, but due to the voluntary nature of the program the data are not consistent in terms of parameters and monitoring frequency. Because of inconsistencies and gaps in the data set, the Water Users data cannot be used for the assessment of trends.

The Electronic Monitors measured temperature, specific conductivity, pH, and dissolved oxygen from 1960 to 1986. The data set is extensive but gaps exist. Several changes in the location of stations also contribute to inconsistencies in the data set. The Electronic Monitors data is not easily accessible and is not considered the best candidate for trend assessment at this time.

The ODS was initiated in 1978 and provides data on selected organic parameters. The size of the data set would be sufficient, but most of the values are below the detection limit. Eventually ODS data could be used for long term trends assessment. A statistically valid means of addressing such data sets must be identified in order to apply trends analysis to the ODS results.

Fish Population data and Fish Tissue Contaminant data are not currently available for long term trends assessment. These are being entered into a data base, and are being subjected to quality assurance checks. At some point in the future the data may be suitable for trend analysis.

The MMS has been in operation since 1975. The system consists of monthly collection of data for many conventional parameters. There are sufficient detections for several of the parameters which give an indication of water quality. The data base is easily accessible and there is confidence in the quality of the MMS data. The Quality Assurance Plan for Manual Sampling is attached as Appendix A. A fixed-sampling schedule, like that of the Commission's MMS, is particularly well suited for seeing variability in the data and for detecting trends (Smith et al., 1982).

## Parameters Investigated

The Commission measures several parameters in its monthly MMS using United States Environmental Protection Agency (U.S. EPA) methods and stores the resulting data in the STORET data base. STORET is a storage (STO) and retrieval (RET) system available to ORSANCO through U.S. EPA. Those parameters for which sufficient data was collected for use in the Seasonal Kendall Test are included in this study. They are as follows:

- 1. Total Suspended Solids (TSS)
- 2. Total Dissolved Solids (TDS is calculated from Conductivity)
- 3. Hardness
- 4. Sulfate
- 5. Total Phosphorus
- 6. Ammonia-Nitrogen
- 7. Total Kjeldahl Nitrogen (TKN)
- 8. Nitrate/Nitrite Nitrogen (N/N)
- 9. Total Nitrogen (sum of N/N and TKN)
- 10. Phenolics
- 11. Copper
- 12. Iron
- 13. Lead
- 14. Mercury
- 15. Zinc

Total dissolved solids is calculated from conductivity values using the formula:

TDS (in mg/l) =  $0.625 \times \text{measured conductivity}$  (in umhos/cm).

This equation is based on regression analysis of Ohio River water column samples. Total nitrogen is simply the sum of nitrate/ nitrite nitrogen and total Kjeldahl nitrogen. All other values are actual measured concentrations from STORET.

The Seasonal Kendall Test is applied to the calculated flow-adjusted concentrations of monitoring data (transformed data). The flow-adjusted values are derived using an equation model describing the relationship between flow and concentration, then removing the influence of this relationship from actual concentrations. The relationship between flow and concentration is estimated and used to provide a conditional expected value of concentration. Flow adjusted concentration is defined as the actual concentration minus the estimated conditional expected concentration (Smith, et. al., 1982) resulting in a residual.

The rationale for using residuals in trend analysis is to look for a trend in whatever remains once the relationship between flow and concentration has been removed. Theoretically, if there is no other influence on concentration, the residuals that remain should fluctuate randomly about zero. If there is another influence on concentration, it will result in a positive or negative trend according to the Seasonal Kendall Test.

## Manual Monitoring System Stations

There are thirty-five stations at which monthly samples were taken for each parameter used in the analysis. The monitoring stations at which data are collected are listed in Table 1. Because sampling of the nutrient parameters was not performed year-round at thirteen sampling stations, the resulting data set is incomplete and cannot be included in the calculations. The five nutrient parameters are total phosphorus, ammonia, total Kjeldahl nitrogen, nitrate/nitrite nitrogen, and total nitrogen. Two other stations, at the Cumberland River and Tennessee River lack flow data.

## **Record Length**

The record length chosen in this study is eleven years of data for all stations except Smithland Lock and Dam, which has only six years of data. In October 1986, four stations were moved. In these cases data sets from the old and new locations were combined in order to provide eleven years of data. The combined stations are indicated on Table 1 with an asterisk. The station at Oakmont Water Works (WW) on the Allegheny River was moved 5.9 miles downstream to Pittsburgh WW on the Allegheny River. The combined data set for the Allegheny River contains January 1977 to September 1986 from the Oakmont WW and October 1986 to December 1987 from the Pittsburgh WW. The station at Pike Island Lock and Dam on the Ohio River was moved 2.6 miles downstream to Wheeling WW. The combined data set for Wheeling contains January 1977 to September 1986 from Pike Island Lock and Dam and October 1986 to December 1987 from Wheeling WW. Two dischargers are located between these two sampling stations. The station at Greenup Lock and Dam on the Ohio River was moved 9.7 miles downstream to Portsmouth. The combined data set for Portsmouth WW contains January 1977 to September 1986 from Greenup Lock and Dam and October 1986 to December 1987 from Portsmouth WW. Four major dischargers are located between these two sampling stations. The station at Meldahl Lock and Dam on the Ohio River was moved 27.7 miles upstream to Maysville WW. The combined data set for Maysville contains January 1977 to September 1986 from Meldahl Lock and Dam and October 1986 to December 1987 from Maysville WW. Five major dischargers are located between these two sampling stations.

## TABLE 1

|      | STATION                               | OHIO RIVER MP | TRIBUTARY MP # |
|------|---------------------------------------|---------------|----------------|
| 1.   | Monongahela River at South Pittsburgh | 0.0           | 4.5            |
| *2.  | Allegheny River at Pittsburgh WW/     | 0.0           | 7.4            |
|      | Allegheny River at Oakmont WW         | 0.0           | 3.3            |
| 3.   | South Heights                         | 15.2          |                |
| 4.   | Beaver Falls on Beaver River          | 25.4          | 5.3            |
| 5.   | East Liverpool L&D                    | 40.2          |                |
| *6.  | Pike Island L&D/Wheeling WW           | 84.2/86.8     |                |
| 7.   | Hannibal L&D                          | 126.4         |                |
| 8.   | Willow Island L&D                     | 161.8         |                |
| 9.   | Muskingum River at Muskingum L&D      | 172.2         | 5.8            |
| 10.  | Belleville L&D .                      | 203.9         |                |
| 11.  | Addison–Kyger Creek                   | 260.0         |                |
| 12.  | Kanawha River at Winfield L&D         | 265.7         | 31.1           |
| 13.  | Gallipolis L&D                        | 279.2         |                |
| 14.  | Huntington WW                         | 306.9         |                |
| 15.  | Big Sandy River at Louisa             | 317.1         | 20.3           |
| *16. | Portsmouth WW/Greenup L&D             | 350.7/341.0   |                |
| 17.  | Scioto River at Lucasville            | 356.5         | 15.0           |
| *18. | Maysville WW/Meldahl L&D              | 408.5/436.2   |                |
| 19.  | Cincinnati WW                         | 462.8         |                |
| 20.  | Little Miami River at Newtown         | 464.1         | 7.5            |
| 21.  | Licking River at Covington            | 470.2         | 4.5            |
| 22.  | North Bend                            | 490.2         |                |
| 23.  | Great Miami River at Elizabethtown    | 491.1         | 5.5            |
| 24.  | Markland L&D                          | 531.5         |                |
| 25.  | Louisville WW                         | 600.6         |                |
| 26.  | West Point                            | 625.9         |                |
| 27.  | Cannelton L&D                         | 720.7         |                |
| 28.  | Green River at Sebree                 | 784.2         | 41.3           |
| 29.  | Evansville WW                         | 791.5         |                |
| 30.  | Uniontown L&D                         | 846.0         |                |
| 31.  | Wabash River at New Harmony           | 848.0         | 51.5           |
| 32.  | Smithland L&D                         | 918.5         |                |
| 33.  | Cumberland River at Barkley Dam       | 920.4         | 30.6           |
| 34.  | Tennessee River at Paducah            | 934.5         | 6.0            |
| 35.  | Joppa                                 | 952.3         |                |

## MANUAL MONITORING STATIONS USED FOR TREND ASSESSMENT

\* Refers to stations that were combined
L&D is Lock and Dam
WW is Water Works Plant
MP is mile point
# From point of confluence with Ohio River

## Sample Collection Techniques

When combining data sets, there is a slight possibility of undetected discrepancies within a data set due to sampling techniques. The Commission employs various sampling techniques in collecting MMS data depending on the location of the station. For instance, most of the samples taken at water works were tapped from an intake water line. At other stations, such as tributaries or dams, a grab sample is taken directly from the river. Table 2 describes sampling techniques used at each station.

## SEASONAL KENDALL TEST Problems Using Tests of Trend

Problems associated with using tests of trend are seasonality, skewness, and serial correlation (Smith et al., 1982). Not addressing any one of these problems could render the trend testing invalid. Seasonality refers to a season to season cyclical pattern in the data. The problem emerges when a test of trend tries to compare data collected in one month with data collected in a different month. Skewness refers to the lack of symmetry in underlying frequency distribution of the data. It is often due to season or stream flow dependence. If the test of trend chosen is a parametric test, which usually assumes a normal probability distribution of the data, the test will have the problems associated with skewness. Serial correlation refers to natural successive variation in the data over time. Two data points taken close to each other in time will be more similar than two data points taken farther apart.

## Description of the Seasonal Kendall Test

The Seasonal Kendall Test is a revised version of Kendall's Tau testing for randomness against trend. Only certain kinds of comparisons are considered acceptable in the Seasonal Kendall Test. The Seasonal Kendall Test permits comparison of data points only within the same month. Kendall's Tau allows comparisons of data points in different months. As a result, fewer comparisons are made using the Seasonal Kendall Test than with Kendall's Tau. Figure 1 shows the basic difference between the two tests. When comparing two data points, the Seasonal Kendall Test determines if the later value is higher, lower or identical to the earlier value and keeps a running tally. A non-parametric test does not consider magnitudes of difference between two data points, simply that there is a difference (Smith et al., 1982). In this way, changes in water quality are recorded.

## TABLE 2

## SAMPLING TECHNIQUES USED FOR COLLECTING MANUAL MONITORING DATA

|      | Station                               | Technique |
|------|---------------------------------------|-----------|
| 1.   | Monongahela River at South Pittsburgh | 1         |
| *2   | Allegheny River at Pittsburgh WW/     | 1         |
|      | Allegheny River at Oakmont WW         | 1         |
| 3.   | South Heights                         | 1         |
| 4.   | Beaver Falls on Beaver River          | 1         |
| 5.   | East Liverpool L&D                    | 1         |
| *6.  | Pike Island L&D/Wheeling WW           | 6/1       |
| 7.   | Hannibal L&D                          | 6         |
| 8.   | Willow Island L&D                     | 6         |
| 9.   | Muskingum River at Muskingum L&D      | 6         |
| 10.  | Belleville L&D                        | 6         |
| 11.  | Addison-Kyger Creek                   | 1         |
| 12.  | Kanawha River at Winfield L&D         | 2         |
| 13.  | Gallipolis L&D                        | 3         |
| 14.  | Huntington WW                         | 1         |
| 15.  | Big Sandy River at Louisa             | 1         |
| *16. | Portsmouth WW/Greenup L&D             | 1/6       |
| 17.  | Scioto River at Lucasville            | 5         |
| *18. | Maysville WW/Meldahl L&D              | 1/6       |
| 19.  | Cincinnati WW                         | 1         |
| 20.  | Little Miami River at Newtown         | 5         |
| 21.  | Licking River at Covington            | 1         |
| 22.  | North Bend                            | 1         |
| 23.  | Great Miami River at Elizabethtown    | 5         |
| 24.  | Markland L&D                          | 2         |
| 25.  | Louisville WW                         | 1         |
| 26.  | West Point                            | 1         |
| 27.  | Cannelton L&D                         | 3         |
| 28.  | Green River at Sebree                 | 4         |
| 29.  | Evansville WW                         | 1         |
| 30.  | Uniontown L&D                         | 6         |
| 31.  | Wabash River at New Harmony           | 5         |
| 32.  | Smithland L&D                         | 6         |
| 33.  | Cumberland River at Barkley Dam       | 2         |
| 34.  | Tennessee River at Paducah            | 5         |
| 35.  | Joppa                                 | 1         |

Technique 1: Tap on intake water line from pumping station

Technique 2: Tap in turbine channel in dam

Technique 3: Collect sample from submersible pump

Technique 4: Grab sample from river near intake structure

Technique 5: Grab sample mid-channel (usually from a bridge)

Technique 6: Grab sample from upstream end of a guidewall to locks

The tally results are used to calculate a monthly statistic and a monthly variance. The sum of the monthly statistics and the monthly variances are used to calculate the z-statistic. The significance of the z-statistic then determines the presence or absence of a trend. The method is described in more detail in Appendix B.



## Advantages to Using Seasonal Kendall Test

The Seasonal Kendall Test accounts for seasonality, skewness and serial correlation of the data. Seasonality is removed by comparing data within the same month. For each month, the Seasonal Kendall Test compares data in earlier years to data in later years. The sum of higher, lower and tied comparisons is determined. The Seasonal Kendall Test accounts for skewness because it is a non-parametric test. A non-parametric test does not make assumptions about the underlying distribution of the data (Smith et al., 1982). Skewed water quality data will not affect a non-parametric test. Since the Seasonal Kendall Test does not detect the magnitude of difference between two data points under comparison, the fact that water quality data is serially correlated is unimportant.

## Limitation of the Seasonal Kendall Test

Determining the correct record length and having sufficient data available for each parameter under investigation is the greatest limitation to the Seasonal Kendall Test. Record length refers to the number of years included in a data set. A record which is too long can mask the presence of a current trend and a record which is too short will not contain enough data points to distinguish a trend from natural variability in the data. While the choice of record length is essentially arbitrary, Smith et al. (1982) recommend a record length of five to ten years. ORSANCO's MMS data begins in 1975 and continues to the present. The usable data base available for trends assessment is the eleven years from 1977 to 1987.

Only parameters with sufficient data can be used in the Seasonal Kendall Test. Missing values may constitute up to 50% of the observations without diminishing the power of the test (Garrison, 1988).

## Seasonal Kendall Slope Estimator

When it has been determined that a parameter exhibits a trend, it may be desirable to estimate the magnitude of the trend. The Seasonal Kendall Slope Estimator was chosen to perform this task. This method expresses the magnitude as a slope (change per unit time). However, this does not imply that a linear trend is assumed.

The Seasonal Kendall Slope Estimator is defined to be the median of the differences of the ordered pairs of data values that are compared in the Seasonal Kendall Test (Smith et. al., 1982). The difference divided by the number of years separating the data is recorded. The median of these differences is then converted to a slope (change per unit time). This process is described in more detail in Appendix B.

## RESULTS

The results of the Seasonal Kendall Test of Trend are found in Table 3, Seasonal Kendall Test Results of Flow-Adjusted Concentration. This table contains the evaluation of trends based on the z-statistic. A table showing the z-statistic obtained when applying the Seasonal Kendall Test is found in Appendix E.

| 3 |  |
|---|--|
| щ |  |
| B |  |
| Z |  |

# SEASONAL KENDALL TEST ON FLOW-ADJUSTED CONCENTRATION

|         |                      |         |       |       |         |         | TOTAL |         |       | NITRATE/ | TOTAL |        |        |       |       |         |       |
|---------|----------------------|---------|-------|-------|---------|---------|-------|---------|-------|----------|-------|--------|--------|-------|-------|---------|-------|
| OHIO MP | STATION              | TRIB RM | TSS   | TDS   | HARDNES | SULFATE | PHOS  | AMMONIA | TKN   | NITRITE  | NITRO | PHENOL | COPPER | IRON  | LEAD  | MERCURY | ZINC  |
| 0.0     | MONONGAHELA R        | 4.5     | dec   | DEC   | DEC     | DEC     | DEC   | DEC     | DEC   | dec      | DEC   | 0      | DEC    | 0     | DEC   | 0       | DEC   |
| 0.0     | ALLEGHENY R          | 7.4     | 0     | DEC   | 0       | DEC     | dec   | DEC     | DEC   | 0        | DEC   | 0      | DEC    | 0     | 0     | 0       | DEC   |
| 15.2    | SOUTH HEIGHTS        |         | dec   | DEC   | dec     | dec     | DEC   | DEC     | DEC   | DEC      | DEC   | DEC    | DEC    | DEC   | DEC   | 0       | DEC   |
| 25.4    | BEAVER R             | 5.3     | INC   | DEC   | dec     | DEC     | 0     | DEC     | DEC   | 0        | DEC   | DEC    | DEC    | 0     | DEC   | 0       | DEC   |
| 40.2    | EAST LIVERPOOL       | ww      | 0     | DEC   | 0       | DEC     | DEC   | DEC     | DEC   | 0        | DEC   | DEC    | DEC    | DEC   | DEC   | 0       | DEC   |
| 86.8    | WHEELING WTP         |         | 0     | 0     | 0       | 0       | DEC   | DEC     | DEC   | 0        | DEC   | 0      | 0      | 0     | DEC   | 0       | DEC   |
| 126.4   | HANNIBAL L&D         |         | 0     | 0     | 0       | 0       | dec   | DEC     | DEC   | DEC      | DEC   | DEC    | DEC    | 0     | DEC   | 0       | DEC   |
| 161.8   | WILLOW ISLAND L      | &D      | DEC   | 0     | DEC     | 0       | 0     | DEC     | DEC   | DEC      | DEC   | dec    | DEC    | 0     | DEC   | 0       | DEC   |
| 172.2   | MUSKINGUM R          | 5.8     | 0     | DEC   | DEC     | 0       | :INS: | :INS:   | :INS: | :INS:    | :INS: | 0      | DEC    | 0     | DEC   | DEC     | 0     |
| 203.9   | BELLEVILLE L&D       |         | DEC   | 0     | DEC     | 0       | DEC   | DEC     | DEC   | dec      | DEC   | 0      | DEC    | 0     | DEC   | 0       | DEC   |
| 260.0   | ADDISON-KYGER        | CR      | DEC   | dec   | DEC     | 0       | DEC   | DEC     | DEC   | 0        | DEC   | DEC    | DEC    | DEC   | DEC   | 0       | DEC   |
| 265.7   | KANAMHA R            | 31.1    | DEC   | DEC   | 0       | 0       | :INS: | :INS:   | :INS: | :INS:    | :INS: | DEC    | DEC    | 0     | 0     | 0       | DEC   |
| 279.2   | GALLIPOLIS L&D       |         | DEC   | DEC   | DEC     | 0       | DEC   | DEC     | DEC   | dec      | DEC   | 0      | DEC    | 0     | DEC   | 0       | DEC   |
| 306.9   | HUNTINGTON WA        | TER CO  | DEC   | 0     | 0       | 0       | 0     | DEC     | DEC   | 0        | DEC   | DEC    | DEC    | DEC   | DEC   | 0       | 0     |
| 317.1   | <b>BIG SANDY R</b>   | 20.3    | DEC   | INC   | inc     | 0       | DEC   | DEC     | DEC   | 0        | DEC   | DEC    | 0      | DEC   | DEC   | 0       | DEC   |
| 350.7   | PORTSMOUTH           |         | 0     | 0     | DEC     | 0       | DEC   | DEC     | DEC   | 0        | DEC   | 0      | DEC    | 0     | DEC   | 0       | 0     |
| 356.5   | SCIOTO R             | 15.0    | 0     | 0     | 0       | 0       | :INS: | :INS:   | :INS: | :INS:    | :INS: | 0      | DEC    | 0     | DEC   | 0       | DEC   |
| 408.5   | <b>MAYSVILLE WW</b>  |         | 0     | 0     | 0       | 0       | :INS: | :INS:   | :INS: | :INS:    | :INS: | 0      | 0      | 0     | DEC   | 0       | 0     |
| 462.8   | <b>CINCINNATI WW</b> |         | 0     | 0     | 0       | 0       | :INS: | :INS:   | :INS: | :INS:    | :INS: | 0      | 0      | 0     | DEC   | 0       | DEC   |
| 464.1   | LITTLE MIAMI R       | 7.5     | 0     | INC   | 0       | 0       | :INS: | :INS:   | :INS: | :INS:    | :INS: | dec    | DEC    | 0     | DEC   | 0       | DEC   |
| 470.2   | LICKING R            | 4.6     | 0     | INC   | 0       | inc     | DEC   | DEC     | DEC   | 0        | DEC   | DEC    | DEC    | 0     | DEC   | 0       | DEC   |
| 490.0   | NORTH BEND           |         | 0     | 0     | 0       | 0       | :INS: | :INS:   | :INS: | :INS:    | :INS: | DEC    | DEC    | 0     | DEC   | 0       | dec   |
| 491.1   | <b>GREAT MIAMI R</b> | 6.5     | 0     | 0     | DEC     | 0       | :INS: | :SNI:   | :INS: | :INS:    | :INS: | DEC    | DEC    | 0     | DEC   | 0       | DEC   |
| 631.6   | MARKLAND L&D         |         | 0     | 0     | 0       | 0       | :INS: | :INS:   | :INS: | :INS:    | :INS: | DEC    | 0      | 0     | DEC   | 0       | DEC   |
| 600.6   | LOUISVILLE WATE      | RCO     | 0     | 0     | DEC     | 0       | DEC   | DEC     | 0     | 0        | 0     | 0      | 0      | 0     | DEC   | 0       | DEC   |
| 625.9   | WEST POINT           |         | DEC   | 0     | DEC     | 0       | DEC   | 0       | DEC   | 0        | 0     | 0      | DEC    | DEC   | DEC   | 0       | DEC   |
| 720.7   | CANNELTON L&D        |         | 0     | 0     | 0       | 0       | :INS: | :INS:   | :INS: | :INS:    | :INS: | dec    | DEC    | 0     | DEC   | DEC     | 0     |
| 784.2   | GREEN R              | 41.3    | 0     | INC   | inc     | INC     | DEC   | 0       | 0     | inc      | inc   | 0      | DEC    | 0     | DEC   | dec     | DEC   |
| 791.5   | EVANSVILLE WW        |         | DEC   | 0     | 0       | DEC     | DEC   | DEC     | DEC   | 0        | 0     | 0      | DEC    | DEC   | 0     | DEC     | DEC   |
| 846.0   | UNIONTOWN L&D        |         | 0     | DEC   | 0       | 0       | :INS: | :INS:   | :INS: | :INS:    | :INS: | 0      | 0      | 0     | DEC   | 0       | 0     |
| 848.0   | WABASH R             | 51.5    | 0     | 0     | 0       | 0       | :INS: | :INS:   | :INS: | :INS:    | :INS: | 0      | dec    | 0     | 0     | 0       | 0     |
| 918.5   | SMITHLAND L&D        |         | 0     | 0     | DEC     | 0       | :INS: | :INS:   | :INS: | :INS:    | :INS: | DEC    | 0      | 0     | 0     | dec     | 0     |
| 920.4   | CUMBERLAND R         | 30.6    | :INS: | :INS: | :INS:   | :INS:   | :INS: | :SNI:   | :INS: | :INS:    | :INS: | :INS:  | :INS:  | :INS: | :INS: | :INS:   | :INS: |
| 834.5   | TENNESSEE R          | 6.0     | :INS: | :INS: | :INS:   | :INS:   | :INS: | :SNI:   | :INS: | :INS:    | :INS: | :INS:  | :INS:  | :INS: | :INS: | :INS:   | :INS: |
| 952.3   | APPA                 |         | DEC   | 0     | dec     | 0       | DEC   | DEC     | dec   | 0        | 0     | 0      | 0      | 0     | 0     | 0       | 0     |

INC Strong Significant Increasing Trend; Probability < 5% Inc. Significant Increasing Trend; 5% < Probability < 10%</li>
O No Significant Trend; Probability > 10%
dec Significant Decreasing Trend; 5% < Probability < 10%</li>
DEC Strong Significant Decreasing Trend; Probability < 5%</li>
:INS: Insufficient data available

The flow-adjusted concentration results (Table 3) are plotted on Ohio River maps. The maps give a feeling for spatial arrangement of the results found in Table 3. They also allow for the identification of localized effects. The Ohio River is often divided into three sections: upper, middle and lower. The upper Ohio River is defined as being between river mile 0.0 and 265.7. The middle Ohio River is between river mile 265.7 and 545.8. The lower Ohio River is between river mile 545.8 and 981.0.

Table 4 shows the results of the Seasonal Kendall Slope Estimator Test. The outcome of the test displays the slope of the trend for each parameter at all stations. The slope is shown as change in units of concentration per year. The results of the test were utilized to plot bar charts of the slope magnitude for a single parameter at each station.

Table 5 gives the number of stations for each parameter in each trend category: "DEC" for strong decreasing trend, "dec" for slight decreasing trend, "O" for no trend, "inc" for slight increasing trend and "INC" for strong increasing trend. An evaluation of trends for each parameter basinwide is found by using these trend category counts. Table 5 assigns weighted values for each station and calculates an average weighted value to indicate the strength of an overall trend for each parameter. Each result category is given a value, -2 for "DEC", -1 for "dec", 0 for "O", +1 for "inc" and +2 for "INC". An average weighted value is calculated for each parameter according to the number of stations it has in each result category. An analysis of "strong decreasing trend overall" requires an average weighted value of less than "-1.50". An analysis of "trend in a decreasing direction" requires an average weighted value between -1.00 and -1.50. An analysis of "no trend" requires an average weighted value of -1.00 to +1.00.

## **Total Suspended Solids**

The flow-adjusted concentration values at twelve stations indicate strong decreasing trends. Refer to the map in Figure 2. The strongest decreasing trend occurs at mile point 306.9 with a slope of -12.7 mg/L/year. Refer to the bar chart in Figure 3. There is one strong increasing trend that occurs on the Beaver River with a slope of +2.22 mg/L/year (see Tables 3 and 4). The earlier data at this station may be the cause for the increasing trend.

There is essentially no overall trend, noting an average weighted value of -0.61 from Table 5. Therefore, an analysis of "no trend" is assigned to total suspended solids since the average weighted value is between -1.00 and +1.00.

The maps and bar charts for the remaining parameter analyses can be found in Appendix F.

TABLE 4

SEASONAL KENDALL SLOPE ESTIMATOR TEST ON FLOW-ADJUSTED CONCENTRATION

| -       |                           |         | TSS       | TDS       | HARDNES   | SHEATE    | PHOS       | AIMONIA   | TKN       | NITRITE/  | TO I OT   | PHENOI    | COPPER    | NORI      | I FAD     | MERCURY   | ZINC      |
|---------|---------------------------|---------|-----------|-----------|-----------|-----------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| OHIO MP | STATION                   | TRIB RM | (mg/l/yr) | (mg/l/yr) | (mg/l/yr) | (mg/l/yr) | (mg/ll/yr) | (mg/l/yr) | (mg/l/yr) | (mg/l/yr) | (mg/l/yr) | (ng/l/yr) | (ug/Ilyr) | (ug/Ilyr) | (ug/I/yr) | (ug/l/yr) | (ug/I/yr) |
| 0.0     | MONONGAHELA               | R 4.6   | -1.67     | -3.30     | -1.22     | -2.68     | -0.008     | -0.027    | -0.059    | -0.009    | -0.067    | -0.136    | -1.28     | 0         | -0.710    | 0         | -6.30     |
| 0.0     | ALLEGHENY R               | 7.4     | 0         | -1.80     | 0         | -2.09     | -0.002     | -0.010    | -0.032    | 0         | -0.033    | 0         | -0.62     | 0         | 0         | 0         | -1.70     |
| 16.2    | SOUTH HEIGHTS             |         | -1.42     | -1.90     | -1.31     | -1.81     | -0.011     | -0.031    | -0.073    | -0.016    | -0.089    | -0.419    | -1.33     | -68.6     | -0.437    | 0         | -0.60     |
| 25.4    | BEAVERR                   | 6.3     | 2.22      | -6.60     | -1.13     | -1.11     | 0          | -0.055    | -0.069    | 0         | 6/.0.0-   | -0.322    | -1.71     | 0         | -0.862    | 0         | -2.80     |
| 40.2    | EAST LIVERPOOL            | L www   | -2.58     | -1.90     | 0         | -1.76     | -0.012     | -0.034    | -0.074    | -0.010    | -0.088    | -0.220    | -2.43     | -113.4    | -0.966    | 0         | -5.80     |
| 86.8    | WHEELING WIP              |         | 0         | -1.40     | 0         | 0         | -0.004     | -0.024    | -0.047    | -0.010    | -0.060    | -0.114    | 0         | 0         | -0.634    | 0         | -1.80     |
| 126.4   | HANNIBAL L&D              |         | 0         | 0         | -1.02     | 0         | -0.004     | -0.024    | -0.028    | -0.035    | -0.074    | -0.233    | -1.32     | 0         | -0.348    | 0         | -1.80     |
| 161.8   | WILLOW ISLAND             | L&D     | -1.11     | 0         | -1.25     | -1.53     | -0.005     | -0.027    | -0.049    | -0.023    | -0.082    | -0.160    | -1.74     | -23.2     | -1.009    | -0.006    | -2.30     |
| 172.2   | <b>MUSKINGUM R</b>        | 5.8     | 0         | -5.60     | -2.09     | -9.24     | :INS:      | :INS:     | :INS:     | :INS:     | :INS:     | 0         | -1.39     | 0         | -1.252    | -0.004    | 0         |
| 203.9   | <b>BELLEVILLE L&amp;D</b> |         | -2.80     | -2.10     | -2.24     | 0         | -0.008     | -0.016    | -0.055    | -0.055    | -0.073    | 0         | -1.58     | 0         | -0.412    | 0         | -1.90     |
| 260.0   | ADDISON-KYGEF             | A CR    | 4.82      | -2.40     | -2.23     | 0         | -0.015     | -0.023    | -0.056    | -0.008    | -0.066    | -0.367    | 4.08      | -131.0    | -1.082    | 0         | -0.60     |
| 266.7   | KANAMHA R                 | 31.1    | 4.23      | -2.70     | 0         | 0         | :INS:      | :INS:     | :INS:     | :INS:     | :INS:     | -0.365    | -2.41     | -62.1     | -0.442    | 0         | -3.60     |
| 279.2   | <b>GALLIPOLIS L&amp;D</b> |         | -3.31     | -3.90     | -1.68     | -0.84     | -0.012     | -0.022    | -0.050    | -0.010    | -0.064    | 0         | -2.41     | 0         | -0.630    | 0         | -3.30     |
| 306.9   | HUNTINGTON W              | ATER CO | -12.71    | 0         | -0.56     | 0         | 0          | -0.020    | -0.090    | 0         | -0.072    | 0.170     | -14.16    | -580.7    | -1.102    | 0         | 0         |
| 317.1   | <b>BIG SANDY R</b>        | 20.3    | -12.07    | 2.40      | 1.14      | 0         | -0.025     | -0.014    | -0.074    | 0         | -0.066    | -0.238    | -4.04     | -213.0    | -1.251    | 0         | -2.90     |
| 350.7   | PORTSMOUTH                |         | -2.06     | -1.90     | -0.95     | 1.02      | -0.012     | -0.008    | -0.045    | 0         | -0.032    | 0         | -1.24     | 0         | -0.551    | 0         | 0         |
| 356.5   | SCIOTOR                   | 15.0    | 0         | 0         | -2.04     | 0         | :INS:      | :INS:     | :INS:     | :INS:     | :INS:     | 0         | -1.65     | 0         | -1.057    | 0         | -2.60     |
| 408.5   | <b>MAYSVILLE WW</b>       |         | 0         | 0         | 0         | 0         | :INS:      | :INS:     | :INS:     | :INS:     | :INS:     | -0.111    | 0         | -52.0     | -1.041    | 0         | -1.80     |
| 462.8   | <b>CINCINNATI WW</b>      |         | 0         | -1.40     | -1.02     | 0         | :INS:      | :INS:     | :INS:     | :INS:     | :INS:     | -0.154    | 0         | 0         | -0.522    | 0         | -3.10     |
| 464.1   | LITTLE MIAMI R            | 7.5     | 0         | 4.90      | -2.03     | 0         | :INS:      | :INS:     | :INS:     | :INS:     | :INS:     | -0.227    | -1.24     | 0         | -1.032    | 0         | -3.60     |
| 470.2   | LICKING R                 | 4.6     | 0         | 6.70      | 0         | 0.82      | -0.018     | -0.008    | -0.056    | 0         | -0.054    | -0.195    | -1.03     | 0         | -0.390    | 0         | -12.20    |
| 490.0   | NORTH BEND                |         | -1.82     | 0         | 0         | 0         | :INS:      | :INS:     | :INS:     | :INS:     | :INS:     | -0.378    | -0.88     | 0         | -0.884    | 0.020     | -1.20     |
| 491.1   | GREAT MIAMI R             | 6.5     | -2.47     | 0         | -3.26     | 0         | :INS:      | :INS:     | :INS:     | :INS:     | :INS:     | -0.363    | -0.57     | 0         | -1.646    | 0.002     | 4.40      |
| 531.6   | MARKLAND L&D              |         | 0         | 0         | 0         | 0         | :SNI:      | :INS:     | :INS:     | :INS:     | :INS:     | -0.490    | 0         | 0         | -1.448    | 0         | -1.60     |
| 600.6   | LOUISVILLE WAT            | ERCO    | 0         | 0         | -1.52     | -0.67     | -0.012     | -0.009    | -0.012    | 0.013     | 0         | 0         | 0         | 0         | -0.865    | 0         | -1.90     |
| 625.9   | WEST POINT                |         | -6.38     | 0         | -1.67     | 0         | -0.019     | 0         | -0.022    | 0.013     | 0         | 0         | -0.74     | -166.9    | -1.116    | 0         | 4.40      |
| 720.7   | CANNELTON L&D             |         | 0         | 0         | 0         | 0         | :INS:      | :INS:     | :INS:     | :SNI:     | :INS:     | -0.052    | -1.11     | 0         | -0.269    | -0.021    | -0.90     |
| 784.2   | <b>GREEN R</b>            | 41.3    | 0         | 2.80      | 1.65      | 1.73      | -0.012     | 0         | 0         | 0.022     | 0.027     | -0.125    | -0.38     | 0         | -1.386    | -0.011    | -1.00     |
| 791.5   | EVANSVILLE WW             |         | -10.43    | 0         | 0         | -1.00     | -0.020     | -0.009    | -0.018    | 0         | 0         | 0         | -2.78     | -182.3    | 0         | -0.003    | -5.00     |
| 846.0   | UNIONTOWN L&C             | 0       | 0         | -2.10     | 0         | 0         | :INS:      | :INS:     | :INS:     | :INS:     | :INS:     | -0.014    | 0         | 0         | -0.615    | -0.011    | 0         |
| 848.0   | WABASHR                   | 51.5    | 0         | -2.00     | 1.85      | 0         | :INS:      | :INS:     | :INS:     | :INS:     | :INS:     | 0         | -0.44     | 0         | 0         | 0         | 0         |
| 918.5   | SMITHLAND L&D             |         | -6.55     | 0         | -2.98     | 0         | :INS:      | :INS:     | :INS:     | :INS:     | :INS:     | -0.664    | -0.32     | 0         | 0         | -0.013    | -3.20     |
| 820.4   | CUMBERLAND R              | 30.6    | :INS:     | :INS:     | :INS:     | :INS:     | :INS:      | :INS:     | :INS:     | :INS:     | :INS:     | :INS:     | :INS:     | :INS:     | :INS:     | :INS:     | :INS:     |
| 834.5   | TENNESSEE R               | 6.0     | :INS:     | :INS:     | :INS:     | :INS:     | :INS:      | :INS:     | :INS:     | :INS:     | :INS:     | :INS:     | :INS:     | :INS:     | :INS:     | :INS:     | :INS:     |
| 952.3   | JOPPA                     | 1       | 4.64      | 0         | -1.56     | 0         | -0.017     | -0.008    | -0.014    | 0         | 0         | 0         | 0         | -57.9     | 0         | 0         | 0         |
|         |                           |         |           |           |           |           |            |           |           |           |           |           |           |           |           |           |           |

O No Significant Correlation; Probability < 90% :INS: Insufficient data available

TABLE 5

## TREND CATEGORY COUNTS AND WEIGHTED VALUES

|                         |     |     |    |     |     | lotal  | 1    |          |   |     |     |     | Avg.  |
|-------------------------|-----|-----|----|-----|-----|--------|------|----------|---|-----|-----|-----|-------|
|                         | DEC | dec | 0  | inc | INC | Avail. | DEC  | dec      | 0 | inc | INC | Sum | Value |
| TOTAL SUSPENDED SOLIDS  | 10  | 2   | 20 | 0   | F   | 33     | -20  | -2       | 0 | 0   | 8   | -20 | -0.61 |
| TOTAL DISSOLVED SOLIDS  | 6   | ٦   | 19 | 0   | 4   | 33     | -18  | -1       | 0 | 0   | 8   | -11 | -0.33 |
| HARDNESS                | 11  | 3   | 17 | C4  | 0   | 33     | -22  | <b>۳</b> | 0 | 8   | 0   | -23 | -0.70 |
| SULFATE                 | 5.  | -   | 25 | -   | -   | 33     | -10  | 7        | 0 | 1   | 2   | -8  | -0.24 |
| TOTAL PHOSPHORUS        | 15  | 8   | e  | 0   | 0   | 20     | -30  | -2       | 0 | 0   | 0   | -32 | -1.60 |
| AMMONIA-N               | 18  | 0   | 2  | 0   | 0   | 20     | - 36 | 0        | 0 | 0   | 0   | -36 | -1.80 |
| TOTAL KJELDAHL NITROGEN | 17  | 1   | 8  | 0   | 0   | 20     | -34  | Ţ        | 0 | 0   | 0   | +35 | -1.75 |
| <b>NITRATE/NITRITE</b>  | 3   | 3   | 13 | -   | 0   | 20     | 9-   | -3       | 0 | 1   | 0   | -8  | -0.40 |
| TOTAL NITROGEN          | 15  | 0   | 4  | -   | 0   | 20     | -30  | 0        | 0 | 1   | 0   | -29 | -1.45 |
| PHENOLICS               | 13  | з   | 17 | 0   | 0   | 33     | -26  | -3       | 0 | 0   | 0   | -29 | -0.88 |
| COPPER                  | 23  | -   | 6  | 0   | 0   | 33     | -46  | 7        | 0 | 0   | 0   | -47 | -1.42 |
| IRON                    | 7   | 0   | 26 | 0   | 0   | 33     | -14  | 0        | 0 | 0   | 0   | -14 | -0.42 |
| LEAD                    | 27  | 0   | 9  | 0   | 0   | 33     | -54  | 0        | 0 | 0   | 0   | -54 | -1.64 |
| MERCURY                 | 3   | 2   | 28 | 0   | 0   | 33     | 9-   | -2       | 0 | 0   | 0   | -8  | -0.24 |
| ZINC                    | 23  | -   | 6  | 0   | 0   | 33     | -46  | T        | 0 | 0   | 0   | -47 | -1.42 |

DEC = -2 eachdec = -1 eachO = 0 eachinc = 1 eachINC = 2 each

- AVERAGE VALUE
 >+1.50 Strong Increasing Trend
 +1.50 to +1.00 Increasing Trend
 +1.00 to -1.00 No Trend
 -1.00 to -1.50 Decreasing Trend
 <-1.50 Strong Decreasing Trend</li>







FIGURE 3 - BAR CHARTS OF TOTAL SUSPENDED SOLIDS

15

## **Total Dissolved Solids**

The analysis of the flow-adjusted concentration displays strong decreasing trends at nine locations and strong increasing trends at four locations. The two strongest decreasing trends occur at the Beaver and Muskingum Rivers with slopes of -5.50 and -5.60 mg/L/year respectively (see Tables 3 and 4). The strong increasing trends take place on the Big Sandy, Little Miami, Licking and Green Rivers. Three of these are Kentucky tributaries and the analysis shows declining water quality with respect to total dissolved solids in these areas. A majority of the stations demonstrate no trend at all which is reflected in the average weighted value of -0.33 (see Table 5). Based on this value, total dissolved solids displays "no trend".

## Hardness

Eleven stations display strong decreasing trends and seventeen stations no trend. The strongest decreasing trend occurs on the Great Miami River with a slope value of -2.98 mg/L/year (see Tables 3 and 4). All increasing trends occur at tributary stations located on the Wabash, Big Sandy and Green Rivers. Hardness is evaluated as having "no trend" because of the average weighted value of -0.70 from Table 5.

## Sulfate

Trends are shown both increasing and decreasing along the Ohio River for sulfate (see Tables 3 and 4). There are 25 stations that indicate no trend for sulfate which lead to the average weighted value of -0.24 from Table 5. Based on the average weighted value, sulfate is concluded as displaying "no trend". The strongest increasing trends occurred on the Green River and at Portsmouth with slopes of +1.73 and +1.02 respectively.

## **Total Phosphorous**

The flow-adjusted concentration results indicate an overall decreasing trend for total phosphorus. Only three stations show no trend and the remaining stations all display decreasing trends (see Tables 3 and 4). The decreasing trend with the steepest slope of -0.025 mg/L/year occurs at the Big Sandy River monitoring station (see Tables 4 and 5). These decreasing trends lead to an average weighted value of -1.60 from Table 5. Total phosphorus is classified as showing a "strong decreasing trend."

## Ammonia Nitrogen

An overall decreasing trend is observed for ammonia. Eighteen stations indicate a strong decreasing trend while only two stations show no trend (see Tables 3 and 4). The steepest slope occurs on the Beaver River with a value of -0.055 mg/L/year. The two stations exhibiting no trend are West Point (625.9) and Green River. The average weighted value for ammonia is -1.80 from Table 5. From this value, ammonia is classified as displaying a "strong decreasing trend." The values may be escalated due to the fact that ammonia does not show a significant correlation with flow. When the influence of flow is removed the resulting residual is magnified.

## Total Kjeldahl Nitrogen

Seventeen stations display a decreasing trend while only two show none. The greatest slope magnitude occurs at mile point 306.9 with a value of -0.09 mg/L/year (see Tables 3 and 4). The average weighted value from Table 5 is -1.75 which indicates a "strong decreasing trend." The station showing no trend for total Kjeldahl nitrogen is Green River.

## Nitrate/Nitrite Nitrogen

Three stations indicate a decreasing trend and 13 stations show no trend. The station with the greatest magnitude in the decreasing direction is mile point 203.9 (Belleville L&D) with a value of -0.055 mg/L/year (see Tables 3 and 4). From these evaluations the average weighted value was computed to be -0.40. This value (see Table 5) represents "no trend" for nitrate/nitrite nitrogen.

## **Total Nitrogen**

Most stations show a strong decreasing trend for upper and middle Ohio River stations (see Table 3). The decreasing trend with the greatest slope magnitude occurs at South Heights (M.P. 15.2) with a value of -0.089 mg/L/year. Only four stations show no trend for total nitrogen. Since total nitrogen is the sum of total Kjeldahl nitrogen and nitrate/nitrite nitrogen, it is not surprising that Green River station is the only station indicating an increasing trend. The Green River station does not show a negative trend for nitrogen parameters, where most other stations do. This may mark the presence of a problem area. Total nitrogen has an average weighted value of -1.45 (from Table 5) which is classified as a "slight decreasing trend."

## **Phenolics**

Thirteen stations show strong decreasing trends while 17 show none. The strongest decreasing trend takes place at Smithland L&D (M.P. 918.5) with a slope value of -0.664 ug/L/year (see Tables 3 and 4). The average weighted value for phenolics is -0.88 (see Table 5). This value leads to a condition of "no trend."

## Copper

The flow-adjusted concentration results indicate 23 stations show decreasing trends while nine show no trend. The decreasing trend with the steepest slope occurs at mile point 306.9 with a value of -14.16 ug/L/year (see Tables 3 and 4). The average weighted value from Table 5 is -1.42. This value indicates a "decreasing trend" for copper.

## Iron

Twenty-six stations show no trend for iron, seven displaying decreasing trends and none showing increasing trends. The strongest decreasing trend takes place at mile point 306.9 with a slope magnitude of -580.7 ug/L/year (See Tables 3 and 4 for these values) From Table 5 the average weighted value is -0.42 which indicates "no trend."

## Lead

Twenty-seven stations showed decreasing trends and six showed no trend. The Green River was the site of the strongest decreasing trend with a slope magnitude of -1.65 ug/L/year (see Tables 3 and 4). The average weighted value from Table 5 is -1.64 which indicates a "strong decreasing trend" for lead.

## Mercury

The majority of the stations show no trend for mercury, five have decreasing trends and none have increasing trends. The largest decreasing trend occurs at mile point 720.7 and has a slope of -0.021 ug/L/year (refer to Tables 3 and 4). The average weighted value from Table 5 is -0.24 which indicates "no trend" for mercury.

## Zinc

Twenty-three stations indicate a decreasing trend while nine show no trend for zinc. The Licking River is the site of the largest decreasing trend with a slope of -12.20 ug/L/year (see Tables 3 and 4). The average weighted value is -1.42 which indicates a "decreasing trend" (see Table 5).

## DISCUSSION

## **Overall Observations**

The flow-adjusted concentration accounts for the influence of stream flow on concentration and removes this influence from consideration. Reductions in sources of these parameters should result in decreasing trends at many stations for flow-adjusted concentration results. In trying to identify changes in the potential sources of the fifteen parameters, it is only necessary to consider the results of flow-adjusted concentration. Explanations in changes of potential sources are offered as speculations.

## Number of Comparisons

The number of comparisons made by the Seasonal Kendall Test is one means of determining the strength of the results. Table 6 shows the number of comparisons made out of a possible 660 at each station of all investigated parameters. By this standard, the results of hardness, phenolics, lead and mercury are relatively weak. The least confidence is held in the results for these parameters. The lower number of comparisons for hardness is due to inconsistent or no monitoring of hardness in 1977 and 1978. The number of comparisons for the other parameters may be higher if concentrations below detection levels were included in the methodology.

## NPDES Permit Limits

The Clean Water Act requires dischargers to obtain National Pollutant Discharge Elimination System (NPDES) permits. As shown in Table 7, parameters that are heavily regulated within NPDES permits are total suspended solids, ammonia, copper, iron, lead and zinc. For those parameters that were regulated prior to the study period, the effects of point source controls might not be reflected in the trends unless major control technologies became available. Detailed analysis of permit histories are needed to fully define the relationship between point source controls and in-stream trends.

TABLE 6

NUMBER OF COMPARISONS ON FLOW-ADJUSTED CONCENTRATION

|                         |          | TOTAL PC  | <b>DSSIBLE IS</b> | 660       |           | TOTAL     |             |           | NITRATEI  | TOT       |           |           |           |           |           |           |
|-------------------------|----------|-----------|-------------------|-----------|-----------|-----------|-------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
|                         |          | TSS       | TDS               | HARDNES   | SULFATE   | PHOS      | AMMONIA     | TKN       | NITRITE   | NITRO     | PHENOL    | COPPER    | IRON      | LEAD      | MERCURY   | ZINC      |
| HIO MP STATION          | TRIB RM  | (uns)     | (uns)             | (uns)     | (uns)     | (uns)     | (uns)       | (uns)     | (uns)     | (uns)     | (uns)     | (mus)     | (uns)     | (uns)     | (uns)     | (uns)     |
| 0.0 MONONGAHELA         | AR 4.5   | 574       | 591               | 392       | 611       | 620       | 620 -       | 591       | 610       | 581       | 292       | 546       | 611       | 195       | 78        | 601       |
| 0.0 ALLEGHENY R         | 7.4      | 554       | 556               | 369       | 482       | 545       | 533         | 545       | 572       | 545       | 248       | 506       | 582       | 125       | 85        | 553       |
| 15.2 SOUTH HEIGHTS      | s        | 611       | 601               | 385       | 620       | 630       | 630         | 610       | 630       | 610       | 320       | 561       | 630       | 244       | 66        | 621       |
| 25.4 BEAVER R           | 6.3      | 201       | 582               | 376       | 601       | 610       | 610         | 582       | 601       | 573       | 427       | 541       | 600       | 315       | 11        | 610       |
| 40.2 EAST LIVERPOO      | NL WW    | 610       | 592               | 384       | 610       | 620       | 620         | 601       | 620       | 601       | 335       | 551       | 620       | 358       | 8         | 611       |
| 86.8 WHEELING WIP       |          | 640       | 631               | 400       | 640       | 611       | 630         | 611       | 630       | 611       | 358       | 600       | 640       | 261       | 104       | 631       |
| 126.4 HANNIBAL L&D      |          | 515       | 643               | 387       | 543       | 515       | 524         | 517       | 534       | 517       | 224       | 498       | 533       | 171       | 18        | 616       |
| 161.8 WILLOW ISLAND     | 1L&D     | 691       | 620               | 393       | 610       | 591       | 581         | 592       | 610       | 592       | 300       | 600       | 620       | 262       | 108       | 581       |
| 172.2 MUSKINGUM R       | 5.8      | 620       | 620               | 474       | 650       | :::INS::: | :::INS::::  | :::INS::: | SNI       | :::INS::: | 350       | 610       | 630       | 342       | 117       | 581       |
| 203.9 BELLEVILLE L&D    |          | 620       | 640               | 408       | 630       | 620       | 610         | 612       | 620       | 602       | 286       | 611       | 640       | 260       | 119       | 610       |
| 260.0 ADDISON-KYGE      | RCR      | 620       | 650               | 408       | 630       | 620       | 562         | 601       | 620       | 601       | 291       | . 630     | 630       | 259       | 110       | 601       |
| 266.7 KANAMHAR          | 31.1     | 581       | 630               | 432       | 592       | :::INS::: | :::INS:::   | :::INS::: | :::INS::: | :::INS::: | 247       | 582       | 611       | 150       | 51        | 508       |
| 279.2 GALLIPOLIS L&D    |          | 630       | 660               | 416       | 630       | 660       | 630         | 611       | 650       | 621       | 313       | 601       | 630       | 250       | 88        | 169       |
| 306.9 HUNTINGTON W      | ATER CO  | 562       | 650               | 416       | 610       | 620       | 454         | 591       | 620       | 591       | 217       | 630       | 641       | 226       | 159       | 199       |
| 317.1 BIG SANDY R       | 20.3     | 581       | 591               | 426       | 581       | 580       | 398         | 554       | 574       | 537       | 161       | 580       | 600       | 222       | 82        | 483       |
| 350.7 PORTSMOUTH        |          | 505       | 543               | 378       | 505       | 508       | 502         | 516       | 526       | 516       | 237       | 506       | 515       | 175       | 70        | 464       |
| 356.5 SCIOTOR           | 15.0     | 572       | 573               | 426       | 553       | :::INS::: | :::INS:::   | :::NS:::  | :::INS::: | :::INS::: | 378       | 572       | 582       | 344       | 138       | 512       |
| 408.5 MAYSVILLE WW      |          | 592       | 602               | 385       | 592       | :::INS::: | :::INS:::   | :::INS::: | :::INS::: | :::INS::: | 257       | 581       | 581       | 258       | 84        | 553       |
| 462.8 CINCINNATI WW     |          | 620       | 660               | 409       | 610       | :::INS::: | :::INS:::   | :::INS::: | :::INS::: | :::INS::: | 274       | 631       | 640       | 283       | 72        | 573       |
| 464.1 LITTLE MIAMI R    | 7.5      | 583       | 571               | 433       | 555       | :::INS::: | :::INS:::   | :::NS:::  | :::INS::: | :::INS::: | 350       | 574       | 693       | 349       | 98        | 478       |
| 470.2 LICKING R         | 4.5      | 601       | 640               | 435       | 543       | 600       | 529         | 601       | 581       | 562       | 282       | 602       | 631       | 171       | 62        | 439       |
| 490.0 NORTH BEND        |          | 591       | 610               | 379       | 591       | :::INS::: | :::INS:::   | ::INS:::  | :::INS::: | :::INS::: | 191       | 572       | 620       | 294       | 86        | 562       |
| 491.1 GREAT MIAMI R     | 5.5      | 564       | 620               | 420       | 582       | :::INS::: | ::::INS:::  | :::INS::: | :::INS::: | :::INS::: | 259       | 533       | 594       | 303       | 61        | 563       |
| 531.5 MARKLAND L&D      |          | 572       | 601               | 350       | 565       | :::INS::: | :::INS:::   | ::INS:::  | :::INS::: | :::INS::: | 181       | 484       | 538       | 248       | 160       | 436       |
| 600.6 LOUISVILLE WAT    | TER CO   | 533       | 621               | 409       | 621       | 621       | 525         | 610       | 630       | 610       | 62        | 481       | 620       | 243       | 83        | 439       |
| 625.9 WEST POINT        |          | 610       | 620               | 410       | 630       | 620       | 621         | 630       | 630       | 630       | 66        | 409       | 630       | 367       | 98        | 626       |
| 720.7 CANNELTON L&      | D        | 583       | 610               | 418       | 630       | :::INS::: | ::::INS:::  | :::INS::: | :::INS::: | :::INS::: | 85        | 365       | 610       | 267       | 101       | 544       |
| 784.2 GREEN R           | 41.3     | 612       | 574               | 425       | 621       | 554       | 481         | 631       | 631       | 631       | 81        | 356       | 610       | 267       | 101       | 544       |
| 791.6 EVANSVILLE WM     | ~        | 620       | 630               | 418       | 650       | 631       | 544         | 650       | 660       | 650       | 114       | 473       | 640       | 319       | 89        | 653       |
| 846.0 UNIONTOWN L&      | a        | 582       | 585               | 416       | 621       | :::INS::: | :::INS:::   | :::NS:::  | :::INS::: | :::INS::: | 126       | 365       | 641       | 266       | 128       | 464       |
| 848.0 WABASH R          | 51.5     | 630       | 620               | 434       | 650       | :::INS::: | ::::INS:::  | :::INS::: | :::INS::: | :::INS::: | 187       | 374       | 640       | 318       | 81        | 519       |
| 918.5 SMITHLAND L&D     |          | 180       | 175               | 175       | 175       | :::INS::: | ::::INS:::: | :::INS::: | :::INS::: | :::INS::: | 19        | 141       | 180       | 86        | 8         | 136       |
| 920.4 CUMBERLAND R      | 30.6     | :::INS::: | :::INS:::         | :::INS::: | INS       | :::INS::: | ::::INS:::  | :::NSNI:: | :::INS::: | :::INS::: | :::INS::: | :::INS::: | :::INS::: | :::INS::: | :::INS.:: | :::INS::: |
| 934.5 TENNESSEE R       | 6.0      | :::INS::: | :::INS:::         | :::INS::: | :::INS::: | :::INS::: | :::INS:::   | :::INS::: | :::INS::: | :::INS::: | :::INS::: | :::INS::: | :::INS::: | :::INS::: | :::INS::: | :::INS::: |
| 952.3 JOPPA             |          | 640       | 660               | 450       | 620       | 562       | 571         | 660       | 660       | 660       | 66        | 453       | 660       | 241       | 49        | 460       |
| Average Comparisons per | Station: | 578       | 596               | 401       | 586       | 597       | 560         | 596       | 610       | 592       | 232       | 519       | 599       | 257       | 92        | 615       |

::INS:: Insufficient data available

## TABLE 7

## DISCHARGERS ON THE OHIO RIVER WITH PERMIT LIMITS FOR THE STUDY PARAMETERS (Data from ORSANCO'S NPDES permit files)

| Parameter                  |                          |
|----------------------------|--------------------------|
| Total Suspended Solids     | 485 of 574 permits = 84% |
| Total Dissolved Solids     | 10 of 574 permits = 2%   |
| Hardness (or Conductivity) | 3 of 574 permits = <1%   |
| Sulfate                    | 10 of 574 permits = 2%   |
| Phosphorus                 | 10 of 574 permits = 2%   |
| Ammonia                    | 105 of 574 permits = 18% |
| Total Kjeldahl Nitrogen    | 44 of 574 permits = 8%   |
| Nitrate/Nitrite            | 7 of 574 permits = 1%    |
| Nitrogen                   | 6 of 574 permits = 1%    |
| Phenolics                  | 47 of 574 permits = 8%   |
| Copper                     | 74 of 574 permits = 13%  |
| Iron                       | 100 of 574 permits = 17% |
| Lead                       | 62 of 574 permits = 11%  |
| Mercury                    | 26 of 574 permits = 5%   |
| Zinc                       | 100 of 574 permits = 17% |

## Explanation of Trend Assessments

## Total Suspended Solids

Total suspended solids have decreasing trends at all stations between Marietta near river mile 175 and Portsmouth near river mile 350. This is especially evident in Figure 2. Localized decreasing trends could be a result of the activities of coal mining in that area. West Virginia and southern Ohio are active coal mining areas. Tighter controls on these operations may be a possible explanation for this localized occurrence. Basinwide, flow-adjusted concentrations for total suspended solids indicate no change in sources during the study period (see summary on Table 5).

## Total Dissolved Solids and Hardness

Total dissolved solids and hardness do not display any overall trend. Total dissolved solids and hardness are influenced primarily by natural factors. Localized strong decreasing trends at stations may be due to a short term influence. Groundwater can influence the Ohio River at any point in the basin during low flow conditions. Low flows give higher concentrations of total dissolved solids and hardness, of which would only be seen seasonally.

## Sulfate

Overall, sulfate does not display a trend in either direction. However, sulfate does show strong decreasing trends in the upper Ohio River region. This area had a strong steel industry which is now diminishing, and the closing of steel mills may explain the localized effect. Basinwide, flow-adjusted concentrations for sulfate are unchanged (see Table 5), indicating little change in sources.

## Total Phosphorus

Flow-adjusted concentrations of total phosphorus are decreasing basinwide (see Table 5). This trend can be attributed to the decrease of phosphates in detergents. Years ago, phosphates from detergents were considered a major factor of in-stream total phosphorus concentrations. Phosphates were banned in laundry detergents by a few Great Lakes States. In recent years, manufacturers changed their products by offering reduced phosphate and phosphate-free detergents. The Ohio River is benefitting from this manufacturing change.

## Nitrogen Parameters

Flow-adjusted concentrations of ammonia-nitrogen, total Kjeldahl nitrogen and total nitrogen concentrations are decreasing basin-wide (see Table 5). This is attributed to the improved status of waste water treatment plants since 1977. Based on the Commission's 1978 Annual Report, 47% of waste water treatment plants in the Ohio River basin provided an acceptable level of control. The 1988 Annual Report boasts that 90% of Ohio River Valley communities have secondary treatment in place. During secondary treatment, Kjeldahl nitrogen is converted into ammonia. In the stream, bacteria convert ammonia to nitrate/ nitrite nitrogen, which are the appropriate forms for uptake by plants. As might be expected, nitrate/nitrite nitrogen is the only nutrient parameter that remains unchanged.

## Phenolics

Phenolics shows a substantial decreasing trend at many locations along the Ohio River, particularly in the upper 260 miles (see the phenolics map in Appendix F). The results of a study conducted by Roy F. Weston, Inc. (1986), links in-stream phenolics concentrations with permitted dischargers along the river. Weston, Inc. (1986) also reports a decrease in phenolics concentrations from the late 1970s to the late 1980s, which corresponds with a decrease in phenolics loadings from permitted dischargers. The decreasing trends of flow-adjusted concentrations for phenolics in the upper Ohio River could be due to the closing of steel mills and better treatment of effluent from those mills that remain open.

## Copper

Copper shows a decreasing trend basinwide for flow-adjusted concentrations (see Table 5). It is possible that copper loadings are being reduced in waste water treatment plants as a side effect of treating for other parameters. Since pretreatment requirements for effluent discharged to waste water treatment plants have become more stringent during the study period, increased pretreatment requirements is also a possible explanation.

## Iron

The flow adjusted concentrations indicate no trend for iron. Iron is considered a naturally occurring element, therefore control of point source discharges should not change in-stream iron concentrations.

Lead shows an overall decrease in flow adjusted concentrations. Lead has caused much concern in the past. Many industrial processes no longer use lead, such as in automotive fuels. Limitations for lead in discharge permits have existed even before the Commission's sampling program (see Table 7). Overall decrease is considered principally due to the switch to unleaded fuels.

## Mercury

Overall, mercury shows no trend, however one area on the Ohio River indicates a strong decreasing trend for mercury (see mercury map in Appendix F). The area is from Cannelton Lock and Dam to the Wabash River station. Nonpoint source pollution is a major influence in this area. Many years ago, mercury was used as a fungicide on seeds. This practice is now outlawed. Possible explanation is that eliminating the usage of mercury as a fungicide on seeds has removed this nonpoint source influence on the Ohio River. This possibility needs to be confirmed by pesticide manufacturers. Most Ohio River stations indicate no trend in mercury during the study period (see Table 3). The mercury data base contains many missing values and concentrations below detection levels. The number of comparisons made by the Seasonal Kendall Test is one means of determining the strength of a trend assessment. Mercury results rate very weak.

## Zinc

Zinc displays an overall decreasing trend for flow adjusted concentrations. Zinc is used industrially in galvanized steel. The steel industry and metals industry can easily remove zinc from their effluent through precipitation processes. Besides a failing steel industry, another explanation for decreasing trends in zinc is the stringent pretreatment requirements of publicly-owned treatment works on dischargers. Pretreatment is now the responsibility of the discharger as opposed to the receiving facility. Ohio River water quality is benefitting from this practice.

## CONCLUSION

The intent of determining these trends is to identify changes in water quality and identify possible areas of concern in the Ohio River Valley. A non-parametric test, such as the Seasonal Kendall Test, indicates if there is a trend in water quality. For the Ohio River Basin, improvements (decreasing trends) are seen for several parameters. Overall decreasing trends are indicated for total phosphorus, ammonia,

24

Kjeldahl nitrogen, total nitrogen, copper, lead and zinc during the study period. Several factors contribute to these water quality trends, including improvements in the status of waste water treatment plants, stringent permit requirements on dischargers, and reduced use of certain products contributing to nonpoint source pollution. Parameters that remain unchanged are total suspended solids, total dissolved solids, hardness, sulfate, nitrate/nitrite, iron, phenolics, and mercury.

The trend results generally appear to be favorable and document the effectiveness of past efforts of improving water quality on the Ohio River.

By incorporating the Seasonal Kendall Slope Estimator, the magnitude of the trends is estimated. The magnitude gives an idea of the change in concentration per year. The reader may be more interested in the magnitude of trends as opposed to simply the existence of a trend. Knowing trend magnitudes allows a better visual perspective on the rate of trend development.

## LITERATURE CITED

Bauer, K.M., W.D. Glauz, and J.D. Flora at Midwest Research Institute. 1984. "Methodologies for Determining Trends in Water Quality Data". Prepared for Industrial Environmental Research Laboratories, U.S. Environmental Protection Agency, EPA Contract No. 68-02-3938, Assignment No. 29.

Garrison, J.S. 1988. "1985-1987 Maryland Water Quality Inventory", Volume I and II. Maryland Department of the Environment.

Joint Committee of the Water Pollution Control Federation and the American Society of Civil Engineers. 1977. <u>Wastewater Treatment Plant Design</u>. Lancaster Press, Inc.

Smith, R.A., R.M. Hirsch, and J.R. Slack. 1982. "A Study of Trends in Total Phosphorus Measurements at NASQAN Stations". U.S. Geological Survey Water-Supply Paper 2190.

Weston Inc., Roy F. 1986. "Water Quality Management of Phenolics and Cyanide in the Upper Ohio River". prepared for Ohio River Valley Water Sanitation Commission.

APPENDIX A: QUALITY ASSURANCE PLAN FOR MANUAL SAMPLING



QUALITY ASSURANCE WORK PLAN FOR MANUAL SAMPLING NETWORK

Ohio River Valley Water Sanitation Commission 49 E. Fourth Street, Suite 300 Cincinnati, OH 45202

December 1988


QA Work Plan Manual Sampling December 1988 Page 1 of 9

PROGRAM NAME: Manual Sampling Network

PROGRAM INITIATION: 1975 (last revised August 1986)

**PROGRAM OBJECTIVE:** To provide data on certain chemical and physical parameters for water quality assessments.

### PROGRAM DESCRIPTION:

The Manual Sampling Network consists of monthly collection and analysis of river water samples at 36 locations on the Ohio River and the lower reaches of the major tributaries. The analytical parameters selected and the frequency of sampling are designed to provide information needed to appraise water quality conditions at each location and for general assessment of the river as a whole. Most parameters are analyzed monthly except for the nutrient parameters which are omitted at fifteen stations from November through April. Certain metals are analyzed quarterly. Laboratory analyses are obtained on a contract basis with state agency and commercial laboratories certified by US EPA.

### MONITORING NETWORK DESIGN:

Manual sampling locations, parameters and sampling frequency are reviewed annually by the Monitoring Strategy Subcommittee to assure the program is responsive to the water quality data needs of the participating agencies. Sampling locations are selected to provide coverage:

- Upstream and downstream of major population and/or industrial centers on the Ohio River.
- In high water use areas such as public water supply intakes and recreational areas.
- At or near the point of confluence of major tributaries and interstate boundaries.

Since flow measurements are essential to accurately assess water quality impacts, stations are also sited where flow data is available. Descriptions of the current Manual Sampling stations are provided in Attachment A, Table 1.

QA Work Plan Manual Sampling December 1988 Page 2 of 9

### MONITORING PARAMETERS AND FREQUENCY:

Water samples are collected each month as grab samples at the designated site. If access to the site is not available, the sample is taken at the nearest convenient point and duly noted on the sample report form. Samples are collected so as to arrive at the laboratory on a weekday (Monday through Friday) and within 24 hours. Parameter analysis schedules are listed for each station in Attachment A, Table 2.

### PROGRAM ORGANIZATION AND RESPONSIBILITY

The following is a list of key program personnel and their corresponding responsibilities:

| Part-time F: | ield | Investigators | - | sampling |
|--------------|------|---------------|---|----------|
|--------------|------|---------------|---|----------|

Coordinator of Field Operations

sampling QC

operations

- performance and system audits
- overall program coordination

West Virginia DNR Laboratory

Computer Operator

data processing activities/QC

laboratory analysis/QC

Monitoring Programs Manager data quality review -

-

overall QA

QA Work Plan Manual Sampling December 1988 Page 3 of 9

### PARAMETER TABLE:

|              | NUMBER OF | SAMPLE | ANALYTICAL     | SAMPLE            | HOLDING    |
|--------------|-----------|--------|----------------|-------------------|------------|
| PARAMETER    | SAMPLES   | MATRIX | METHOD         | PRESERV.          | TIME       |
| Temp         | 432       | Water  | STD Method 212 | none              | Field Test |
| рH           | 432       |        | EPA 150.1      | none              | Field Test |
| DO           | 432       | н      | EPA 360.1      | none              | Field Test |
| Sp. Cond.    | 432       |        | EPA 120.1      | Cool 4°C          | 28 days    |
| Susp. Solids | 432       |        | SID Method 209 | Cool 4°C          | 7 days     |
| Alkalinity   | 432       | н      | SID Method 403 | Cool 4°C          | 14 days    |
| BCD          | 342       |        | STD Method 507 | Cool 4°C          | 48 hours   |
| Sulfate      | 432       | u      | STD Method 426 | Cool 4°C          | 28 days    |
| Chloride     | 168       | п      | STD Method 407 | Cool 4°C          | 28 days    |
| Hardness     | 432       | н,     | STD Method 314 | Fix pH<2<br>HNO3  | 6 months   |
| Cyanide      | 432       |        | EPA 335.2      | Fix pH>12<br>NaOH | 14 days    |
| Phenolics    | 432       | ų.     | STD Method 510 | Fix pH<2<br>H2SO4 | 28 days    |
| P (TOT)      | 342       |        | EPA 365.2      | Fix pH<2<br>H2SO4 | 28 days    |
| ortho-P      | 342       | 0      | EPA 365.1      | Cool 4°C          | 48 hours   |
| ŢĸŊ          | 342       |        | STD Method 420 | Fix pH<2<br>H2SO4 | 28 days    |
| Ammonia      | 342       |        | STD Method 417 | Fix pH<2<br>H2SO4 | 28 days    |
| N03-N02      | 342       | "      | STD Method 418 | Cool 4°C          | 28 days    |
| Aluminum     | 432       | u      | EPA 202.1      | Fix pH<2<br>HNO3  | 6 months   |
| Arsenic      | 432       | "      | EPA 206.3      | Fix pH<2<br>HNO3  | 6 months   |
| Barium       | 144       | "      | EPA 208.1      | Fix pH<2          | 6 months   |

QA Work Plan Manual Sampling December 1988 Page 4 of 9

| •         | NUMBER OF | SAMPLE | ANALYTICAL | SAMPLE           | HOLDING  |
|-----------|-----------|--------|------------|------------------|----------|
| PARAMETER | SAMPLES   | MATRIX | METHOD     | PRESERV.         | TIME     |
| Cadmium   | 432       | и      | EPA 213.2  | Fix pH<2<br>HNO3 | 6 months |
| Chromium  | 144       | u      | EPA 218.2  | Fix pH<2<br>HNO3 | 6 months |
| Copper    | 432       | u      | EPA 220.2  | Fix pH<2<br>HNO3 | 6 months |
| Iron      | 432       |        | EPA 236.2  | Fix pH<2<br>HNO3 | 6 months |
| Lead      | 432 .     |        | EPA 239.2  | Fix pH<2<br>HNO3 | 6 months |
| Magnesium | 432       |        | EPA 242.1  | Fix pH<2<br>HNO3 | 6 months |
| Manganese | 432       | n      | EPA 243.2  | Fix pH<2<br>HNO3 | 6 months |
| Mercury   | 432       |        | EPA 245.1  | Fix pH<2<br>HNO3 | 28 days  |
| Nickel    | 144       | н.     | EPA 249.2  | Fix pH<2<br>HNO3 | 6 months |
| Selenium  | 144       | u.     | EPA 270.3  | Fix pH<2<br>HNO3 | 6 months |
| Silver    | 144       | н      | EPA 272.2  | Fix pH<2<br>HNO3 | 6 months |
| Zinc      | 432       | н      | EPA 289.2  | Fix pH<2<br>HNO3 | 6 months |

QA Work Plan Manual Sampling December 1988 Page 5 of 9

### DATA QUALITY OBJECTIVES AND ASSESSMENT

Data quality requirements are parameter specific and shall conform to those stated in US EPA approved analytical methods. The quality assurance protocols at West Virginia DNR laboratories includes the following:

- duplicates run at 10% of sample load to determine precision
- spiked samples run at 5% of sample load to determine accuracy
- quarterly analysis of EPA prepared "knowns"
- annual participation in EPA Performance Evaluation Studies

The laboratory employs the Shewhart technique (EPA 600-4/79-019) for preparing precision and accuracy control charts.

|                 | TARGET    |            |           |                                |
|-----------------|-----------|------------|-----------|--------------------------------|
|                 | DETECTION | ESTIMATED  | ESTIMATED | QA                             |
| PARAMETER       | LIMIT     | ACCURACY   | PRECISION | PROTOCOL                       |
| Temperature     | 1°C       | 1%         |           | NBS Thermometer                |
| pH              | 0.1       | ±0.2 units |           | pH 4 and 7 buffer checks daily |
| DO              | 0.05-0.1  | 1%         | ±0.05     | Air calibration daily          |
| Sp. Cond.       | 10µS      | 2%         | ±10µS     | NaCl calibration check         |
| Susp. Solids    | 1 mg/L    |            | *         | as stated in paragraph above   |
| Alkalinity      | 1 mg/L    | *          | *         | п                              |
| BOD             | 2 mg/L    | *          | *         | н                              |
| Sulfate         | 2 mg/L    | *          | *         | п                              |
| Chloride        | 2 mg/L    | *          | *         | п                              |
| Hardness        | 2 mg/L    | *          | *         | п                              |
| Cvanide         | 1 ug/L    | *          | *         | и.                             |
| Phenolics       | 2 ug/L    | *          | *         |                                |
| Phosphorus      | 0.02 mg/L | *          | *         | н                              |
| ortho-phosphate | 0.08 mg/L | *          | *         | н                              |
| TKN             | 0.02 mg/L | *          | *         | н                              |
| Ammonia         | 0.02 mg/L | *          | *         | н                              |
| Nitrate-Nitrite | 0.02 mg/L | *          | *         |                                |
| Aluminum        | 200 ug/L  | *          | *         |                                |
| Arsenic         | 0.5 ug/L  | *          | *         |                                |
| Barium          | 100 ug/L  | *          | *         |                                |
| Cadmium         | 5 ug/L    | *          | *         | н                              |
| Chromium        | 10 ug/L   | *          | *         |                                |

QA Work Plan Manual Sampling December 1988 Page 6 of 9

|           | TARGET    |           |           |          |
|-----------|-----------|-----------|-----------|----------|
|           | DETECTION | ESTIMATED | ESTIMATED | AP       |
| PARAMETER | LIMIT     | ACCURACY  | PRECISION | PROTOCOL |
| Copper    | 10 ug/L   | *         | • •       | н        |
| Iron      | 50 ug/L   | *         | *         | н        |
| Lead      | 10 ug/L   | *         | *         |          |
| Magnesium | 10 ug/L   | *         | *         |          |
| Manganese | 20 ug/L   | *         | *         | н        |
| Mercury   | 0.1 ug/L  | *         | *         |          |
| Nickel .  | 10 ug/L   | *         | *         | н        |
| Selenium  | 1 ug/L    | *         | * '       |          |
| Silver    | 5 ug/L    | *         | *         |          |
| Zinc      | 5 ug/L    | *         | *         | н        |
|           |           |           |           |          |

\* See West Virginia DNR Laboratory QA Plan

### DATA REPRESENTATIVENESS, COMPARABILITY, AND COMPLETENESS

As an ambient "fixed station" network, the manual sampling program is designed to provide a overview of water quality conditions and trends at a specific location and across the entire Ohio River. The majority of sampling locations have been sampled repeatedly over the last 13 years, initially at a frequency of three times per month. Sampling frequencies of one to three times per month were found to provide an adequate number of data observations to establish long-term trends on the Ohio River. The period of record for the manual sampling network is shown by station in Attachment A, Table 3. During the water years 1986-87, data completeness was 95% - 100%.

Measures taken to assure data comparability and completeness include: standardized written field/analytical procedures (SOPs); standardized data recordkeeping; uniformity in sampling equipment; periodic field blanks, spikes, and duplicates. River cross-section surveys are also performed each year to insure representative sampling at each station in the network.

### INTERNAL QUALITY CONTROL CHECKS

Sample blanks, duplicates, matrix spikes and comparison samples are submitted to the contract laboratory on a quarterly basis. Field blanks serve as a check on the sampling method, and any contamination from sample bottles and preservatives. Field spikes and duplicate samples serve as a check on laboratory accuracy and precision. Spikes are prepared using EPA Quality Control Samples available from the Environmental Monitoring and

QA Work Plan Manual Sampling December 1988 Page 7 of 9

Support Laboratory in Cincinnati. Comparison samples are collected from an alternate sample point at the same location to screen for potential problems in samples obtained from intake lines.

All manual sampling stations are checked on a periodic schedule to determine if the water sample collected from a particular site is representative of the river at that point. This is done by cross-sectional sampling of the river at various depths at the mid-point and quarter points and comparing the results to that obtained at the routine sampling point. First priority is given to those sites where potential problems may exist as well as new monitoring sites which have not been studied previously. Measurements of pH, temperature, conductivity and dissolved oxygen are taken in the field during cross-sectioning. Vertical composite samples may also be collected for other parameters such as metals, nutrients, and inorganics based on site-specific conditions.

### SAMPLING PROCEDURES

Detailed sampling procedures for the Manual Sampling Network are contained in the Standard Operating Procedures, Part III. A general summary of these procedures is as follows:

River water samples are collected from raw water intake lines, off lockchamber guide walls, or bridges. To sample from outside structures, a weighted aluminum bucket is used with sufficient nylon rope attached to traverse the distance to the river surface. Grab samples are collected at a depth of one and onehalf meters. For in-river depth integrated sampling such as for cross-section surveys, the Kemmerer water sampler is used. This device permits representative sampling of the water column at specified depths. To sample from intake lines, the sample tap valve is opened, flushed for 2-3 minutes and the sample collected in a 2-liter plastic carboy.

The appropriate aliquot of sample is distributed to the sample bottles, preservative agent added if required and the solution mixed thoroughly. Samples are placed in crushed ice within an insulated cooler for shipment to the laboratory. Field tests for temperature, dissolved oxygen, pH, and conductivity are performed on suitable aliquots of the sample. All field data and observations are recorded on the Water Quality Report form. Three copies of the report accompany the samples to the laboratory while a fourth copy is submitted to ORSANCO.

QA Work Plan Manual Sampling December 1988 Page 8 of 9

### SAMPLE CUSTODY

Water samples collected in the field are identified by date, time, location, station ID code and are accompanied by a Water Quality Report form. The sample collector attests to the validity of the sample by signature on the bottles and the report form. The samples are delivered by the sample collector to the authorized carrier for shipment to the laboratory.

### CALIBRATION PROCEDURES AND PREVENTIVE MAINTENANCE

See the Standard Operating Procedures for Ambient Water Quality Monitoring, Part III of the Quality Assurance Manual.

### ANALYTICAL PROCEDURES

See Standard Operating Procedures, for Ambient Water Quality Monitoring, Part III of the Quality Assurance Manual.

### DATA REDUCTION, VALIDATION, REPORTING

Field data and laboratory data are recorded on the Water Quality Report form. The data is received 4-5 weeks after sample collection, reviewed for completeness according to the monthly parameter schedule, and checked for outlying values. Any questionable data is verified with the laboratory manager and/or the field investigator. The data is then entered in ORSANCO's computer database, retrieved, verified against the source document and edited before transmittal to US EPA STORET system. A copy of the Water Quality Reports are bound by year and kept on file for ten years. Summary reports are produced for distribution to member states and for publication in the Quality Monitor.

### DATA USAGE

The physical chemical data generated by the manual sampling program is used to:

- assess general water quality conditions and identify problem areas
- evaluate point, non-point and tributary impacts to the Ohio River

QA Work Plan Manual Sampling December 1988 Page 9 of 9

- identify long-term trends in improvement or degradation in the Ohio River
- support water quality management decisions

Basic statistical tests are performed on the data to characterize water quality by station. These values are compared to the Commission's stream criteria and combined with other monitoring data for 305b assessments.

The seasonal Kendall test is applied to historical data to assess long-term trends in water quality.

### PERFORMANCE AND SYSTEM AUDITS

The Coordinator of Field Operations checks for adherence to sampling protocols, resolves schedule conflicts and provides onsite training for the field investigators. The analytical services contract is updated and renewed each year with the laboratory. Since the laboratory is required to be US EPA certified, documentation and submittal of QC data is a prerequisite. The laboratory's quality control procedures are reviewed as necessary to assure the generation of valid data.

### CORRECTIVE ACTION

Corrective action in field procedures consists of immediate follow-up with the field investigators to review the sampling protocol and provide additional training if necessary. Corrective action in the laboratory is the responsibility of the laboratory manager who informs ORSANCO when a problem occurs and the steps taken to resolve it.

### REPORTS

Quality assurance reports for the Manual Sampling Network will be prepared periodically to present results of EPA performance tests and river cross-section surveys. Water quality data for all stations is reported quarterly in the Quality Monitor. Trend assessment results are published biennially in 305b report for the Ohio River.



### ATTACHMENT A

### MANUAL SAMPLING NETWORK



### TABLE 1. MANUAL SAMPLING LOCATIONS/DESCRIPTION

|           | FLOW          |                                       | MILE  |                                                                                                                    |
|-----------|---------------|---------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------|
| STATION # | STATION       | STATION NAME                          | POINT | STATION DESCRIPTION (Sample Location)                                                                              |
| 1234      | Acmetonia     | Allegheny R. at<br>Pittsburgh         | 7.4   | Pittsburgh Waterworks intake<br>(Submersible pump in intake structure<br>building)                                 |
| 1237      | Braddock      | Monongahela R. at<br>South Pittsburgh | 4.5   | Western Pennsylvania Water Co. intake<br>Beck's Run (raw water tap in pumping<br>station)                          |
| 1201      | Dashields     | Ohio R. at South<br>Heights           | 15.2  | Duquesne Light Power Plant (intake<br>structure at river bank)                                                     |
| 1242      | Beaver Falls  | Beaver R. at Beaver<br>Falls          | 5.3   | Beaver Falls Waterworks intake (inlet chamber in the treatment building)                                           |
| 1500      | E. Liverpool  | Ohio R. at East<br>Liverpool          | 40.2  | East Liverpool Waterworks intake (tap<br>in raw water line from pumping station to<br>treatment plant)             |
| 1406      | Wheeling      | Ohio R. at Wheeling                   | 86.8  | Wheeling Water Department intake (raw<br>water tap at plant)                                                       |
| 1423      | Moundsville   | Ohio R. at Hannibal                   | 126.4 | Hannibal Lock and Dam near Hannibal, OH<br>(outside up-stream guide wall)                                          |
| 1408      | Willow Island | Ohio R. at Willow<br>Island, OH       | 161.8 | Willow Island Lock and Dam near Newell Run, OH<br>(outside up-stream guide wall)                                   |
| 1531      | Marietta      | Muskingum R. at L&D #2                | 5.8   | Lock and Dam #2 near Devola, OH (outside<br>up-stream guide wall)                                                  |
| 1421      | Parkersburg   | Ohio R. at Belleville                 | 203.9 | Belleville Lock and Dam near Reedsville,<br>OH (outside up-stream guide wall)                                      |
| 1510      | Pomeroy       | Ohio R. at Addison                    | 260.0 | Kyger Creek Power Plant near Addison, OH<br>(raw water tap near intake structure)                                  |
| 1450      | Winfield      | Kanawha R. at Winfield                | 31.1  | Hydroelectric plant on west side of<br>Winfield L&D (concrete structure above<br>dam and hydroelectric facility)   |
| 1422      | Gallipolis    | Ohio R. at Gallipolis                 | 279.2 | Gallipolis Lock and Dam near Gallipolis<br>Ferry, WV (outside up-stream guide wall)                                |
| 1412      | Greenup       | Ohio R. at Huntington                 | 306.0 | Huntington Water Corporation intake on<br>24th Street in Huntington, WV (raw water<br>tap in basement of building) |
| 1610      | Ashland       | Ohio R. at Ashland                    | 319.7 | Ashland Waterworks in Ashland, KY (raw<br>water line in basement)                                                  |
| 1630      | Louisa        | Big Sandy R. at Louisa                | 20.3  | Kentucky Power Co. plant on US 23 near<br>Louisa, KY, (raw water tap in intake                                     |

### TABLE 1. MANUAL SAMPLING LOCATIONS/DESCRIPTION

| STATION # | FLOW<br>STATION | STATION NAME                       | MILE  | STATION DESCRIPTION (Sample Location)                                                                                                          |
|-----------|-----------------|------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------|
| 1526      | Greenup         | Ohio R. at Portsmouth              | 350.7 | Portsmouth Water Treatment Plant intake<br>New Boston, OH (raw water line in<br>basement of plant)                                             |
| 1538      | Lucasville      | Scioto R. at Lucasville            | 15.0  | State Highway Bridge Rt. 348 crossing<br>Scioto R. near Lucasville, OH (from<br>center of bridge)                                              |
| 1611      | Meldahl         | Ohio R. At Maysville               | 408.5 | Maysville Waterworks intake (raw water<br>line in plant)                                                                                       |
| 1504      | California      | Ohio R. at Cincinnati              | 462.8 | Cincinnati Waterworks intake near<br>California (raw water line in the<br>basement of the round building)                                      |
| 1571      | Little Miami    | Little Miami R. at<br>Newtown      | 7.5   | Newtown Road bridge crossing L. Miami<br>(as close to mid-channel as possible from<br>bridge or below bridge according to<br>safety practices) |
| 1634      | Covington       | Licking R. at Covington            | 4.5   | Kenton County Waterworks intake, (raw<br>Water tap in basement of plant)                                                                       |
| 1508      | Covington       | Ohio R. at North Bend              | 490.0 | Cincinnati Gas & Electric Co., Miami Fort<br>intake (raw water tap in condenser pit of<br>plant)                                               |
| 1551      | Cincinnati      | Great Miami R. at<br>Elizabethtown | 5.5   | Lost Bridge crossing G. Miami R. near<br>Elizabethtown, OH (mid-stream from<br>bridge)                                                         |
| 1600      | Markland        | Ohio R. at Markland                | 531.5 | Public Service of Indiana hydroelectric<br>plant intake (raw water line near<br>electronic monitor)                                            |
| 1601      | McAlpine-Up     | Ohio R. at Louisville              | 600.6 | Louisville Water Co. pumping station<br>on Zorn Avenue (raw water line at<br>station near electronic monitor)                                  |
| 1622      | McAlpine-Low    | Ohio R. at West Point              | 625.9 | Louisville Gas and Electric Co. Mill<br>Creek Plant (raw water line in the<br>basement of the plant near electronic<br>monitor)                |
| 1721      | Cannelton-Up    | Ohio R. at Cannelton               | 720.7 | Cannelton Lock and Dam near Cannelton, IN<br>(outside up-stream guide wall)                                                                    |
| 1656      | Spottsville     | Green R. at Sebree                 | 41.3  | Big Rivers Electric Plant near<br>Sebree, KY (intake structure outside<br>walkway)                                                             |

### TABLE 1. MANUAL SAMPLING LOCATIONS/DESCRIPTION

|           | FLOW            |                                      | MILE  |                                                                                                                   |
|-----------|-----------------|--------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------|
| STATION # | STATION         | STATION NAME                         | POINT | STATION DESCRIPTION (Sample Location)                                                                             |
| 1703      | Evansville<br>- | Ohio R. at Evansville                | 791.5 | Evansville Waterworks Filtration Plant<br>(raw water tap in basement)                                             |
| 1722      | Uniontown       | Ohio R. at Uniontown                 | 846.0 | Uniontown Lock and Dam near Hovey, IN<br>(outside up-stream guide wall)                                           |
| 1741      | New Harmony     | Wabash R. at New Harmony             | 51.5  | White Co. Bridge Commission Toll Bridge<br>at New Harmony (middle bridge-pier<br>beneath roadway)                 |
| 1640      | None            | Cumberland R. at<br>Pinkneyville, KY | 16.0  | Critteden-Livingston Water Plan (raw water<br>line in lower level of building)                                    |
| 1650      | None            | Tennessee R. at Paducah              | 6.0   | Ashland Oil Terminal on Highway 62 east of<br>Paducah, KY (barge unloading dock at terminal)                      |
| 1820      | Shawneetown     | Ohio R. at Smithland                 | 918.5 | Smithland Lock and Dam near Hamletsburg, IL<br>(outside up-stream guide wall)                                     |
| 1821      | Јорра           | Ohio R. at Joppa                     | 952.3 | Electric Energy Inc. power plant near<br>Joppa, IL (raw water tap in intake structure<br>near electronic monitor) |



# TABLE 2. MANUAL SAMPLING SCHEDULE

### MONTHLY PARAMETER SCHEDULE

|                |         |                   |           | (FEB., MAR., MA | AY, JUNE,  |
|----------------|---------|-------------------|-----------|-----------------|------------|
| STATION        | ID CODE | CJAN., APR., JUL. | . 0CT.)   | AUG., SEPT., NO | OV., DEC.) |
|                |         | 21014             |           | 11CTA           |            |
| PITTSBURGH     | 1234    | SUSP. SOLIDS      | CADMIUM   | SUSP. SOLIDS    | CADMIUM    |
| SO. PITTSBURGH | 1237    | ALKALINITY        | COPPER    | ALKALINITY      | COPPER     |
| BEAVER FALLS   | 1242    | SULFATE           | IRON      | SULFATE         | IRON       |
|                |         | CHLORIDE          | MANGANESE | CHLORIDE        | MANGANESE  |
|                |         | TOTAL P           | MERCURY   | TOTAL P         | MERCURY    |
|                |         | TKN               | ARSENIC   | TKN             | ZINC       |
|                |         | AMMONIA           | CHROMIUM  | AMMONIA         | ARSENIC    |
|                |         | NITRATE/NITRITE   | NICKEL    | NITRATE/NITRITE | ALUMINUM   |
|                |         | ORTHO P           | SELENIUM  | ORTHO P         |            |
|                |         | 800               | SILVER    | 800             |            |
|                |         | MAGNESIUM         | ZINC      | MAGNESIUM       |            |
|                |         | PHENOL ICS        | ALUMINUM  | PHENOL I CS     |            |
|                |         | CYANIDE           |           | CYANIDE         |            |
|                |         | 21CA              |           | 1164            |            |
| SO. HEIGHTS    | 1201    | SUSP. SOLIDS      | CADMIUM   | SUSP. SOLIDS    | CADMIUM    |
| EAST LIVERPOOL | 1500    | ALKALINITY        | COPPER    | ALKALINITY      | COPPER     |
|                |         | SULFATE           | IRON      | SULFATE         | IRON       |
|                |         | HARDNESS          | LEAD      | HARDNESS        | LEAD       |
|                |         | TOTAL P           | MANGANESE | TOTAL P         | MANGANESE  |
|                |         | TKN               | MERCURY   | TKN             | MERCURY    |
|                |         | AMMONIA           | ARSENIC   | AMMONIA         | ARSENIC    |
|                |         | NITRATE/NITRITE   | BARIUM    | NITRATE/NITRITE | ALUMINUM   |
|                |         | ORTHO P           | NICKEL    | ORTHO P         | ZINC       |
|                |         | BOD               | SELENIUM  | BOD             |            |
|                |         | MAGNESIUM         | SILVER    | MAGNESIUM       |            |
|                |         | PHENOL I CS       | ZINC      | PHENOLICS       |            |
|                |         | CYANIDE           | ALUMINUM  | CYANIDE         |            |
|                |         |                   | CHROMIUM  |                 |            |

TABLE 2. MANUAL SAMPLING SCHEDULE

## MONTHLY PARAMETER SCHEDULE

|               |         |                   |           | (FEB., MAR., MA    | AY, JUNE,  |
|---------------|---------|-------------------|-----------|--------------------|------------|
| STATION       | ID CODE | (JAN., APR., JUL. | 001.)     | AUG., SEPT., NO    | DV., DEC.) |
|               |         | 210               |           | 110                |            |
| WHEEL ING     | 1406    | SUSP. SOLIDS      | CADMIUM   | SUSP. SOLIDS       | CADMIUM    |
| HANNIBAL      | 1423    | SULFATE           | COPPER    | SULFATE            | COPPER     |
| WILLOW ISLAND | 1408    | HARDNESS          | IRON      | HARDNESS           | IRON       |
| BELLEVILLE    | 1421    | TOTAL P           | LEAD      | TOTAL P            | LEAD       |
| ADD I SON     | 1510    | TKN               | MANGANESE | TKN                | MANGANESE  |
| GALLIPOLIS    | 1422    | AMMONIA           | MERCURY   | AMMONIA            | MERCURY    |
| HUNTINGTON    | 1412    | NITRATE/NITRITE   | ARSENIC   | NITRATE/NITRITE    | ZINC       |
| PORTSMOUTH    | 1526    | ORTHO P           | BARIUM    | ORTHO P            | ALUMINUM   |
| LOUI SVILLE   | 1601    | BOD               | NICKEL    | 800                | ARSENIC    |
| WEST POINT    | 1622    | MAGNESIUM         | SELENIUM  | MAGNESIUM          |            |
| EVANSVILLE    | 1703    | PHENOL I CS       | SILVER    | PHENOL I CS        |            |
| JOPPA         | 1821    | CYANIDE           | ZINC      | CYANIDE            |            |
|               |         | CHROMIUM          | ALUMINUM  |                    |            |
|               |         | 2101              |           | 1101               |            |
| LOUISA        | 1630    | SUSP. SOLIDS      | CADMIUM   | SUSP. SOLIDS       | CADMIUM    |
| COVINGTON     | 1634    | SULFATE           | COPPER    | SULFATE            | COPPER     |
| SEEBREE       | 1556    | HARDNESS          | IRON      | HARDNESS           | IRON       |
| PADUCAH       | 1650    | CHLORIDE          | LEAD      | CHLORIDE           | LEAD       |
|               |         | TOTAL P           | MANGANESE | TOTAL P            | MANGANESE  |
|               |         | TKN               | MERCURY   | TKN                | MERCURY    |
|               |         | AMMONIA           | ARSENIC   | AMMONIA            | ARSENIC    |
|               |         | NITRATE/NITRITE   | NICKEL    | NI TRATE/NI TRI TE | ZINC       |
|               |         | ORTHO P           | SELENIUM  | ORTHO P            | ALUMINUM   |
|               |         | BOD               | SILVER    | BOD                |            |
|               |         | MAGNESIUM         | ZINC      | MAGNESIUM          |            |
|               |         | PHENOL I CS       | ALUMINUM  | CYANIDE            |            |
|               |         | CYANIDE           |           | <b>PHENOLICS</b>   |            |
|               |         | CHROMIUM          |           |                    |            |

TABLE 2. MANUAL SAMPLING SCHEDULE

### MONTHLY PARAMETER SCHEDULE

| STATION       | ID CODE | (JAN., APR.) | (FEB. MAR. NOV. DEC.) | (JULY. OCT.)     | CMAY. JUNE. AUG. |
|---------------|---------|--------------|-----------------------|------------------|------------------|
|               |         | 211          | 111                   | 21CT             | 11CT             |
|               |         |              |                       |                  |                  |
| MUSKINGUM     | 1531    | SUSP. SOLIDS | SUSP. SOLIDS          | SUSP. SOLIDS     | SUSP. SOLIDS     |
| WINFIELD      | 1450    | SULFATE      | SULFATE               | SULFATE          | SULFATE          |
| LUCASVILLE    | 1538    | HARDNESS     | HARDNESS              | HARDNESS         | HARDNESS         |
| NEWTON        | 1571    | CHLORIDE     | CHLORIDE              | CHLORIDE         | CHLORIDE         |
| ELIZABETHTOWN | 1551    | MAGNESIUM    | MAGNESIUM             | TOTAL P          | TOTAL P          |
| NEW HARMONY   | 1741    | PHENOL I CS  | PHENOL I CS           | TKN              | TKN              |
| BARKLEY DAM   | 1645    | CYANIDE      | CYANIDE               | AMMONIA          | AMMONIA          |
|               |         | CADMIUM      | CADMIUM               | NITRATE/NITRITE  | NITRATE/NITRITE  |
|               |         | COPPER       | COPPER                | ORTHO P          | ORTHO P          |
|               |         | IRON         | IRON                  | BOD              | BOD              |
|               |         | LEAD         | LEAD                  | MAGNESIUM        | MAGNESIUM        |
|               |         | MANGANESE    | MANGANESE             | <b>PHENOLICS</b> | PHENOL I CS      |
|               |         | MERCURY      | MERCURY               | CYANIDE          | CYANIDE          |
|               |         | ZINC         | ARSENIC               | CADMIUM          | CADMIUM          |
|               |         | ARSENIC      | ZINC                  | COPPER           | COPPER           |
|               |         | CHROMIUM     | ALUMINUM              | IRON             | IRON             |
|               |         | NICKEL       |                       | LEAD             | LEAD             |
|               |         | SELENIUM     |                       | MANGANESE        | MANGANESE        |
|               |         | SILVER       |                       | MERCURY          | MERCURY          |
|               |         | ALUMINUM     |                       | ZINC             | ARSENIC          |
|               |         |              |                       | CHROMIUM         | ALUMINUM         |
|               |         |              |                       | ARSENIC          | ZINC             |
|               |         |              |                       | CHROMIUM         |                  |
|               |         |              |                       | NICKEL           |                  |
|               |         |              |                       | SELENIUM         |                  |
|               |         |              |                       | SILVER           |                  |
|               |         |              |                       | ALUMINUM         |                  |

. AUG., SEPT.) 1CT

| SCHEDULE  |  |
|-----------|--|
| SAMPL ING |  |
| MANUAL    |  |
| 2.        |  |
| TABLE     |  |

## MONTHLY PARAMETER SCHEDULE

| STATION    | ID CODE | (JAN., APR.) | (FEB., MAR., NOV., DEC.) | (JULY, OCT.)    | (MAY, JUNE, AUG., SEPT.) |
|------------|---------|--------------|--------------------------|-----------------|--------------------------|
|            |         | 21           | 11                       | 21C             | 110                      |
| ASHLAND    | 1610    | SUSP. SOLIDS | SUSP. SOLIDS             | SUSP. SOLIDS    | SUSP. SOLIDS             |
| MAYSVILLE  | 1611    | SULFATE      | SULFATE                  | SULFATE         | SULFATE                  |
| CINCINNATI | 1504    | HARDNESS     | HARDNESS                 | HARDNESS        | HARDNESS                 |
| NORTH BEND | 1508    | MAGNESIUM    | MAGNESIUM                | TOTAL P         | TOTAL P                  |
| MARKLAND   | 1600    | PHENOL I CS  | PHENOLICS.               | TKN             | TKN                      |
| CANNELTON  | 1721    | CYANIDE      | CYANIDE                  | AMMONIA         | AMMONIA                  |
| UNIONTOWN  | 1722    | CADMIUM      | CADMIUM                  | NITRATE/NITRITE | NITRATE/NITRITE          |
| SMI THLAND | 1820    | COPPER       | COPPER                   | ORTHO P         | ORTHO P                  |
|            |         | IRON         | IRON                     | BOD             | BOD                      |
|            |         | LEAD         | LEAD                     | MAGNESIUM       | MAGNESIUM                |
|            |         | MANGANESE    | MANGANESE                | PHENOLICS       | PHENOL I CS              |
|            |         | MERCURY      | MERCURY                  | CYANIDE         | CYANIDE                  |
|            |         | ZINC         | ARSENIC                  | CADMIUM         | CADMIUM                  |
|            |         | ARSENIC      | ZINC                     | COPPER          | COPPER                   |
|            |         | BARIUM       | ALUMINUM                 | IRON            | IRON                     |
|            |         | CHROMIUM     |                          | LEAD            | LEAD                     |
|            |         | NICKEL       |                          | MANGANESE       | MANGANESE                |
|            |         | SELENIUM     |                          | MERCURY         | MERCURY                  |
|            |         | SILVER       |                          | ZINC            | ARSENIC                  |
|            |         | ALUMINUM     |                          | ARSENIC         | ZINC                     |
|            |         |              |                          | BARIUM          | ALUMINUM                 |
|            |         |              |                          | CHROMIUM        |                          |
|            |         |              |                          | NICKEL          |                          |
|            |         |              |                          | SELENIUM        |                          |
|            |         |              |                          | SILVER          |                          |
|            |         |              |                          | ALUMINUM        |                          |

### STATION DATA BASE: MANUAL MONITORING SYSTEM

Table 3

| OHIO | POINT             | STATION NAME                                                      | RIVER                                 | STORET#                      | WATERBODY ID | WA TERBODY<br>NAME                    | aD                            | ED                           |
|------|-------------------|-------------------------------------------------------------------|---------------------------------------|------------------------------|--------------|---------------------------------------|-------------------------------|------------------------------|
|      | 0.0<br>0.0<br>0.0 | PITTSBURGH WATER WORKS<br>OAKMONT WATER WORKS<br>SOUTH PITTSBURGH | ALLEGHENY<br>ALLEGHENY<br>MONONGAHELA | AR7.4M<br>AR13.3M<br>MR-4.5M |              | ALLEGHENY<br>ALLEGHENY<br>MONONGAHELA | 7/15/86<br>7/15/75<br>11/3/75 | CURRENT<br>9/3/85<br>CURRENT |
|      | 15.2              | SOUTH HEIGHTS                                                     | OHIO                                  | 0R9658M                      | ORWBØ3       | DASHIELDS - BEAVER                    | 11/3/75                       | CURRENT                      |
|      | 25.4              | BEAVER FALLS                                                      | BEAVER                                | BR-5.3.                      |              | BEAVER                                | 11/12/75                      | CURREN                       |
|      | 40.2              | EAST LIVERPOOL WATER WORKS                                        | OHIC                                  | 0R94Ø8M                      | ORWBØ6       | PA STATE LINE - NEW<br>CUMBERLAND     | 12/11/75                      | CURRENT                      |
|      | 84.2              | PIKE ISLAND L&D                                                   | OHIO                                  | 088968M                      | ORWBØ7       | NEW CUMBERLAND - PIKE ISLAND          | 4/11/75                       | 9/22/Et                      |
|      | 86.8              | WHEELING WATER TREATMENT PLANT                                    | 0110                                  | 0R894.2M                     | ORWBØ8       | PIKE ISLAND - HANNIBAL                | 12/15/75                      | CURRENT                      |
|      | 192.4             | SHADYSIDE                                                         | OHIC                                  | 0R8786M                      | ORWBØ8       | PIKE ISLAND - HANNIBAL                | 11/18/75                      | 9/22/8:                      |
|      | 126.4             | HANNIBAL L&D                                                      | OHIO                                  | 0R8546M                      | ORWBØ8       | PIKE ISLAND - HANNIBAL                | 9/25/77                       | CURRENT                      |
|      | 161.8             | WILLOW ISLAND LAD                                                 | OHIO                                  | 0R8192M                      | ORWBØ9       | HANNIBAL - WILLOW ISLAND              | 11/19/75                      | CURRENT                      |
|      | 172.2             | MUSKINGUM L&D #2                                                  | MUSK INGUM                            | MU-5.5M                      |              | MUSK INGUM                            | 11/19/75                      | CURRENT                      |
|      | 203.9             | BELLEVILLE L&D                                                    | OHIO                                  | 0R7771M                      | ORWB11       | MUSKINGUM - BELLEVILLE                | 11/11/75                      | CURRENT                      |
|      | 260.0             | ADDISON - KYGER CREEK                                             | OHIO                                  | 0R7219M                      | ORWB13       | RACINE - KANAWHA                      | 11/11/75                      | CURRENT                      |
|      | 265.7             | WINFIELD L&D                                                      | KANAMHA                               | KR31.1M                      |              | KANAMHA                               | 11/11/75                      | CURRENT                      |
|      | 279.2             | GALLIPOLIS L&D                                                    | OHIO                                  | 0R7918M                      | ORWB14       | KANAMHA - GALLIPOLIS                  | 11/11/75                      | CURRENT                      |
| ÷    | 306.9             | HUNTINGTON WATER CORPORATION                                      | OHIO                                  | 0R6741M                      | ORWB15       | GALLIPOLIS - BIG SANDY                | 11/11/75                      | CURRENT                      |
|      | 315.8             | KENOVA                                                            | OHIO                                  | 0R6652M                      | ORWB15       | GALLIPOLIS - BIG SANDY                | 11/11/75                      | 9/9/86                       |
|      | 317.1             | LOUISA                                                            | BIG SANDY                             | SR29.3M                      |              | BIG SANDY                             | 11/10/75                      | CURRENT                      |
|      | 319.7             | ASHLAND WATER WORKS                                               | OHIO                                  | 0R661.3M                     | ORWB16       | BIG SANDY - GREENUP                   | 7/9/86                        | CURRENT                      |
|      | 341.0             | GREENUP L&D                                                       | OHIO                                  | 0R6466M                      | ORWB16       | BIG SANDY - GREENLP                   | 11/12/75                      | 9/9/85                       |
|      | 350.7             | PORTSMOUTH WATER TREATMENT<br>PLANT                               | OHIO                                  | 0R630.3M                     | ORWB17       | GREENUP - SCIOTO                      | 10/23/86                      | CURRENT                      |
|      | 356.5             | LUCASVILLE                                                        | SCIOTO                                | SC15.0M                      |              | SCIOTO                                | 11/12/75                      | CURRENT                      |
|      | 408.5             | MAYSVILLE WATER WORKS                                             | OHIO                                  | 0R572.5M                     | ORWB18       | SCIOTO - MELDAHL                      | 7/8/86                        | CURRENT                      |
|      | 436.2             | MELDAHL L&D                                                       | OHIO                                  | 0R5448M                      | ORWB18       | SCIOTO - MELDAHL                      | 11/12/75                      | 9/23/85                      |
|      | 462.8             | CINCINNATI WATER WORKS                                            | OHIO                                  | 0R5182M                      | ORWB20       | LITTLE MIAMI - LICKING                | 11/7/75                       | CURRENT                      |
|      | 464.1             | NEWTOWN                                                           | LITTLE MIAMI                          | LH-7.5H                      |              | LITTLE MIAMI                          | 7/6/75                        | CURRENT                      |
|      | 479.2             | COVINETON                                                         | LICKING                               | LR-4.5M                      |              | LICKING                               | 11/18/75                      | CURRENT                      |

### STATION DATA BASE: MANUAL MONITORING SYSTEM

| OHIC | POINT | STATION NAME             | RIVER        | STORETS | WATERBODY ID | WATERBODY<br>NAME      | ЗD       |    |
|------|-------|--------------------------|--------------|---------|--------------|------------------------|----------|----|
|      | 490.0 | NORTH BEND               | OHIO         | 0R49121 | CRWB21       | LICKING - GREAT MIAMI  | 11/17/75 | C  |
|      | 491.1 | ELIZABETHTOWN            | GREAT MIAMI  | 6M-5.5M |              | GREAT MIAMI            | 11/10/75 | С  |
|      | 531.5 | MARKLAND L&D             | OHIO         | 0R4495M | OF#B22       | GREAT MIAMI - MARKLAND | 11/17/75 | C  |
|      | 600.6 | LOUISVILLE WATER COMPANY | OHIO         | 0R3804M | ORWB24       | KENTUCKY - MCALPINE    | 11/10/75 | С  |
|      | 625.9 | WEST POINT               | OHIO         | 0R3551M | ORWB25       | MCALPINE - SALT        | 11/10/75 | С  |
|      | 720.7 | CANNELTON L&D            | CHIO         | 0R26Ø3M | ORWB26       | SALT - CANNELTON       | :1/13/75 | C  |
|      | 784.2 | SEEBREE                  | GREEEN RIVER | GR41.3M |              | GREEN                  | 11/14/75 | 3  |
|      | 791.5 | EVANSVILLE WATER WORKS   | OHIO         | 0R1895M | ORWB29       | GREEN - UNIONTOWN      | 11/3/75  | C  |
|      | 846.0 | UNIONTOWN L&D            | OHIO         | 0R1350M | ORWB29       | GREEN - UNIONTOWN      | 11/11/75 | C  |
|      | 848.0 | NEW HARMONY              | WABASH       | WA9295M |              | WABASH                 | 11/11/75 | C  |
|      | 918.5 | SHITHLAND LLD            | OHIO         | 0R62.5M | ORWB31       | WABASH - SMITHLAND     | 1/19/82  | C  |
|      | 920.4 | BARKLEY DAM              | CUMBERLAND   | CR39.6M |              | CUMBERLAND             | 11/17/75 | Ci |
|      | 934.5 | PADUCAH                  | TENNESSEE    | TR-6.91 |              | TENNESSEE              | 11/17/75 | C  |
|      | 935.5 | PADUCAH WATER WORKS      | OHIO         | OR45.5M | ORWB34       | TENNESSEE - CAIRO      | 7/10/84  | CL |
|      | 952.3 | JOPPA                    | OHIO         | 0R28.7M | ORWB34       | TENNESSEE - CAIRO      | 11/17/75 | CL |

Table 3

APPENDIX B: SEASONAL KENDALL TEST METHODOLOGY AND FORMULAS



### METHODOLOGY

In order to perform the trend assessments, several steps had to be taken. These included:

- Selection of stations and parameters for analysis.
- 2) Selection of an appropriate model for determining the flow adjusted concentration values.
- 3) Retrieval and preparation of the data sets.
- 4) Statistical analysis of the data sets using the Seasonal Kendall Test.

### Selection of Stations and Parameters for Analysis

Many missing values in a data set, like that of mercury or phenolics, decrease the reliability of the results. The Seasonal Kendall Test requires at least five data points in each month over the eleven year interval. The thirteen stations that do not monitor for nutrients year-round were excluded for this reason.

Values below the detection levels were censored and converted to missing values. "Because the Seasonal Kendall Test is nonparametric, outliers, missing values, or values defined as "less than" the laboratory detection limit present no computational or technical problem in its application." (Smith, et.al., Water Quality Trends in the Nation's Rivers, 1987).

### Choosing a Model for Flow-Adjusted Concentration Values

Flow-adjusted values are derived from: (1) describing the relationship between flow and concentration using a statistical model and (2) determining the difference between the value predicted by the model and the actual value. This difference is the residual. The experience of J. Shermer Garrison of the Maryland Department of the Environment is that after testing several models at several locations, a LOG-LOG model (as defined in the table below) was often chosen as the best-fit relationship. A best-fit relationship is the model which best meets various requirements in four areas:

- 1) Analysis of Variance Table (ANOVA Table)
- 2) Plots of Predicted and Observed values versus Flow
- 3) Residual plots
- 4) Univariate table consisting of Normal Probability plot, Boxplot, and Stem-and-Leaf diagram.

The ANOVA table should have a low Mean Squared Error (MSE), a high F-value, a low P-value (probability of being wrong) and a high R-squared. If these numbers are similar for two different models, the model with

the highest F-value is favorable. The plot of predicted and observed values versus flow should show a close association of observed values to the predicted line. A good model would simulate closely actual observations. Residuals are used to indicate a bias in the model. The residuals plot should indicate randomness. The residuals when plotted, should tend to fall in a horizontal band centered around zero. If a pattern emerges in the residuals plot, a departure of actual conditions from those predicted in the model exist. The univariate table is used to analyze the randomness of the residuals using a normal probability plot, a boxplot and a stem and leaf diagram. Randomness is indicated by a straight line probability plot, a standard boxplot and a bell shaped stem and leaf diagram. A uniform distribution indicates the model appropriately simulates actual conditions. The models tested in this study are found in the table below.

| , FL              | MODELS EVALUATED FOR USE IN<br>OW-ADJUSTED CONCENTRATION RELATIONSHIP<br>(Using TSS as an example parameter)           |
|-------------------|------------------------------------------------------------------------------------------------------------------------|
| LINEAR            | $TSS = \beta_0 + \beta_1 * FLOW$                                                                                       |
| LOG-LOG           | $ln(TSS) = \beta_0 + \beta_1 * ln(FLOW)$                                                                               |
| LINEAR-HYPERBOLIC | TSS = $\beta_0$ + $\beta_1$ *[1 / (1 + 10 <sup>(-2.5 - BETA)</sup> *FLOW)]<br>where beta = interger of log10(meanFLOW) |
| LINEAR-INVERSE    | TSS = $\beta_0 + \beta_1(1 / FLOW)$                                                                                    |
| LINEAR-QUADRATIC  | $TSS = \beta_0 + \beta_1 * FLOW + \beta_2 * FLOW^2$                                                                    |
| LOG-QUADRATIC     | $\log(TSS) = \beta_0 + \beta_1 * \log(FLOW) + \beta_2 * [\log(FLOW)]^2$                                                |
|                   |                                                                                                                        |

For the evaluation, total suspended solids and total dissolved solids were considered to be representative parameters in the Ohio River Basin. These parameters had the least missing values in their data sets and were tested consistently over the years. Residuals analysis for all models in Table 3 are run on both parameters at all stations to establish the appropriate relationship between flow and concentration.

The LOG-LOG model was determined to provide the best-fit relationship for both total suspended solids and total dissolved solids. Appendix C contains sample pages of the ANOVA table, the Predicted and Observed plots and the Univariate table for three models at the Cincinnati station on the Ohio River. It includes both total suspended solids and total dissolved solids for the LOG-LOG model, the LOG-QUADRATIC model and the LINEAR model.

Since the LOG-LOG and LOG-QUADRATIC models gave similar results, the Univariate tables of each model at the same station are similar for total suspended solids. The Predicted and Observed plots at most stations follow the same pattern for both models. The Residuals plot for the two models are similar at most stations and are either both randomly scattered or both display a similar pattern. In the ANOVA table, the MSE and the R-Square are often close in value between models. The deciding factor at all stations is the F-value in the ANOVA table. The model with the highest F-value and the lowest P-value is chosen as the best-fit model. Also, convention requires that if two models are very close, the simpler version is to be used. In this case, the simpler model is the LOG-LOG model.

In the case of total suspended solids, those stations that do have a better fit with the LOG-QUADRATIC model are the stations with fewer years of data. The fact that these stations have a better-fit relationship with the LOG-QUADRATIC model may have something to do with the size of their data sets. Total dissolved solids followed much the same pattern as total suspended solids did. Both relationships, LOG-LOG and LOG-QUADRATIC models, had overlapping patterns for Predicted and Observed plots and randomly scattered Residual plots. The biggest difference between models is usually in the F-value of the ANOVA table. Many times, all other numbers being similar, the F-value of the LOG-LOG model is twice as large as the LOG-QUADRATIC model.

### **Retrieving and Preparing Data Sets**

The entire untransformed data set is in STORET including flow values, which are required for several calculations. Because the entire data set is too large to print here, Appendix D is a printout of the annual mean for each parameter in STORET. Stations with incomplete data sets for that parameter are marked with an asterisk. The parameters under investigation are retrieved from STORET and calculations are done for total dissolved solids, total nitrogen and loadings. For the flow-adjusted values, the LOG-LOG model is applied to the flow and concentration of each parameter at each station. The chosen model generates a predicted concentration for every flow value. The predicted values are then subtracted from the actual observed concentrations, resulting in residuals. These residuals comprise the flow-adjusted concentration data set. Each data set, one at each station for all parameters, is manipulated into a usable format.

### Seasonal Kendall Test of Trend

The Seasonal Kendall Test is applied using a macro written in LOTUS123<sup>®</sup>. The test is designed to (1) compare each data point within a month with all earlier data points, (2) keep a running tally of the

comparisons, (3) make adjustments in variability if two data points are identical, (4) calculate a monthly statistic and monthly variance and (5) calculate a z-statistic. For each form of the monitoring data, the Seasonal Kendall Test is applied to the data set of each station for each parameter. The z-statistic is used to test the null hypothesis. The null hypothesis is rejected if z indicates a p < .10. The resulting z-statistic determines the probability of a trend, and whether that trend is increasing or decreasing. An increasing trend indicates that parameter concentrations are increasing in the Ohio River water column over time, suggesting deteriorating water quality. A decreasing trend indicates that parameter concentrations are decreasing over time, suggesting an improvement in water quality. Between 10% and 5% probability is considered a slight trend, either increasing or decreasing. Less than 5% probability is considered a strong trend, either increasing. Greater than 10% probability is considered no significant trend in the data.

### Seasonal Kendall Test Formulas

For the Seasonal Kendall Test, only data within the same month is compared. In each comparison, an earlier data point is compared to a later data point. If the later value in time is higher, then a plus is scored (K+). If the later value is lower, then a minus is scored (K-). If the values are identical, then a tie is scored (t). The Seasonal Kendall Test obtains a monthly statistic of the data set by subtracting the minuses from the pluses (Bauer et al., 1984):  $K_i = (K+) - (K-)$ . The ties are used in the calculation of the variance for each monthly statistic. The actual formula for monthly variance (var) is given by Smith et al. (1982) as:

$$var = \frac{n(n-1)(2n+5) - \sum_{i=1}^{n} t_i(t_i-1)(2t_i+5)}{18}$$

where n = number of years in the data set

The sum of the monthly statistics  $[K = \Sigma K_i]$  and the sum of the monthly variances  $\{VAR = \Sigma var(K_i)\}$  are used to calculate a z-statistic (Bauer et al., 1984). The z-statistic formulas are shown below:

$$if K > 0 then Z = \frac{K-1}{\sqrt{var}}$$

if 
$$K < 0$$
 then  $Z = \frac{K+1}{\sqrt{var}}$ 

### if K = 0 then Z = 0

The significance of z-statistic then determines the presence of a trend.

If there is no trend in the data, then there is an equal chance that a given value is higher or lower than any other value in another year that same month (Smith et al., 1982). It will possess an almost equal number of pluses as minuses and will have a z-statistic of nearly zero. A positive or increasing trend will have more pluses than minuses and will have a large positive z-statistic (Smith et al., 1982). A negative or decreasing trend will have more minuses and a large negative z-statistic (Smith et al., 1982).

### Seasonal Kendall Slope Estimator

The Seasonal Kendall Slope Estimator is employed using a macro written in LOTUS123<sup>®</sup>. The test compares each data point within a month with all earlier data points and stores the percent change for each comparison. Once all possible comparisons are made and stored they are sorted. After sorting, the median is determined and this value is recorded as the percent change at that station. The slope in units/year is then calculated as follows: X = percent change (from LOTUS123<sup>®</sup> macro)

M = mean of actual concentration

$$Slope(units/yr.) = (e^{x}-1)*M$$

The slope magnitude can then be compared with the trend direction at that station. This allows for determining how fast a trend is increasing or decreasing. A positive slope correlates with an increasing trend, implying a deterioration in water quality. Conversely, a negative slope indicates a decreasing trend, suggesting an improvement in water quality.



APPENDIX C: SAMPLE PAGES OF RESIDUALS ANALYSIS FOR THREE MODELS



ANOVA TABLE

.

LOG-LOG MODEL OF TSS AT CINCINNATI WW

ANALYSIS OF VARIANCE

| PROB>F            | 0.0001                                  |                                   |
|-------------------|-----------------------------------------|-----------------------------------|
| F VALUE           | 129.281                                 | 0.5005                            |
| MEAN<br>SQUARE    | 95.25685942<br>0.73682244               | R-SQUARE<br>ADJ R-SQ              |
| SUM OF<br>SQUARES | 95.25685942<br>93.57644993<br>188.83331 | 0.8583836<br>3.882651<br>22.10818 |
| DF                | 1<br>127<br>128                         | MSE                               |
| SOURCE            | 10DEL<br>ERROR<br>C TOTAL               | ROOT<br>DEP 1<br>C.V.             |

### PARAMETER ESTIMATES

| >  T                     | 0.0001      | 0.0001     |
|--------------------------|-------------|------------|
| PROB                     |             |            |
| T FOR HOU<br>PARAMETER=0 | -7.356      | 11.370     |
| STANDARD<br>ERROR        | 0.97554125  | 0.08741697 |
| PARAMETER<br>Estimate    | -7.17607602 | 0.99394527 |
| DF                       | -           | -          |
| VARIABLE                 | INTERCEP    | FLOH       |

|    |        |         | -       |          |          |          |     |         |        |
|----|--------|---------|---------|----------|----------|----------|-----|---------|--------|
|    |        | PREDICT | STD ERR |          | STD ERR  | STUDENT  |     |         | COOK'S |
|    | ACTUAL | VALUE   | PREDICT | RESIDUAL | RESIDUAL | RESIDUAL | -2- | 1-0 1 2 | D      |
| -  | 2.1595 | 1.6747  | 0.2084  | 0.4848   | 0.8327   | 0.5821   | -   | *       | 0.011  |
| ~  | 1.8971 | 3.1591  | 0.0988  | -1.2620  | 0.8527   | -1.4801  | -   | **      | 0.015  |
| 9  | 4.6052 | 4.5786  | 0.0973  | 0.0266   | 0.8529   | 0.0312   | -   | -       | 0.000  |
| 7  | 5.0876 | 5,0036  | 0.1242  | 0,0840   | 0.8493   | 0.0988   | -   | -       | 0.000  |
| S  | 4.9675 | 4.8596  | 0.1144  | 0.1079   | 0.8507   | 0.1268   | -   | -       | 0.000  |
| 9  | 2.8526 | 4.0086  | 0.0764  | -1.1560  | 0.8550   | -1.3521  | -   | **      | 0.007  |
| 2  | 2.6391 | 3,3966  | 0.0868  | -0.7575  | 0.8540   | -0.8870  | -   | *       | 0.004  |
| 8  | 5.6870 | 3.1757  | 0.0979  | 2.5113   | 0.8528   | 2.9448   | -   | *****   | 0.057  |
| 6  | 4.3175 | 3.4910  | 0.0831  | 0.8265   | 0.8544   | 0.9674   | -   | *       | 0.004  |
| 10 | 3.0204 | 3.0160  | 0.1073  | .0044426 | 0.8516   | .0052164 | -   |         | 0.000  |
| 11 | 4.0662 | 4.1036  | 0.0780  | -0.0374  | 0.8548   | -0.0437  | -   | -       | 0.000  |
| 12 | 3.8850 | 4.1015  | 0.0780  | -0.2165  | 0.8548   | -0.2533  | -   | -       | 0.000  |
| 13 | 5.7961 | 4.3858  | 0.0876  | 1.4102   | 0.8539   | 1.6515   | _   | ***     | 0.014  |
| 14 | 4.6250 | 4.5102  | 0.0936  | 0.1148   | 0.8533   | 0.1345   | -   | -       | 0.000  |
| 15 | 3.8067 | 4.6496  | 0.1013  | -0.8430  | 0.8524   | -0.9889  | -   | *       | 0.007  |
| 16 | 5.8319 | 5.6399  | 0.1720  | 0.1919   | 0.8410   | 0.2282   | -   |         | 0.001  |
| 17 | 4.8598 | 4.6368  | 0.1006  | 0.2230   | 0.8525   | 0.2616   | -   |         | 0.000  |
| 18 | 5.4220 | 4.7965  | 0.1103  | 0.6255   | 0.8513   | 0.7348   | -   | *       | 0.005  |
| 19 | 4.7449 | 3.9701  | 0.0760  | 0.7748   | 0.8550   | 0.9062   | -   | *       | 0.003  |
| 20 | 3.2055 | 3.5755  | 0.0803  | -0.3701  | 0.8546   | -0.4330  | -   | -       | 0.001  |
| 21 | 3.6889 | 3.8026  | 0.0759  | -0.1138  | 0.8550   | -0.1330  | -   |         | 0.000  |
| 22 | 2.8904 | 3.0803  | 0.1034  | -0.1900  | 0.8521   | -0.2229  | -   | -       | 0.000  |
|    |        |         |         |          |          |          |     |         |        |

OBS

ANOVA TABLE

LOG-QUADRATIC MODEL OF TSS AT CINCINNATI WW

ANALYSIS OF VARIANCE

| PROB>F            | 0.0001                                  |                                  |                        | PROB >  T                 |                 |
|-------------------|-----------------------------------------|----------------------------------|------------------------|---------------------------|-----------------|
| F VALUE           | 69.593                                  | 0.5249                           |                        | T FOR HO :<br>PARAMETER=0 |                 |
| MEAN<br>SQUARE    | 49.55564847<br>0.71207946               | R-SQUARE<br>ADJ R-SQ             | <b>1ETER ESTIMATES</b> | STANDARD<br>ERROR         |                 |
| SUM OF<br>SQUARES | 99.11129693<br>89.72201242<br>188.83331 | 0.843848<br>3.882651<br>21.73381 | PARAN                  | ARAMETER<br>Estimate      |                 |
| DF                | 2<br>126<br>128                         | MSE                              |                        | 4                         |                 |
| RCE               | EL<br>OR<br>DTAL                        | ROOT<br>DEP 1<br>C.V.            |                        | DF                        |                 |
| SOU               | HOD<br>ERR<br>C T                       |                                  |                        | VARIABLE                  | and and a start |

| 4 | - | 0.02779729   | 1.11329669    | 0.025 | 0.9801 |
|---|---|--------------|---------------|-------|--------|
|   | - | .00000420653 | . 00000242306 | 1.736 | 0.0850 |
|   |   | 0.02766239   | 0.01066102    | 2.595 | 0.0106 |

|     |    |        | PREDICT | STD ERR |          | STD ERR  | STUDENT  |     |        |       | COOK'S |
|-----|----|--------|---------|---------|----------|----------|----------|-----|--------|-------|--------|
| OBS |    | ACTUAL | VALUE   | PREDICT | RESIDUAL | RESIDUAL | RESIDUAL | -2- | -1-0 1 | 2     | Q      |
|     | -  | 2.1595 | 2.2522  | 0.2991  | -0.0928  | 0.7891   | -0.1176  | -   | -      | -     | 0.001  |
|     | ~  | 1.8971 | 3.1567  | 0.0978  | -1.2596  | 0.8382   | -1.5028  | -   | ***    | -     | 0.010  |
|     | 3  | 4.6052 | 4.4721  | 0.1106  | 0.1330   | 0.8366   | 0.1590   | -   | -      | -     | 0.000  |
|     | 4  | 5.0876 | 5.0641  | 0.1247  | 0.0235   | 0.8346   | 0.0282   | -   | -      | -     | 0.000  |
|     | ŝ  | 4.9675 | 4.8474  | 0.1140  | 0.1201   | 0.8361   | 0.1437   | -   | -      | -     | 0.000  |
|     | 9  | 2.8526 | 3.8549  | 0.1024  | -1.0023  | 0.8376   | -1.1966  | -   | **     | -     | 0.007  |
|     | 2  | 2.6391 | 3.3329  | 0.0890  | -0.6939  | 0.8391   | -0.8269  | -   | *      | -     | 0.003  |
|     | 8  | 5.6870 | 3.1686  | 0.0968  | 2.5184   | 0.8383   | 3.0042   | -   | *      | ***** | 0,040  |
|     | 6  | 4.3175 | 3.4065  | 0.0886  | 0.9110   | 0.8392   | 1.0855   | -   | *      | . *:  | 0.004  |
|     | 10 | 3.0204 | 3.0559  | 0.1084  | -0.0355  | 0.8369   | -0.0424  | -   | -      | -     | 0.000  |
|     | 11 | 4.0662 | 3.9471  | 0.1053  | 0.1191   | 0.8373   | 0.1422   | -   | -      | -     | 0.000  |
|     | 12 | 3,8850 | 3.9451  | 0.1052  | -0.0601  | 0.8373   | -0.0718  | -   | -      | -     | 0.000  |
|     | 13 | 5.7961 | 4,2448  | 0.1103  | 1.5512   | 0.8366   | 1.8542   | -   | *      | 1 *** | 0.020  |
|     | 14 | 4.6250 | 4.3889  | 0.1107  | 0.2360   | 0.8366   | 0.2821   | -   | -      | -     | 0.000  |
|     | 15 | 3.8067 | 4.5617  | 0.1106  | -0.7550  | 0.8366   | -0.9025  | -   | *      | -     | 0.005  |
|     | 16 | 5.8319 | 6.3009  | 0.3599  | -0.4690  | 0.7632   | -0.6145  | -   | *      | -     | 0.028  |
|     | 17 | 4.8598 | 4.5452  | 0.1106  | 0.3146   | 0.8366   | 0.3760   | -   | -      | -     | 0.001  |
|     | 18 | 5.4220 | 4.7580  | 0.1120  | 0.6640   | 0.8364   | 0162.0   | -   | *      | -     | 0.004  |
|     | 19 | 4.7449 | 3.8185  | 0.1012  | 0.9265   | 0.8378   | 1.1059   | -   | *      | *:    | 0.006  |
|     | 20 | 3.2055 | 3.4743  | 0.0894  | -0.2689  | 0.8391   | -0.3204  | -   | -      | -     | 0.000  |
|     | 21 | 3.6889 | 3.6664  | 0.0954  | 0.0225   | 0.8384   | 0.0269   | -   | -      | -     | 0.000  |
|     |    |        |         |         |          |          |          |     |        |       |        |

ANOVA TABLE

.

LINEAR MODEL OF TSS AT CINCINNATI WW

AMALYSIS OF VARIANCE

|                |                                         |                             |             |                       |                          |         | COOK'S   | 0.000   | 0.001    | 0.001    | 0.002    | 0.001    | 0.002    | 0.001    | 0.058   | 0000     | 0.000    | 0.001    | 0.027   | 0.000    | 0.006    | 0.006    | 0.000   | 0.004   | 0.001   | 0.000    | 0.000    | 0.000    |
|----------------|-----------------------------------------|-----------------------------|-------------|-----------------------|--------------------------|---------|----------|---------|----------|----------|----------|----------|----------|----------|---------|----------|----------|----------|---------|----------|----------|----------|---------|---------|---------|----------|----------|----------|
|                |                                         |                             |             |                       |                          |         | 2        | -       | _        | -        | -        | -        | -        |          |         |          |          | -        | ****    | _        | -        | -        | -       | -       | -       | -        | -        | _        |
| PROB>F         | 0.0001                                  |                             |             | PROB >  T             | 0.6337                   |         | -2-1-0   | -       | -        | -        | -        |          | *        |          |         |          | -        | -        | *       | -        | **       |          |         | * 1     | 1 1     | -        |          | -        |
| VALUE          | 15.812                                  | . 4545<br>1.4502            |             | OR H0 :<br>METER=0    | 0.478                    |         | RESIDUAL | -0.0412 | -0.3376  | -0.3506  | -0.4039  | -0.3154  | -0.6856  | -0.3458  | 3.0626  | -0.1270  | -0.2850  | -0.3970  | 2.6074  | -0.2294  | -1.1086  | -0.3220  | -0.0970 | 0.7819  | 0.4972  | -0.3078  | -0.2639  | -0.1770  |
| MEAN<br>VARE F | 1.84 10<br>6842                         | UARE<br>R-SQ 0              | TIMATES     | ARD T F<br>Ror Para   | 366                      |         | RESIDUAL | 84.4676 | 84.6490  | 84.7700  | 84.2589  | 84.5158  | 84.8222  | 84.6981  | 84.7186 | 84.6219  | 84.8339  | 84.8337  | 84.8305 | 84.7991  | 84.7285  | 80.5837  | 84.7370 | 84.5966 | 84.8163 | 84.7372  | 84.7857  | 84.6338  |
| 1              | 84 76759<br>19 7254.26                  | 9 R-SQ1                     | RAMETER EST | STANDI                | 0.0000883                |         | RESIDUAL | -3.4774 | -28.5811 | -29.7215 | -34.0349 | -26.6605 | -58.1566 | -29.2871 | 27.9430 | -10.7508 | -24.1740 | -33.6817 | 221.2   | -19.4551 | -93.9267 | -25.9508 | -8.2159 | 66.1500 | 42.1747 | -26.0845 | -22.3787 | -14.9767 |
| F SQUARE       | 1 767591.E<br>7 921292.0<br>8 1688883.9 | E 85.1719<br>N 93.9599      | PA          | PARAMETER<br>ESTIMATE | 5.45213297<br>.000908402 |         | PREDICT  | 10.9314 | 9.4240   | 8.2657   | 12.4380  | 10.5523  | 7.7109   | 8.9723   | 8.7764  | 9.6643   | 7.5812   | 7.5835   | 7.6190  | 7.9611   | 8.6801   | 27.5778  | 8.5975  | 9.8834  | 7.7753  | 8.5953   | 8.1031   | 9.5594   |
| SOURCE         | MODEL<br>ERROR 12<br>C TOTAL 12         | ROOT MS<br>DEP MEAL<br>C.V. |             | LE DF                 | EP 1 0                   | ******* | VALUE    | 12.1440 | 35.2477  | 129.7    | 196.0    | 170.3    | 75.4899  | 13.2871  | 47.0570 | 31.2508  | 82.5073  | 82.3484  | 107.8   | 121.5    | 138.9    | 367.0    | 137.2   | 160.2   | 72.8253 | 50.7511  | 62.3787  | 32.9767  |
|                |                                         |                             |             | VARIAB                | INTERC<br>FLOW           |         | ACTUAL   | 8.6667  | 6.6667   | 100.0    | 162.0    | 143.7    | 17.3333  | 14.0000  | 75.0000 | 20.5000  | 58.3333  | 48.6667  | 329.0   | 102.0    | 115.0000 | 341.0    | 129.0   | 226.3   | 115.0   | 24.6667  | 10.0000  | 18.0000  |
|                |                                         |                             |             |                       |                          |         |          | -       | 2        | 3        | =        | 5        | 9 0      | -        | 0 0     | 10       | 11       | 12       | 13      | 14       | 15       | 16       | 11      | 18      | 19      | 20       | 12       | 22       |

OBS
LOG-LOG MODEL OF TSS AT CINCINNATI WW

PREDICTED AND OBSERVED PLOT





· 72 OBS HIDDEN

LINEAR MODEL OF TSS AT CINCINNATI WW

PREDICTED AND OBSERVED PLOT



NOTE: 4 OBS HAD MISSING VALUES 79 OBS HIDDEN

LOG-LOG MODEL OF TSS AT CINCINNATI WW

UNIVARIATE TABLE

.

## UNIVARIATE

## RESIDUALS VARIABLE=R

### MOMENTS

| N          | 129        | SUM MGTS | 129        |
|------------|------------|----------|------------|
| MEAN       | -6.723E-15 | SUM      | -8.673E-13 |
| STD DEV    | 0.855024   | VARIANCE | 0.731066   |
| SKENNESS   | 0.400081   | KURTOSIS | 2.06816    |
| USS        | 93.5764    | CSS      | 93.5764    |
| CV         | 66666-     | STD MEAN | 0.0752807  |
| T . HEAN=0 | -8.931E-14 | PROB>  T | 1          |
| SGN RANK   | -223.5     | PROB> S  | 0.600142   |
| NUM -= 0   | 129        |          |            |
| DINORMAL   | 0.103908   | PROB>D   | <.01       |

| LEM | I LEAF                                          |
|-----|-------------------------------------------------|
| ~   | 58                                              |
| 2   | 123                                             |
| -   |                                                 |
| -   | 112344                                          |
| 0   | 0 5566678888888999                              |
| •   | 111111111122222222333333333344444               |
| -   | 0 444444433333333333333333322222221111000000000 |
| -   | 0 9988777766665555                              |
| 1   | 1 444332221110                                  |
| 1   |                                                 |
| 12  |                                                 |
| - 2 | 8                                               |
|     |                                                 |

--

| -   |
|-----|
| =   |
| 11  |
| in. |
| 141 |
| D   |
| -   |
| 2   |
| 1.  |
| H   |
| H   |
| E   |
| ×   |
| -   |
| 2   |
| 8   |
|     |

| REMES     | T HIGHEST | 4 2.09873 | 2.19532  | 19 2.34864 | 2.5113   | 16 2.8379 |         |          |          |
|-----------|-----------|-----------|----------|------------|----------|-----------|---------|----------|----------|
| EXT       | LOWES     | -2.8235   | -2.3572  | -1.4444    | -1.3763  | -1.3673   |         |          |          |
|           | 2.73992   | 1.58597   | 0.892883 | -1.09425   | -1.26692 | -2.68365  |         |          |          |
| ( h=130 ) | 266       | 95%       | 206      | 10%        | 5%       | 1%        |         |          |          |
| QUANTILES | 2.8379    | 0.350159  | 00879609 | -0.417294  | -2.82354 |           | 5.66145 | 0.767453 | -2.82354 |
|           | 100% MAX  | 75% 23    | 50% MED  | 25% 21     | NIM %0   |           | RANGE   | 23-21    | HODE     |

|                                        | * + + + + + + + + + + + + + + + + + + +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +3  |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|                                        | TULY PLOT<br>+++**********************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ÷   |
|                                        | LL PROBABIL<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0   |
|                                        | NORHJ<br>************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7 * |
| 10.8                                   | 2.75+<br>2.75+<br>*****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -2  |
| MISSING VALUE<br>COUNT<br>X COUNT/NOBS | BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOXPLOT<br>BOX |     |

LOG-QUADRATIC MODEL OF TSS AT CINCINNATI WW

UNIVARIATE

|                     | TUUL       | CIN          |           |           | <b>QUANTILES(I</b> | (h=J] |            | TX            | TREALS |           |
|---------------------|------------|--------------|-----------|-----------|--------------------|-------|------------|---------------|--------|-----------|
|                     | 120        | STOR MUS     |           | 111 11001 |                    |       |            | allo I        |        | TOUFER    |
| ITAU                | 1275-15    | CTON NILS    | 671 17 0  | 1004 1144 | 100000             | ****  | 06610.7    | TONCH C       | 100    | TOTOT     |
| TTD DEU             | 0000000    | avit a to to | 0.0700050 | 104 401   |                    | ****  | 10100 0    | 1000 0-       |        | 100000    |
| SPANDAGE STATE      | 0 1122000  | VIIDTOTOTO   | 10230 0   | 200 100   | 2100200.0-         | *06   |            |               |        | 000000    |
| 224444              | 0000000    | CTCOTVOV     | 49/00 · 9 | 1X 407    |                    | ***   | 110000     |               | 4      | 2 5 1 0 U |
| 2 0.                | 00000      | STD MFAN     | 0 0737130 | VTU VO    | -4.13319           | ***   | -2 62061   | 101011        | 10     | 66351     |
| T: MEAN=0           | 0 1395-14  | PRORVITI     | 1         | BANGE     | E 20721            | *     | 10.90.9    |               |        |           |
| CH PANK             | - 320 5    | 1 SI CADA    | 0 1161036 | 03-01     |                    |       |            |               |        |           |
| 0 == WIII           | 001        | I C L CONT   | C76104.0  | A LON     | 00000000           |       |            |               |        |           |
| HORMAL .            | 0.0982982  | PROB>D       | <.01      | 700       | 61001.9            |       |            |               | -      |           |
|                     |            |              |           |           |                    |       |            |               |        |           |
|                     |            |              |           | MISSING   | VALUE .            |       |            |               |        |           |
|                     |            |              |           | THIOP 4   | COUNT 4            |       |            |               |        |           |
|                     |            |              |           | " COUNT   | 10.5 5000          |       |            |               |        |           |
| TEM LEAF            |            |              |           | ROXPLOT   |                    |       | NORMAL PRO | BABILITY PLOT |        |           |
| 26 6                |            |              |           | 0         | 2 7                | +     |            |               |        | *         |
| 24 2                |            |              | -         |           | 2                  | -     |            |               |        | *         |
| 22 8                |            |              |           | 0         |                    |       |            |               |        | *         |
| 20 04               |            |              | 2         | 0         | 2.1                | +     |            |               | **     | ++        |
| 18 1                |            |              | -         | 0         |                    | _     |            |               | *      | ++        |
| 16                  |            |              |           |           |                    | -     |            |               |        | ++        |
| 14 5                |            |              | -         | -         | 1.5                | +1    |            |               | +++*   |           |
| 12 25               |            |              | 2         | -         |                    | -     | : 10       |               | **     |           |
| 10 34               |            |              | 2         | -         |                    | -     |            | ++            | *      |           |
| 8 239123            | 38         |              | 8         | -         | 0.9                | +     |            | ****          | ×      |           |
| 6 01562             |            |              | 5         |           |                    | -     |            | **+           |        |           |
| 1 68890             |            |              | 5         | _         |                    | -     |            | **++          |        |           |
| 2 0446912           | 2246788    |              | 13        | ++        | 0.3                | +     |            | ****+         |        |           |
| 0 222368            | 90223567   |              | 14        | + +       |                    | _     |            | ++***         |        |           |
| -0 977754           | 3219976554 | 443322       | 22        | *!!!!*    |                    | -     | **         | ****          |        |           |
| 122/66 2-           | 3887176322 | -            | 11        | -         | -0.3               | +     | ****       |               |        |           |
| -4 9776555          | 2197430    |              | 13        | ++        |                    |       | ****       |               |        |           |
| C6000 0-            |            |              | n .       |           |                    | _     | ****       |               |        |           |
| 08 8-               |            |              | 2         |           | -0.5               | + 0   | +.+*       |               |        |           |
| 0 6 9 0 6 4 0 6 4 0 |            |              | 9         | _         |                    | -     | ****       |               |        |           |
| -12 536420          |            |              | 9         | -         |                    | *     | ****       |               |        |           |
| - 14                |            |              |           |           | -1.5               | + 5   | +++        |               |        |           |
| -16                 |            |              |           |           |                    | ++    |            |               |        |           |
| - 18                |            |              |           |           |                    | ++    |            |               |        |           |
| -20                 |            |              |           |           | -2.1               | +++   |            |               |        |           |
| -22 9               |            |              | -         | 0         |                    | *     |            |               |        |           |
| h2-                 |            |              |           |           |                    | _     |            |               |        |           |
| -26 3               |            |              | -         | 0         | -2.1               | *++   |            |               |        |           |

LINEAR MODEL OF TSS AT CINCINNATI WW

UNIVARIATE

VARIABLE=R

RESIDUALS

| * * * * * *               | -125+% * *** ++++++++++++ | 0 0                                    | ti              |
|---------------------------|---------------------------|----------------------------------------|-----------------|
| ******                    | *****                     | 0                                      | 15              |
| *******                   | -                         | **                                     | .*********** 76 |
| ******                    | -                         | +++                                    | 20              |
| x +++++                   | -                         | 0                                      | 2               |
| +****                     | -                         | 0                                      | 4               |
| +++++ *                   |                           | *                                      | 2               |
| ++ **                     | -                         | ×                                      | 2               |
| **                        | -                         | ×                                      | 2               |
| ×                         | _                         | *                                      | 1               |
|                           |                           |                                        |                 |
| NORMAL PROBABILITY PLOT * | 525+                      | BOXPLOT<br>*                           |                 |
|                           | .01                       | HISSING VALUE<br>Count<br>% Count/Nobs |                 |
|                           |                           |                                        | <.01            |
|                           |                           | - MODE -132.322                        |                 |
|                           |                           | RANGE 673.88<br>23-21 39.4735          | 1000            |
| 37 -93.9267 541.558       | 1% -126.1                 |                                        | 6963            |
| -110.53 317.98            | 5% -82.99                 | 0% MIN -132.322                        | 1292            |
| 75 -110.999 259.253       | 3 10% -55.82              | 25% 21 -34.0868                        | 7535            |
| 15 -111.706 250.489       | 90% 66.                   | 50% MED -17.7072                       | 17.59           |
| -132.322 221.186          | 2 95% 184.2               | 75% 23 5,38672                         | 9E-13           |
| 84 LOWEST HIGHES          | n'hLh 266 8               | 100% MAX 541.558                       | 129             |
| EXTREMES                  |                           |                                        |                 |

ANOVA TABLE

LOG-LOG MODEL OF TDS AT CINCINNATI WW

ANALYSIS OF VARIANCE

| PARANETER<br>Estinate |                       |
|-----------------------|-----------------------|
|                       | PARAMETER<br>FETTMATE |

0.0001

35.823 -8.151

0.19112373 0.01715223

6.84670420 -0.13980243

--

INTERCEP LFLOW

| International and the state of th |      |        |                  |                    |          |                     |                     |             |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------|------------------|--------------------|----------|---------------------|---------------------|-------------|--------|
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 05   | ACTUAL | PREDICT<br>VALUE | STD ERR<br>PREDICT | RESIDUAL | STD BRR<br>RESIDUAL | STUDENT<br>RESIDUAL | -2-1-0 1 2  | COOK'S |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1    | 5.3138 | 5.6019           | 0.0406             | -0.2880  | 0.1672              | -1.7222             | 1 1 2 4 4 1 | 0.088  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2    | 5.3658 | 5.3930           | 0.0193             | -0.0272  | 0.1710              | -0.1592             |             | 0.000  |
| 1       5.0210       5.1336 $0.0227$ $0.01126$ $0.1703$ $-0.6610$ $*$ $0.000$ 5       5.31648       5.1538 $0.0227$ $0.01121$ $0.0642$ $*$ $0.0012$ 7       5.5503       5.3736 $0.0171$ $0.0171$ $0.0323$ $0.0171$ $0.0207$ $0.0171$ $0.0012$ $0.0014$ $0.0014$ $0.0014$ $0.0014$ $0.0014$ $0.0014$ $0.0014$ $0.0014$ $0.0014$ $0.0014$ $0.0014$ $0.0014$ $0.0014$ $0.0014$ $0.0014$ $0.0014$ $0.0014$ $0.0014$ $0.0014$ $0.00209$ $0.01711$ $0.01220$ $0.00209$ $0.01711$ $0.01220$ $0.00200$ $0.00209$ $0.01711$ $0.01201$ $0.00201$ $0.00201$ $0.00201$ $0.00201$ $0.00201$ $0.0001$ $0.00201$ $0.00201$ $0.0001$ $0.00201$ $0.00201$ $0.0001$ $0.0001$ $0.0021$ $0.0001$ $0.0021$ $0.0021$ $0.0001$ $0.0021$ $0.00201$ $0.01017$ $0.00201$ $0.0001$ $0.0001$ $0.0001$ $0.0001$ $0.0001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | E    | 5.3079 | 5.1934           | 0.0193             | 0.1946   | 0.1710              | 1.1379              | 00          | 0.008  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ħ    | 5.0210 | 5.1336           | 0.0247             | -0.1126  | 0.1703              | -0.6610             | #           | 0.005  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5    | 5.1648 | 5.1538           | 0.0227             | 0.0110   | 0.1706              | 0.0642              | -           | 0.000  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9    | 5.3391 | 5.2735           | 0.0151             | 0.0656   | 0.1714              | 0.3828              | -           | 0.001  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | L    | 5.6503 | 5.3596           | 0.0170             | 0.2907   | 0.1712              | 1.6975              | \$\$\$      | 0.014  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8    | 5.7141 | 5.3907           | 0.0191             | 0.3235   | 0.1710              | 1.8913              | 444         | 0.022  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6    | 5.4702 | 5.3463           | 0.0163             | 0.1238   | 0.1713              | 0.7228              | \$          | 0.002  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10   | 5.3291 | 5.4131           | 0.0209             | -0.0841  | 0.1708              | -0.4921             | -           | 0.002  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11   | 5.3391 | 5.2602           | 0.0155             | 0.0790   | 0.1714              | 0.4607              | -           | 0.001  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12   | 5.1520 | 5.2605           | 0.0155             | -0.1077  | 0.1714              | -0.6282             | 42          | 0.002  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 13   | 5.1160 | 5.2205           | 0.0174             | -0.1045  | 0.1712              | -0.6103             | 4           | 0.002  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14   | 5.0830 | 5.2030           | 0.0186             | -0.1200  | 0.1711              | -0.7016             | 4           | 0.003  |
| $ \begin{bmatrix} 16 & 4.9896 & 5.0441 & 0.0341 & -0.0545 & 0.1687 & -0.3231 &   &   &   &   & 0.002 \\ 17 & 5.2503 & 5.1852 & 0.0200 & 0.0651 & 0.1709 & 0.3811 &   &   &   & 0.001 \\ 18 & 5.0380 & 5.1627 & 0.0159 & -0.1247 & 0.1707 & -0.7305 &   &   &   & 0.004 \\ 19 & 5.0310 & 5.1629 & 0.0150 & -0.0178 & 0.1714 & -0.1037 &   &   & 0.004 \\ 10 & 5.4919 & 5.3344 & 0.0157 & 0.1574 & 0.1714 & 0.9186 &   &   & 0.004 \\ 21 & 5.4569 & 5.4041 & 0.0202 & 0.0528 & 0.1709 & 0.3091 &   &   & 0.001 \\ \end{bmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . 15 | 5.2079 | 5.1834           | 0.0201             | 0.0245   | 0.1709              | 0.1435              | -           | 0.000  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16   | 4.9896 | 5.0441           | 0.0341             | -0.0545  | 0.1687              | -0.3231             | -           | 0.002  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17   | 5.2503 | 5.1052           | 0.0200             | 0.0651   | 0.1709              | 0.3811              | -           | 0.001  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 18   | 5.0380 | 5.1627           | 0.0219             | -0.1247  | 0.1707              | -0.7305             | 4           | 0.004  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19   | 5.2612 | 5.2789           | 0.0150             | -0.0178  | 0.1714              | -0.1037             | -           | 0.000  |
| 21         5.3697         5.3025         0.0150         0.0662         0.1714         0.3861         1         1         0.001           22         5.44569         5.4041         0.0202         0.0528         0.1709         0.3091         1         1         0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20   | 5.4919 | 5.3344           | 0.0157             | 0.1574   | 0.1714              | 0.9186              | *           | 100.0  |
| 22 5-4569 5-4041 0.0202 0.0528 0.1709 0.3091     0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 21   | 5.3697 | 5.3025           | 0.0150             | 0.0662   | 0.1714              | 0.3861              |             | 0.001  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 22   | 5.4569 | 5.4041           | 0.0202             | 0.0528   | 0.1709              | 0.3091              | -           | 0.001  |

LOG-QUADRATIC MODEL OF TDS AT CINCINNATI WW

ANOVA TABLE

ANALYSIS OF VARIANCE

.....

|                 |                                  |                              |            |                       |                                     | COOK • S            | 0.096    | 0.000   | 0.007   | 6000-0   | 0.000  | 0.010    | 200-0  | 0.001    | 0.001  | 0.003   | 0.003   | E00.0      | 000.0      | 0,001    | 0.003    | 0.000   | 0.003  | 0.000     |
|-----------------|----------------------------------|------------------------------|------------|-----------------------|-------------------------------------|---------------------|----------|---------|---------|----------|--------|----------|--------|----------|--------|---------|---------|------------|------------|----------|----------|---------|--------|-----------|
|                 |                                  |                              |            |                       |                                     |                     | -        | -       |         |          | _      |          |        |          | _      | -       |         |            |            |          | _        | _       | -      | _         |
| PROB>F          | 0.0001                           |                              |            | PROB >  T             | 0.0010<br>0.5815<br>0.0143          | -2-1-0 1 2          | 44       |         | 00      |          | -      | 400      | *      |          | -      | *       | **      | 11-        |            |          | \$       | -       | *      | -         |
| ALUE            | 34.010                           | 0.3334<br>0.3334             |            | FOR HO:<br>AMETER=0   | 27.184<br>-0.553<br>-2.483          | STUDENT             | -1.4776  | -0.1691 | 1.0997  | 0.0684   | 0.3123 | 1.6637   | 0.6784 | -0.4829  | 0.3908 | -0.7036 | -0.6740 | PHC1 - 0 - | -0.0176    | 0.3477   | +0+1404  | -0.1761 | 0.8680 | 0.3207    |
| NEAN<br>QUARE F | 11704<br>52459                   | QUARE<br>R-SQ                | STINATES   | DARD T PARJ           | 0494<br>E-07<br>9102                | STO ERR<br>RESIDUAL | 0.1615   | 0.1707  | 10/1-0  | 0.1703   | 0.1706 | 0.1709   | 0.1709 | 0.1705   | 0.1705 | 0.1705  | 0.1704  | 1011.0     | 0.1556     | 0.1704   | 0.1703   | 0.1706  | 0.1709 | 0.1708    |
| 0F<br>ES S      | 08 1.004<br>42 0.029<br>50       | 72 R-5<br>67 ADJ<br>99       | ARAMETER E | STAN                  | 0.2196<br>4.84976<br>0.00210        | RESEDUAL            | -0.2306  | -0.0289 | 1901 0- | 0.0117   | 0.0533 | 0.2843   | 0.1159 | -0.0823  | 0.0666 | -0.1200 | -0.1148 | 0.0180     | 002738     | 0.0592   | -0.1261  | -0.0300 | 0.1483 | 0.0548    |
| SQUAR           | 2.008234<br>3.838196<br>5.846430 | 0.17182<br>5.293<br>3.2458   | d          | PARANETER<br>Estinate | .96975884<br>679558-07<br>005237701 | STD ERR<br>PREDICT  | 0.0587   | 0.0194  | 0.0552  | 0.0230   | 0.0206 | 0.0178   | 0.0178 | 0.0213   | 0.0211 | 0.0211  | 0.0221  | CCC0.0     | 0.0730     | 0.0222   | 0.0225   | 0.0203  | 0.0180 | 0.0192    |
| IRCE DF         | 2011 130 130 132 132 132         | ROOT MSE<br>DEP MEAN<br>C.V. |            | DF                    | 1 -2.<br>1 -2.                      | LEDICT<br>VALUE     | .5525    | 19947   | 1771    | .1531    | . 2859 | . 3927   | . 3542 | .4114    |        | 8212B   | 9115    | 1890       | .9923      | 11911    | .1642    | . 2912  | . 3435 |           |
| SOL             | ERF<br>C 1                       |                              |            | VARIABLE              | INTERCEP<br>FLOW<br>LQ2             | P.R. ACTUAL         | 5.3138 5 | 5.3658  | 5.0010  | 5.1648 5 | 5.3391 | 5.1111 5 | 5.4702 | 5.3291 5 | 5.3391 | 9.1528  | 01160   | 6202.5     | 11 9896 ti | 5.2503 5 | 5.0300 5 | 5.2612  | 6161.5 | 2. Judi C |
|                 |                                  |                              |            |                       |                                     |                     | 1        | ~ ~     | n =     | 5        | 9      | . 0      | 6      | 10       | 11     | 21      | 11      | 15         | 16         | 17       | 10       | 19      | 20     | 17        |

0.3207

085

LINEAR MODEL OF TDS AT CINCINNATI WW

ANOVA TABLE

# ANALYSIS OF VARIANCE

|         | 1                                     |                                  |                 | >  T                      |
|---------|---------------------------------------|----------------------------------|-----------------|---------------------------|
| PROB>   | 0*000                                 |                                  |                 | PROB                      |
| F VALUE | 19.087                                | 0.2758<br>0.2703                 |                 | T FOR 110:<br>PARAMETER=0 |
| SQUARE  | 70202.75151<br>1407.24946             | R-SQUARE<br>ADJ R-SQ             | NETER ESTIMATES | STANDARD<br>ERROR         |
| SQUARES | 70202.75151<br>184349.68<br>254552.43 | 37.51332<br>203.5542<br>18.42916 | PARAI           | A HAMETER<br>Estinate     |
| DF      | 1<br>131<br>132                       | MEAN                             |                 | 4                         |
| IRCE    | JEL<br>ROR<br>FOTAL                   | ROOT<br>DEP<br>C.V.              |                 | DF                        |
| 201     | R B                                   |                                  |                 | <b>VARIABLE</b>           |

0.0001

46.570

0\*000030574

229.75320-0.000272450

- -

INTERCEP FLOW

| STD ERR         STUDENT         -2-1-0         1         2         0.0004           -24.6212         37.2147         -0.6616         *         0.0004           -6.8505         37.2147         -0.6616         *         0.0004           -6.8505         37.2147         -0.6616         *         0.0004           -26.8505         37.3191         0.7035         *         0.0004           -21.0307         37.1141         -0.5667         *         0.0004           -5.9593         37.3128         0.70355         *         0.0002           -5.9693         37.3128         0.70351         *         *         0.0002           65.9693         37.3128         0.7011         *         *         0.0022           65.9693         37.3128         0.71135         *         *         0.0023           65.9653         37.3128         0.7129         *         *         0.0023           715.7656         37.2805         0.4129         *         *         0.0023           -15.7656         37.3693         0.7193         *         *         0.0023           -33.77113         37.3805         0.41293         *         0.0033                                                                                                                                                                   |                                         |                                  |         |           |          |         |             |         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------|---------|-----------|----------|---------|-------------|---------|
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PREDICT STD ERR<br>ACTUAL VALUE PREDICT | PREDICT STD ERR<br>VALUE PREDICT | STD ERR | RESTDUAL  | STD ERR  | STUDENT | - 1 - 1 - 2 | COOK'S  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 203.1 T.755 1.502                       | 3862-11 1-766                    | 91.07.0 | C1C3.11C- | LUIC LE  | -0 6616 | 7 1 0-1-7-  | A 400 0 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 214.0 220.8 4.0687                      | 220.8 4.0687                     | 4.0687  | -6.8585   | 37.2920  | -0-1819 | }           |         |
| -21.0307 $37.1141$ $-0.5667$ $\Rightarrow$ $\Rightarrow$ $0.003$ $-5.3035$ $37.2564$ $-0.1425$ $0.0111$ $\phi \Rightarrow \phi \Rightarrow$ $0.003$ $65.9633$ $37.31284$ $-0.1425$ $0.0111$ $\phi \Rightarrow \phi \Rightarrow$ $0.002$ $65.9633$ $37.31284$ $0.20111$ $\phi \Rightarrow \phi \Rightarrow$ $0.002$ $65.9633$ $37.31284$ $2.2111$ $\phi \Rightarrow \phi \Rightarrow$ $0.0217$ $20.2250$ $37.3294$ $2.2111$ $\phi \Rightarrow \phi \Rightarrow$ $0.002$ $-15.7656$ $37.3295$ $0.5419$ $\phi \Rightarrow \phi \Rightarrow$ $0.002$ $-15.7656$ $37.3295$ $0.5419$ $\phi \Rightarrow \phi \Rightarrow$ $0.002$ $-15.7656$ $37.3295$ $0.5419$ $\phi \Rightarrow \phi \Rightarrow$ $0.002$ $-15.77656$ $37.3295$ $0.0452$ $\phi \Rightarrow \phi \Rightarrow$ $0.002$ $-33.7113$ $37.3262$ $-0.9036$ $\phi = 0.002$ $0.003$ $-32.3860$ $37.3207$ $-0.1879$ $\phi = 0.003$ $0.004$ $-32.3113$ $37.3207$ $-0.1879$ $\phi = 0.003$ $0.003$ $-32.5413$ $35.32127$ $-0.1879$ $\phi = 0.003$ $-29.1792$ $37.3224$ $-0.7831$ $\phi = 0.003$ $-29.1792$ $37.3293$ $0.3107$ $-0.1937$ $\phi = 0.003$ $-16.03182$ $37.3293$ $0.0105$ $\phi = 0.003$ $-16.0317$ $37.3293$ $0.01193$ $\phi = 0.003$ $-12.0179$ $0.7110$ $2.5413$ $37.3293$ $0.00167$ $-12.0179$ $0.31656$ $0.31454$ $0.0012$ $-12.0170$ $0.31454$ $0.0012$ | 210.8 192.5 3.6109                      | 192.5 3.6109                     | 3.6109  | 26.2680   | 191.3391 | 0.7035  | *           | 0.002   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 151.6 172.6 5.4586                      | 172.6 5.4586                     | 5.4586  | -21.0307  | 37.1141  | -0.5667 | 0           | 0.003   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 175.0 180.3 4.6279                      | 180.3 4.6279                     | 4.6279  | -5.3035   | 37.2268  | -0.1425 | -           | 0.000   |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 208.3 208.7 3.3349                      | 208.7 3.3349                     | 3.3349  | -0.4140   | 37.3648  | -0.0111 |             | 000-000 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 284.4 218.4 3.8733                      | 218.4 3.8733                     | 3.8733  | 65.9693   | 37.3128  | 1.7680  | 444         | 0.017   |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 303.1 220.7 4.0560                      | 220.7 4.0560                     | 4.0560  | 82.4580   | 37.2934  | 2.2111  | 4444        | 0.029   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 237.5 217.3 3.7087                      | 217.3 3.7087                     | 3.7087  | 20.2250   | 37.3215  | 0.5419  | \$          | 0.002   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 206.3 222.0 4.1729                      | 222.0 4.1729                     | 4.1729  | -15.7656  | 37.2805  | -0.4229 |             | 0.001   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 208.3 206.6 3.2821                      | 206.6 3.2821                     | 3.2821  | 1.6907    | 37.3695  | 0.0452  | -           | 0.000   |
| -32.3860       37.3666       -0.8667       *       0.003         -33.7113       37.3522       -0.8025       *       0.004         -31.113       37.3207       -0.1879       *       0.004         -7.0129       37.3207       -0.1879       *       0.004         -7.0129       37.3207       -0.1879       *       0.006         -7.0129       37.3244       0.01103       *       0.006         -29.1792       37.3244       0.01103       *       0.006         -29.1792       37.3244       0.01103       *       0.006         -29.1792       37.3624       -0.7831       *       0.006         -26.54413       37.31293       0.7110       *       0.0010         26.54413       37.3197       0.7110       *       0.0010         1.9037       37.3197       0.3454       0.0010       0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 172.9 205.7 3.2830                      | 205.7 3.2830                     | 3.2830  | -33.7736  | 37.3694  | -0.9038 | 4           | 00.00   |
| -33.7113 37.3522 -0.9025 * * 0.000<br>-7.0129 37.3207 -0.1879 * 0.000<br>25.5433 35.3244 0.07193 * 0.000<br>0.3907 37.3244 0.0105 * 0.000<br>-29.1792 37.32623 -0.7831 * 0.000<br>-16.8032 37.3624 -0.4507 * 0.000<br>26.5413 37.393 0.7110 * 0.000<br>1.9017 37.393 0.3454 0.03454 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 166.7 199.1 3.3147                      | 199.1 3.3147                     | 3.3147  | -32.3860  | 37.3666  | -0.8667 | *           | 0.00    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 161.3 195.0 3.4729                      | 195.0 3.4729                     | 3.4729  | -33.7113  | 37.3522  | -0.9025 | \$          | 0.004   |
| 25.5(4)3       35.5127       0.7193       1       1       0.030         -2907       37.3244       0.0105       1       0.000         -29.1792       37.3244       0.0105       1       0.000         -29.1792       37.3624       -0.7831       *       0.000         -16.8382       37.3624       -0.4507       1       0.001         26.5413       37.37393       0.7110       1       1       0.002         26.5413       37.3497       0.0110       1       0.002       0.002         12.9037       37.3497       0.3454       0.001       0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 182.7 189.7 3.7969                      | 199.7 3.7969                     | 3.7969  | -7.0129   | 37.3207  | -0.1879 |             | 0.000   |
| 0.3907 37.3244 0.0105 1 0.000<br>-29.1792 37.2623 -0.7831 3 37.2623 -0.0901<br>-16.9382 37.3624 -0.4507 1 3 0.001<br>26.5413 37.3923 0.7110 1 37.397 0.0001<br>1.9037 37.3197 0.031454 0 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 146.9 121.3 12.0872                     | 121.3 12.0072                    | 12.0872 | 25.5433   | 35.5127  | 0.7193  | 4           | 0.030   |
| -29.1792 37.2623 -0.7831 34 0.004<br>-16.5932 37.3624 -0.4507 1 1 0.004<br>26.5413 37.3293 0.7110 1 4 0.002<br>1.9037 37.3797 0.03454 1 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 190.6 190.2 3.7500                      | 190.2 3.7500                     | 3.7500  | 106E.0    | 37.3244  | 0.0105  |             | 0.000   |
| -16.0302 37.3624 -0.4507 1 0.001<br>26.5413 37.3293 0.7110 1 7 0.002<br>1.9037 37.3497 0.0510 1 7 0.000<br>12.0770 37.2856 0.3454 1 0 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 154.2 183.3 4.3321                      | 183.3 4.3321                     | 4.3321  | -29.1792  | 37.2623  | -0.7831 | •           | 0.004   |
| 26.5413 37.3293 0.7110   1 0.002<br>1.9037 37.3497 0.0510   1 0.000<br>12.0770 37.2856 0.3454   1 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 192.7 209.5 3.3616                      | 209.5 3.3616                     | 3.3616  | -16.0302  | 37.3624  | -0.4507 | -           | 0.001   |
| 1.9037 37.3497 0.0510 1 1 0.000<br>12.8770 37.2856 0.3454 1 1 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 242.7 216.2 3.7108                      | 216.2 3.7108                     | 3.7108  | 26.5413   | 37.3293  | 0.7110  | 4           | 0.002   |
| 12.0770 37.2056 0.3454 1 1 1 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 214.6 212.7 3.5000                      | 212.7 3.5000                     | 3.5000  | 1.9037    | 37.3497  | 0.0510  |             | 0.000   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 234.4 221.5 4.1274                      | 221.5 4.1274                     | 4.1274  | 12.0770   | 37.2856  | 0.3454  | -           | 0.001   |

085

LOG-LOG MODEL OF TDS AT CINCINNATI WW

PREDICTED AND OBSERVED PLOT



NOTE: 64 OBS HIDDEN

LFLOW

LOG-QUADRATIC MODEL OF TDS AT CINCINNATI WW

PREDICTED AND OBSERVED PLOT



NOTE: 63 OBS HIDDEN



.



64 OBS HIDDEN NOTES

LYLOW

HIGHEST 0.323457 0.342243

LOWEST -0.455951 -0.371194 -0.356855 -0.32707

0.223555 -0.19879 -0.276419 -0.427134

100% MAX 0.588752 75% Q3 0.114129 50% MED -0.0283795 25% OL -0.105544 0% MIM -0.455544

1.0447 0.219673 -0.455951

RANGE Q3-Q1 NODE

BOXPLOT •

0.515734 0.310734

(h=dad) salitunu0

EXTREMES

0.373992

đ

UNIVARIATE

LOG-LOG MODEL OF TDS AT CINCINNATI WW

RESIDUALS VARIABLE=R

## NOMENTS .

| 133          | 3.0112-12 | 0.0293878 | 0.528328 | 3.07919 | 0.0148648 | 1          | 0.75033  |          | 0.029     |           | 1   |   |   |   | 2    |         | 3      | 3      | 6       | 14        | 12      | 6       | 10        | 25           | 15         | 6        |          |        |       |       | ~     |
|--------------|-----------|-----------|----------|---------|-----------|------------|----------|----------|-----------|-----------|-----|---|---|---|------|---------|--------|--------|---------|-----------|---------|---------|-----------|--------------|------------|----------|----------|--------|-------|-------|-------|
| <br>SUN NGTS | SUN       | VARIANCE  | KURTOSIS | CSS     | STD HEAN  | PROB>IT    | PROB> IS |          | PROB>D    |           |     |   |   |   |      |         |        |        |         |           |         |         |           | 5666555555   |            |          |          |        |       |       | 10    |
| <br>133      | 2.2648-14 | 0.171429  | 0.320304 | 3.87919 | 66666     | 1.5238-12  | -137.5   | 133      | 0.0815316 |           |     |   |   |   |      |         |        |        | 6680    | 112233444 | 7778868 | 2224    | 21110     | 998888777766 | 2111100000 | 5555     | 0        |        |       |       |       |
|              | HEAN      | STD DEV   | SKEVNESS | 155     | N         | C & MEAN=0 | SGN RANK | 0 =- WOM | JANORNAL  | STEN LEAF | 5 9 | 5 | 1 | 1 | 3 67 | 3 01224 | 2 5699 | 2 0013 | 1 66778 | 1 00001   | 0 55567 | 0 11122 | EE ### 0- | 666666 0-    | -1 44422   | -1 87766 | -2 11000 | -2 977 | Eh E- | 36 6- | 01 71 |

+----+-... ..... 7 + 0 0 0000 NORMAL PROBABILITY PLOT : . .... 0000 400 · -----C 00000 + \* \* \* \* 10000 7 .... -~ 0+0 + -0.475+0 0.575+ 0.225 -0.125

> 1 0

> > HULTIPLY STEM.LEAF BY 1044-01



LOG-QUADRATIC MODEL OF TDS AT CINCINNATI WW

UNIVARIATE

VARIABLE=R

RESIDUALS

| BATRENES         | LOWEST HIGHEST<br>-0.460102 0.31447<br>-0.355969 0.331051<br>-0.355455 0.359321<br>-0.335168 0.369061<br>-0.326758 0.610061                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ØABILITT PLOT              | ••••<br>•••••<br>•••••<br>•••••<br>•••••<br>••••<br>•••••<br>••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | 0.520649<br>0.317698<br>0.312124<br>-0.193443<br>-0.277763<br>-0.429977                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NORNAL PRO                 | 00000<br>00000<br>000++<br>00+++<br>00+++<br>00+++<br>00+++<br>00+++<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| QUANTILES (DEF=4 | 0.610861 99%<br>0.109619 95%<br>-0.0249193 90%<br>-0.105795 10%<br>-0.468102 13%<br>1.07896 13%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.625+                     | 0.075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                  | 100% MAX<br>75% Q3<br>50% MED<br>25% Q1<br>25% Q1<br>0% MIN<br>80% C1<br>00 C100 C1 | D<br>0                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                  | 133<br>2.8558-12<br>0.0290772<br>0.0290772<br>0.029371<br>0.014786<br>1<br>0.709295<br>0.008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| NTS              | SUN NGTS<br>SUN<br>VANIANCE<br>KURTOSIS<br>CSS<br>STD NEAN<br>PROD> 5 <br>PROD> 5 <br>PROD> 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            | 5<br>3<br>112<br>116<br>116<br>5<br>5<br>116<br>5<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| NON              | 2.147E-14<br>0.1705531<br>0.1705531<br>3.6999<br>1.452E-12<br>-166.5<br>0.0731924                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            | 3<br>678899999<br>556677889999<br>2<br>33322110000<br>0333221110000<br>76665<br>76655<br>1111000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                  | N<br>NEAN<br>STD DEV<br>STD DEV<br>USS<br>USS<br>TTNEAN=0<br>SGN RANK<br>NUM -= 0<br>D:NOONAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | STEN LEAF<br>6 1<br>5<br>4 | 4 67<br>3 67<br>2 582<br>2 582<br>2 592<br>1 5555<br>1 55555<br>1 555555<br>1 55555<br>1 555555<br>1 5555555<br>1 555555<br>1 5555555<br>1 5555555<br>1 55555555 |

-

82.458 93.2361 97.1703 139.874

**HIGHEST** 17.5294

UNIVARIATE

LINEAR MODEL OF TDS AT CINCINNATI WW

- -.

> RESIDUALS VARIABLE=R

ELTRENES 1.00 KST - 85.3003 - 65.4932 -60.4964 1636.963-NORMAL PHOBABILITY PLOT -0000 000. \*\*\*\*\* 0000+ 0 \*\*\*\* 00000 0000000 125.355 68.8623 53.9674 -35.9342 -55.9105 -78.5558 1 44 444 ++0000 + +++ ~ • -85++++ QUANTILES (DEF=4) # 506 # 206 # 206 -----145+ 139.0874 24.3026 -6.12635 -27.7602 -05.3003 225.174 52.1428 -85.3003 MAX Q3 MED Q1 MTN RANGE 03-01 MODE 100% BOXPLOT 0 13 2.3668-12 1396.59 0.957855 104350 <.01 7.24047 128676.0 NULTIPLY STEN.LEAF BY 1044+01 VAHLANCE KURTOSIS CSS PROB2 2 SUN NGTS PROB>D Sun 07776555333220000 9987777653322100 99999886655555433211 88666665554444432100 +----+---+----+----MOMENTS 133 37.371 0.096226 1.7798-14 5.490E-15 184350 66666 - 396.-5 133 04556666778 012333456779 1223469 257778 133667 01225 99866 STEN LEAF STD DEV SKENNESS USS SGN RANK NUM -= 0 D: NORMAL T: MEAN=0 921 20 27 38 14 0 5 8---2 5 . NEAN -= 2 11 2 5 D

+---- + -----

APPENDIX D: ANNUAL MEAN OF CONCENTRATION FOR EACH STATION



#### ANNUAL MEAN OF TOTAL SUSPENDED SOLIDS (MG/L)

|       |           | 77    | 78    | 79    | 80    | 81    | 82    | 83    | 84    | 85    | 86   | 87   |
|-------|-----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|------|
| STATI | ON        |       |       |       |       |       |       |       |       |       |      |      |
| JIAN  |           |       |       |       |       |       |       |       |       |       |      |      |
| 0.0   | ALLEGY R  | 43.2  | 29.5  | 60.9  | 52.6  | 22.3  | 32.3  | 22.1  | 14.0  | 42.1  | 15.3 | 15.0 |
| 0.0   | MONOGA R  | 31.6  | 40.9  | 37.8  | 63.9  | 48.5  | 26.5  | 30.4  | 20.0  | 42.2  | 19.1 | 26.1 |
| 15.2  | S HEIGHTS | 33.9  | 44.8  | 42.2  | 46.5  | 45.8  | 32.3  | 27.8  | 26.0  | 46.2  | 26.2 | 34.6 |
| 25.4  | BEAVER R  | 21.5  | 34.5  | 35.8  | 103.8 | 33.2  | 22.7  | 29.8  | 27.8  | 32.7  | 19.9 | 54.6 |
| 40.2  | E LIVERPL | 33.2  | 32.6  | 74.5  | 97.3  | 93.1  | 75.3  | 160.0 | 44.3  | 39.6  | 18.3 | 20.4 |
| 86.8  | WHEELING  | 39.2  | 38.6  | 68.6  | 62.2  | 28.3  | 66.9  | 35.0  | 32.8  | 37.7  | 19.3 | 21.4 |
| 126.4 | HANNIBAL  | 23.4  | 16.1  | 21.4  | 34.1  | 30.5  | 29.2  | 22.7  | 24.1  | 23.8  | 18.6 | 13.3 |
| 161.8 | WILLOW IS | 27.9  | 29.6  | 42.8  | 22.8  | 21.5  | 38.8  | 37.3  | 24.2  | 17.4  | 16.4 | 15.8 |
| 172.2 | MUSKGM R  | 58.5  | 64.5  | 68.4  | 76.5  | 125.1 | 70.9  | 87.3  | 54.0  | 68.1  | 40.7 | 36.4 |
| 203.9 | BELLEVL   | 33.5  | 45.4  | 49.8  | 90.2  | 120.0 | 57.6  | 51.8  | 25.2  | 29.0  | 33.2 | 14.9 |
| 260.0 | ADDISON   | 58.7  | 102.9 | 64.7  | 59.8  | 88.4  | 64.3  | 44.4  | 38.1  | 83.0  | 64.1 | 20.7 |
| 265.7 | KANAWA R  | 37.4  | 49.4  | 115.1 | 53.2  | 36.4  | 99.3  | 42.7  | 38.9  | 17.9  | 29.9 | 13.1 |
| 279.2 | GALLIPOL  | 49.9  | 62.6  | 92.0  | 65.8  | 66.3  | 56.2  | 50.3  | 27.1  | 51.1  | 50.0 | 18.3 |
| 306.9 | HUNTING   | 85.5  | 110.8 | 136.1 | 48.3  | 98.8  | 10.1  | 23.0  | 7.0   | 29.5  | 30.7 | 9.3  |
| 317.1 | BIG SANDY | 136.8 | 273.4 | 163.5 | 64.4  | 164.9 | 123.1 | 33.8  | 130.1 | 62.3  | 55.1 | 17.4 |
| 350.7 | PORTSM    | 70.3  | 92.4  | 47.4  | 38.4  | 66.8  | 80.3  | 41.7  | 80.5  | 88.8  | 64.3 | 22.6 |
| 356.5 | SCIOTO R  | 98.6  | 126.1 | 59.3  | 88.8  | 106.7 | 97.8  | 83.0  | 72.7  | 86.6  | 71.3 | 33.8 |
| 408.5 | MAYSVILLE | 54.2  | 46.0  | 54.0  | 63.4  | 55.8  | 58.7  | 87.5  | 63.6  | 115.6 | 49.6 | 26.2 |

#### ANNUAL MEAN OF TOTAL SUSPENDED SOLIDS (MG/L)

| CONTIN | UED)      |       |       |       |       |       | YY    |       |       |       |       |      |
|--------|-----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|
|        |           | 77    | 78    | 79    | 80    | 81    | 82    | 83    | 84    | 85    | 86    | 87   |
| STATIC | м         |       |       |       |       |       |       |       |       |       |       |      |
| 462.8  | CINCINN   | 96.6  | 106.9 | 91.7  | 105.3 | 82.9  | 73.3  | 111.2 | 59.9  | 200.9 | 86.2  | 34.6 |
| 464.1  | LIL MIAMI | 132.7 | 94.8  | 30.3  | 110.0 | 87.9  | 49.3  | 94.7  | 100.6 | 58.0  | 130.0 | 35.0 |
| 470.2  | LICKING R | 107.4 | 130.0 | 72.3  | 55.0  | 61.5  | 100.2 | 56.6  | 84.9  | 51.4  | 85.7  | 65.6 |
| 490.0  | N BEND    | 62.3  | 101.0 | 69.1  | 38.7  | 82.7  | 95.0  | 500.5 | 41.2  | 55.1  | 53.1  | 31.8 |
| 491.1  | GR MIAMI  | 96.5  | 100.0 | 71.4  | 305.3 | 72.5  | 120.3 | 158.1 | 59.3  | 61.1  | 109.1 | 87.0 |
| 531.5  | MARKLAND  | 45.3  | 50.9  | 47.9  | 40.9  | 72.9  | 100.1 | 30.4  | 33.7  | 226.1 | 56.5  | 31.5 |
| 600.6  | LOUISVL   | 111.5 | 81.3  | 88.2  | 33.3  | 70.9  | 104.0 | 55.2  | 73.9  | 56.9  | 40.1  | 34.7 |
| 625.9  | W POINT   | 103.9 | 210.6 | 298.3 | 52.7  | 127.3 | 135.0 | 79.6  | 50.3  | 74.8  | 54.8  | 52.5 |
| 720.7  | CANNELTN  | 76.7  | 113.5 | 84.6  | 54.9  | 52.1  | 163.5 | 76.1  | 68.7  | 95.3  | 56.8  | 22.2 |
| 784.2  | GREEN R   | 65.8  | 96.8  | 86.2  | 38.2  | 76.1  | 153.8 | 60.2  | 59.9  | 54.5  | 66.5  | 54.4 |
| 791.5  | EVANSVL   | 122.0 | 356.0 | 405.3 | 606.3 | 85.5  | 159.7 | 85.1  | 99.8  | 162.9 | 102.1 | 78.4 |
| 846.0  | UNIONTOWN | 61.3  | 73.3  | 142.8 | 58.9  | 44.5  | 79.6  | 64.0  | 62.8  | 120.2 | 94.4  | 58.3 |
| 848.0  | WABASH R  | 119.4 | 174.5 | 229.7 | 170.2 | 125.7 | 321.6 | 115.5 | 111.9 | 117.8 | 150.8 | 92.3 |
| 918.5  | SMITHLAND |       |       |       |       |       | 86.3  | 44.3  | 52.6  | 71.7  | 62.5  | 23.3 |
| 920.4  | CUMBRLD R | 25.6  | 28.7  | 37.2  | 18.0  | 26.6  | 28.5  | 17.8  | 12.4  | 10.7  | 12.2  | 13.8 |
| 934.5  | TENNESS R | 22.0  | 18.3  | 28.8  | 21.0  | 30.3  | 32.2  | 17.9  | 14.8  | 10.0  | 11.8  | 14.4 |
| 952.3  | JOPPA     | 82.2  | 84.5  | 139.4 | 86.6  | 95.3  | 108-2 | 46.4  | 57.3  | 66.0  | 80.2  | 39.1 |

ANNUAL MEAN OF TOTAL DISSOLVED SOLIDS (MG/L)

YY

|         | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 |
|---------|----|----|----|----|----|----|----|----|----|----|----|
| :       |    |    |    |    |    |    |    |    |    |    |    |
| STATION |    |    |    |    |    |    |    |    |    |    |    |

0.0 ALLEGY R 157.0 182.5 142.9 150.1 134.8 149.2 148.3 163.4 169.8 148.6 153.9 0.0 MONOGA R 226.2 225.0 220.3 230.0 214.2 214.1 236.9 202.9 182.4 209.4 223.0 15.2 S HEIGHTS 192.8 203.7 207.6 195.2 216.5 229.7 195.5 193.8 200.1 188.0 183.6 25.4 BEAVER R 271.7 253.1 270.3 239.6 243.6 253.4 231.3 224.8 248.3 227.7 231.8 40.2 E LIVERPL 202.1 207.3 208.2 196.6 179.0 187.2 189.9 182.0 198.6 185.9 207.3 86.8 WHEELING 212.1 235.1 216.5 216.3 213.1 220.6 226.0 206.0 222.7 211.9 208.0 126.4 HANNIBAL 182.2 238.2 234.0 230.0 222.7 231.5 258.1 212.2 227.9 218.5 214.7 161.8 WILLOW IS 216.3 228.5 224.7 237.0 211.5 220.3 251.6 216.1 231.5 207.6 216.4 172.2 MUSKGM R 420.5 360.9 305.3 359.4 360.4 387.8 377.8 355.2 375.0 359.6 390.6 203.9 BELLEVL 244.6 247.5 233.6 237.1 224.7 257.8 255.5 224.5 246.1 222.4 239.8 260.0 ADDISON 224.9 244.3 269.6 249.1 223.5 231.8 241.1 237.3 228.5 204.2 242.1 265.7 KANAWA R 154.2 134.5 118.8 126.6 121.3 108.6 119.1 107.0 111.4 110.7 131.3 279.2 GALLIPOL 202.6 205.8 228.7 232.1 221.7 213.8 214.3 192.4 192.3 176.3 210.9 306.9 HUNTING 189.7 200.4 209.1 198.7 206.6 214.1 220.1 199.2 191.8 177.9 232.8 317.1 BIG SANDY 216.1 218.1 228.8 259.1 259.9 233.1 270.6 251.7 253.0 277.8 321.0 350.7 PORTSM 211.5 207.8 197.7 243.6 231.5 208.8 242.8 188.3 220.8 187.5 220.5 356.5 SCIOTO R 387.6 321.9 347.7 332.4 378.4 354.9 417.9 397.2 390.1 358.3 422.7 408.5 MAYSVILLE 225.5 216.8 188.9 217.9 223.2 211.4 224.1 193.0 245.8 227.1 199.6

#### ANNUAL MEAN OF TOTAL DISSOLVED SOLIDS (MG/L)

(CONTINUED)

|         | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 |
|---------|----|----|----|----|----|----|----|----|----|----|----|
|         |    |    |    |    |    |    |    |    |    |    |    |
| STATION |    |    |    |    |    |    |    |    |    |    |    |

YY

462.8 CINCINN 209.5 199.2 194.4 210.2 208.7 201.8 198.5 193.0 208.4 219.5 188.1 464.1 LIL MIAMI 381.9 341.9 296.9 325.3 352.8 340.1 398.0 442.2 444.0 388.8 365.7 470.2 LICKING R 171.0 161.1 159.5 187.9 168.6 172.4 228.0 212.5 229.8 226.6 169.3 490.0 N BEND 229.2 216.6 209.6 247.4 237.5 210.9 235.5 215.6 241.2 226.8 206.0 491.1 GR MIAMI 468.3 415.6 368.0 411.5 461.2 395.3 430.7 441.4 444.3 402.9 389.7 531.5 MARKLAND 234.9 232.9 209.2 232.3 246.6 219.3 230.2 206.8 233.4 240.1 209.8 600.6 LOUISVL 211.9 223.5 200.0 240.3 242.5 220.1 229.2 216.4 233.3 235.2 204.4 625.9 W POINT 222.3 230.8 205.2 250.4 247.3 225.3 232.3 219.5 234.6 246.3 219.2 720.7 CANNELTN 234.0 233.0 198.4 228.7 227.2 211.5 233.2 218.8 216.1 224.8 216.3 784.2 GREEN R 182.9 195.9 165.1 217.4 192.6 175.9 195.3 221.1 230.4 253.4 217.9 791.5 EVANSVL 217.4 227.4 202.1 235.3 254.6 208.1 224.5 209.9 222.1 226.3 210.6 846.0 UNIONTOWN 227.9 232.3 203.1 247.7 249.2 208.5 219.3 218.2 218.2 217.9 229.7 848.0 WABASH R 323.6 292.0 295.1 324.4 359.0 299.2 315.4 289.1 287.0 287.6 287.6 918.5 SMITHLAND . 225.6 246.9 227.9 237.2 250.3 146.0 . 920.4 CUMBRLD R 120.7 129.6 119.8 132.6 145.2 128.9 127.6 134.6 134.1 139.3 109.0 934.5 TENNESS R 101.8 109.9 97.9 113.3 132.4 105.2 97.4 113.3 115.6 127.1 97.9 952.3 JOPPA 212.1 214.8 199.3 238.1 257.1 233.3 215.6 213.2 221.9 242.4 137.0

ANNUAL MEAN OF HARDNESS (MG/L)

|       |           |       | 70    | 70    |       |       |       |         |       |       |       |       |
|-------|-----------|-------|-------|-------|-------|-------|-------|---------|-------|-------|-------|-------|
|       |           | 11    | 78    | 19    | 80    | 81    | 82    | 83      | 84    | 85    | 86    | 87    |
| STATI | ON        |       |       |       |       |       |       | *)<br>( |       |       |       |       |
| 0.0   | ALLEGY R  |       | •     | 92.5  | 101.0 | 88.7  | 97.1  | 92.1    | 87.7  | 103.7 | 89.6  | 94.5  |
| 0.0   | MONOGA R  |       |       | 130.9 | 129.3 | 134.3 | 117.3 | 125.0   | 111.7 | 106.7 | 119.0 | 130.3 |
| 15.2  | S HEIGHTS |       | ·     | 120.7 | 121.8 | 115.3 | 110.2 | 112.3   | 93.8  | 115.5 | 105.3 | 111.8 |
| 25.4  | BEAVER R  | •     |       | 147.9 | 150.6 | 152.3 | 146.7 | 137.3   | 125.3 | 153.0 | 142.5 | 142.5 |
| 40.2  | E LIVERPL |       |       | 125.8 | 115.1 | 117.9 | 115.3 | 109.3   | 103.9 | 123.0 | 118.0 | 131.5 |
| 86.8  | WHEELING  | •     |       | 127.1 | 131.0 | 146.0 | 122.1 | 128.4   | 124.8 | 130.0 | 126.3 | 111.8 |
| 126.4 | HANNIBAL  | •     |       | 124.4 | 134.3 | 130.7 | 125.2 | 140.6   | 130.3 | 131.0 | 123.3 | 115.3 |
| 161.8 | WILLOW IS |       |       | 129.4 | 137.2 | 125.3 | 123.8 | 136.1   | 124.8 | 132.0 | 117.5 | 111.3 |
| 172.2 | MUSKGM R  | 243.0 | 265.3 | 226.7 | 238.6 | 222.5 | 242.4 | 231.9   | 230.5 | 211.5 | 242.4 | 248.7 |
| 203.9 | BELLEVL   |       |       | 145.5 | 155.7 | 135.6 | 145.0 | 153.7   | 137.7 | 138.2 | 133.3 | 123.3 |
| 260.0 | ADDISON   |       |       | 141.2 | 150.1 | 145.8 | 134.7 | 146.8   | 135.2 | 131.1 | 132.5 | 146.0 |
| 265.7 | KANAWA R  | 82.5  | 83.0  | 61.5  | 87.4  | 63.0  | 70.6  | 66.1    | 65.5  | 73.1  | 71.1  | 69.5  |
| 279.2 | GALLIPOL  |       |       | 110.6 | 123.9 | 123.5 | 123.3 | 117.3   | 109.2 | 112.4 | 107.8 | 106.5 |
| 306.9 | HUNTING   |       | 96.0  | 112.7 | 135.3 | 126.6 | 133.9 | 122.1   | 118.5 | 122.4 | 114.3 | 124.8 |
| 317.1 | BIG SANDY | 142.0 | 147.0 | 117.1 | 142.9 | 128.1 | 130.5 | 146.8   | 143.2 | 139.2 | 148.9 | 154.2 |
| 350.7 | PORTSM    | 192.0 |       | 124.5 | 121.0 | 126.7 | 118.6 | 127.9   | 113.8 | 132.7 | 123.0 | 111.3 |
| 356.5 | SCIOTO R  | 267.3 | 293.8 | 263.8 | 254.3 | 251.9 | 223.5 | 241.5   | 241.6 | 258.2 | 245.8 | 286.2 |
| 408.5 | MAYSVILLE |       | 111.0 | 124.1 | 135.8 | 137.1 | 124.3 | 134.9   | 163.5 | 154.8 | 122.4 | 128.2 |

ANNUAL MEAN OF HARDNESS (MG/L)

| (CONTINUED)   |    |       |       |       |       | YY    |       |       |       |       |       |
|---------------|----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|               | 77 | 78    | 79    | 80    | 81    | 82    | 83    | 84    | 85    | 86    | 87    |
| STATION       |    |       |       | 4     |       |       |       |       |       |       |       |
| 462.8 CINCINN |    | 155.0 | 119.7 | 141.7 | 140.0 | 125.0 | 132.1 | 128.8 | 133.0 | 118.9 | 117.2 |

464.1 LIL MIAMI 298.7 253.5 253.2 245.5 256.4 251.1 238.2 198.5 226.8 254.2 270.2 470.2 LICKING R 124.0 118.6 122.0 129.7 148.8 133.5 152.3 159.7 120.8 132.2 124.0 . 208.0 129.3 147.4 144.0 126.3 140.8 135.3 154.6 128.5 129.2 490.0 N BEND 491.1 GR MIAMI 301.0 279.9 323.4 312.0 315.2 283.6 318.6 321.7 292.4 272.2 291.5 . 207.0 136.1 158.2 141.4 141.3 152.7 140.3 164.3 145.6 147.4 531.5 MARKLAND 600.6 LOUISVL . 182.0 118.4 158.9 146.2 143.3 137.8 136.9 141.9 140.3 131.8 625.9 W POINT . 183.5 124.2 157.3 150.4 140.8 144.2 142.2 135.4 145.5 131.2 720.7 CANNELIN . 151.0 137.5 134.3 139.0 131.8 122.0 137.3 134.1 139.0 133.8 784.2 GREEN R . 125.0 118.2 166.7 122.5 122.8 148.4 160.3 164.9 187.2 157.5 . 96.5 128.6 159.0 156.2 137.3 140.6 147.3 139.4 160.3 139.7 791.5 EVANSVL 846.0 UNIONTOWN . 216.5 124.9 161.2 161.1 129.4 137.5 135.5 146.5 146.4 138.2 848.0 WABASH R . 285.0 212.1 210.7 193.4 208.5 222.7 255.6 220.6 237.3 253.3 . . 153.2 164.0 158.8 151.6 151.3 114.3 918.5 SMITHLAND 920.4 CUMBRLD R . 147.0 82.7 103.0 98.2 98.8 100.5 91.7 106.2 107.0 89.7 934.5 TENNESS R . 78.0 64.2 73.5 72.1 74.9 67.3 71.3 75.4 79.0 72.7 952.3 JOPPA . 180.5 161.1 159.5 154.9 157.0 143.8 149.4 152.2 159.3 111.8

ANNUAL MEAN OF SULFATE (MG/L)

|               |           | 77    | 78    | 79    | 80    | 81    | 82    | 83           | 84    | 85    | 86    | 87    |  |
|---------------|-----------|-------|-------|-------|-------|-------|-------|--------------|-------|-------|-------|-------|--|
| STATI         | ON        |       |       |       |       |       |       |              |       |       |       |       |  |
| 0.0           | ALLEGY R  | 71.3  | 85.5  | 72.8  | 66.3  | 64.2  | 67.5  | 69.0         | 68.7  | 69.3  | 61.6  | 57.7  |  |
| 0.0           | MONOGA R  | 116.3 | 110.0 | 111.8 | 109.2 | 124.6 | 104.5 | 121.3        | 99.9  | 90.0  | 98.2  | 110.5 |  |
| 15.2          | S HEIGHTS | 89.7  | 95.8  | 93.5  | 102.8 | 87.6  | 88.7  | 91.9         | 85.8  | 87.5  | 77.7  | 77.7  |  |
| 25.4          | BEAVER R  | 87.7  | 74.1  | 65.1  | 72.7  | 77.4  | 68.3  | 70 <b>.9</b> | 64.7  | 69.8  | 62.8  | 57.0  |  |
| 40.2          | E LIVERPL | 86.1  | 89.4  | 78.4  | 89.9  | 83.5  | 76.0  | 81.9         | 76.2  | 82.8  | 74.3  | 81.7  |  |
| 86.8          | WHEELING  | 94.5  | 101.6 | 93.3  | 95.3  | 94.2  | 86.5  | 77.3         | 86.3  | 95.1  | 82.5  | 59.4  |  |
| 126.4         | HANNIBAL  | 69.3  | 95.9  | 89.2  | 93.0  | 87.6  | 87.3  | 85.5         | 90.1  | 93.8  | 79.8  | 68.4  |  |
| 161.8         | WILLOW IS | 98.3  | 89.5  | 85.6  | 105.2 | 93.4  | 90.0  | 115.8        | 87.3  | 97.2  | 91.9  | 60.1  |  |
| 172.2         | MUSKGM R  | 126.1 | 104.4 | 97.8  | 112.8 | 122.2 | 122.0 | 131.7        | 120.6 | 115.4 | 120.3 | 103.0 |  |
| 203.9         | BELLEVL   | 90.3  | 91.4  | 88.0  | 100.0 | 91.3  | 86.2  | 101.5        | 87.3  | 86.8  | 85.8  | 68.3  |  |
| 260.0         | ADDISON   | 95.9  | 86.3  | 85.1  | 95.2  | 89.3  | 86.5  | 104.2        | 84.8  | 82.8  | 75.7  | 77.8  |  |
| 265.7         | KANAWA R  | 43.1  | 31.3  | 26.8  | 30.3  | 32.6  | 24.3  | 35.8         | 23.5  | 32.6  | 28.3  | 24.7  |  |
| 27 <b>9.2</b> | GALLIPOL  | 77.6  | 69.3  | 74.2  | 71.5  | 88.1  | 63.8  | 82.5         | 60.3  | 70.7  | 60.1  | 54.6  |  |
| 306.9         | HUNTING   | 74.0  | 74.6  | 68.0  | 85.5  | 85.9  | 81.6  | 101.1        | 72.8  | 80.9  | 69.9  | 64.3  |  |
| 317.1         | BIG SANDY | 89.7  | 92.0  | 85.7  | 95.0  | 113.4 | 92.5  | 119.3        | 101.9 | 100.4 | 107.4 | 110.7 |  |
| 350.7         | PORTSM    | 76.8  | 73.5  | 60.1  | 79.1  | 79.2  | 63.3  | 87.0         | 58.6  | 80.0  | 68.5  | 63.3  |  |
| 356.5         | SCIOTO R  | 84.5  | 63.5  | 45.0  | 58.2  | 79.7  | 67.7  | 81.6         | 68.5  | 79.0  | 79.0  | 79.3  |  |
| 408.5         | MAYSVILLE | 80.8  | 73.1  | 55.4  | 73.1  | 85.8  | 64.9  | 87.9         | 57.3  | 69.3  | 69.0  | 59.0  |  |

#### ANNUAL MEAN OF SULFATE (MG/L)

| CONTINU | ED)      |      |       |      |      |      | YY     |      |      |      |      |      |
|---------|----------|------|-------|------|------|------|--------|------|------|------|------|------|
|         |          | 77   | 78    | 79   | 80   | 81   | 82     | 83   | 84   | 85   | 86   | 87   |
| STATION |          |      |       |      |      |      |        |      |      |      |      |      |
| 462.8 C | INCINN   | 72.5 | 73.0  | 56.9 | 76.4 | 81.8 | 59.3   | 86.2 | 55.0 | 63.8 | 60.8 | 57.8 |
| 464.1 L | IL MIAMI | 50.6 | 34.8  | 29.9 | 34.9 | 45.4 | 40.4   | 50.8 | 44.4 | 42.0 | 37.5 | 34.8 |
| 470.2 L | ICKING R | 36.8 | 23.8  | 19.3 | 25.3 | 30.3 | . 23.8 | 33.5 | 37.4 | 27.0 | 45.8 | 38.8 |
| 490.0 N | BEND     | 78.5 | 69.9  | 62.2 | 76.3 | 77.5 | 60.8   | 77.6 | 73.2 | 78.0 | 64.0 | 59.3 |
| 491.1 G | R MIAMI  | 75.4 | 59.9  | 52.3 | 48.2 | 66.4 | 54.8   | 70.4 | 65.5 | 59.9 | 52.3 | 52.3 |
| 531.5 M | ARKLAND  | 78.1 | 68.8  | 54.3 | 68.3 | 82.4 | 54.8   | 76.3 | 71.8 | 76.6 | 62.1 | 55.8 |
| 600.6 L | OUISVL   | 77.4 | 103.7 | 70.9 | 71.6 | 72.8 | 58.2   | 65.3 | 66.4 | 64.8 | 69.9 | 53.8 |
| 625.9 W | POINT    | 80.4 | 78.4  | 70.5 | 73.7 | 74.9 | 60.3   | 68.4 | 66.7 | 70.7 | 66.3 | 52.2 |
| 720.7 C | ANNELTN  | 80.3 | 71.5  | 63.5 | 92.1 | 80.2 | 53.0   | 72.3 | 68.8 | 64.7 | 56.9 | 57.8 |
| 784.2 G | REEN R   | 57.2 | 59.8  | 53.3 | 73.1 | 74.3 | 54.5   | 57.6 | 76.5 | 79.8 | 85.0 | 48.7 |
| 791.5 E | VANSVL   | 77.1 | 107.5 | 63.8 | 73.6 | 81.5 | 53.3   | 66.0 | 67.8 | 67.4 | 64.7 | 53.6 |
| 846.0 U | NIONTOWN | 75.9 | 76.6  | 70.8 | 69.2 | 71.8 | 55.0   | 67.6 | 65.2 | 68.3 | 60.0 | 53.3 |
| 848.0 W | ABASH R  | 76.3 | 59.6  | 61.9 | 61.9 | 64.5 | 50.3   | 65.3 | 70.7 | 54.9 | 41.8 | 53.9 |
| 918.5 S | MITHLAND |      |       |      |      | •    | 60.2   | 69.4 | 63.2 | 64.1 | 58.7 | 27.4 |
| 920.4 C | UMBRLD R | 18.1 | 19.0  | 17.8 | 18.4 | 27.6 | 28.5   | 25.8 | 18.1 | 19.5 | 23.2 | 18.2 |
| 934.5 T | ENNESS R | 15.0 | 12.9  | 23.4 | 13.0 | 18.1 | 10.0   | 14.5 | 13.6 | 14.2 | 17.9 | 14.6 |
| 952.3 J | OPPA     | 70.1 | 65.7  | 60.9 | 67.3 | 63.0 | 43.8   | 57.6 | 60.3 | 57.3 | 44.3 | 29.1 |
| 952.3 J | OPPA     | 70.1 | 65.7  | 60.9 | 67.3 | 63.0 | 43.8   | 57.6 | 60.3 | 57.3 | 44.3 |      |

#### ANNUAL MEAN OF TOTAL PHOSPHORUS (MG/L)

|                   | 77  | 78  | 79  | 80  | 81  | 82  | 83  | 84  | 85       | 86      | 87     |
|-------------------|-----|-----|-----|-----|-----|-----|-----|-----|----------|---------|--------|
| STATION           |     |     |     |     |     |     |     |     |          |         |        |
| 0.0 ALLEGY R      | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.0 | 0.1      | 0.1     | 0.0    |
| 0.0 MONOGA R      | 0.1 | 0.1 | 0.1 | 0.2 | 0.2 | 0.1 | 0.2 | 0.1 | 0.1      | 0.1     | 0.1    |
| 15.2 S HEIGHTS    | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.1 | 0.2 | 0.1 | 0.1      | 0.1     | 0.1    |
| 25.4 BEAVER R     | 0.2 | 0.3 | 0.2 | 0.3 | 0.3 | 0.3 | 0.2 | 0.2 | 0.2      | 0.2     | 0.3    |
| 40.2 E LIVERPL    | 0.2 | 0.2 | 0.2 | 0.5 | 0.3 | 0.2 | 0.3 | 0.1 | 0.2      | 0.1     | 0.1    |
| 86.8 WHEELING     | 0.2 | 0.2 | 0.1 | 0.2 | 0.1 | 0.2 | 0.1 | 0.1 | 0.1      | 0.1     | 0.1    |
| 126.4 HANNIBAL    | 0.1 | 0.1 | 0.1 | 0.1 | 0.2 | 0.1 | 0.1 | 0.1 | 0.1      | 0.1     | 0.1    |
| 161.8 WILLOW IS   | 0.1 | 0.1 | 0.3 | 0.3 | 0.2 | 0.1 | 0.2 | 0.1 | 0.1      | 0.2     | 0.1    |
| * 172.2 MUSKGM R  | 0.2 | 0.2 | 0.9 | 0.3 | 0.2 | 0.2 | 0.1 | 0.1 | 0.1      | 0.4     | 0.1    |
| 203.9 BELLEVL     | 0.2 | 0.3 | 0.2 | 0.1 | 0.2 | 0.2 | 0.1 | 0.1 | 0.1      | 0.1     | 0.1    |
| 260.0 ADDISON     | 0.2 | 0.3 | 0.3 | 1.2 | 0.2 | 0.1 | 0.1 | 0.1 | 0.1      | 0.2     | 0.1    |
| * 265.7 KANAWA R  | 0.2 | 0.3 | 0.6 | 0.2 | 0.1 | 0.2 | 0.1 | 0.1 | 0.1      | 0.1     | 0.1    |
| 279.2 GALLIPOL    | 0.2 | 0.2 | 0.4 | 0.4 | 0.2 | 0.1 | 0.1 | 0.1 | 0.1      | 0.1     | 0.1    |
| 306.9 HUNTING     | 0.2 | 0.3 | 0.2 | 0.1 | 0.2 | 0.0 | 0.1 | 0.2 | 0.2      | 0.6     | 0.6    |
| 317.1 BIG SANDY   | 0.3 | 0.3 | 0.3 | 0.4 | 0.2 | 0.1 | 0.1 | 0.1 | 0.1      | 0.1     | 0.0    |
| 350.7 PORTSM      | 0.3 | 0.3 | 0.3 | 0.2 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1      | 0.1     | 0.2    |
| * 356.5 SCIOTO R  | 0.8 | 0.5 | 0.5 | 0.6 | 0.4 | 0.4 | 0.3 | 0.2 | 0.3      | 0.3     | 0.4    |
| * 408.5 MAYSVILLE | 0.3 | 0.2 | 0.1 | 0.5 | 0.2 | 0.1 | 0.1 | 0.1 | 0.1      | 0.1     | 0.1    |
|                   |     |     |     |     |     |     |     | *   | INCOMPLI | ETE DAT | A SETS |

ANNUAL MEAN OF IUIAL PHUSPHURUS (MG/L)

| (CONTINUED)       |     |     |     |     |     | YY  |     |     |     |     |     |
|-------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|                   | 77  | 78  | 79  | 80  | 81  | 82  | 83  | 84  | 85  | 86  | 87  |
| STATION           |     |     |     |     |     |     |     |     |     |     |     |
| * 462.8 CINCINN   | 0.3 | 0.3 | 0.2 | 0.2 | 0.2 | 0.1 | 0.1 | 0.1 | 0.4 | 0.2 | 0.1 |
| * 464.1 LIL MIAMI | 0.7 | 0.6 | 0.4 | 0.5 | 0.5 | 0.4 | 0.3 | 0.4 | 0.5 | 0.7 | 1.8 |
| 470.2 LICKING R   | 0.3 | 0.4 | 0.2 | 0.2 | 0.2 | 0.2 | 0.1 | 0.2 | 0.1 | 0.3 | 0.5 |
| * 490.0 N BEND    | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.1 | 0.1 | 0.1 | 0.1 |
| * 491.1 GR MIAMI  | 0.5 | 0.5 | 0.3 | 0.5 | 0.5 | 0.5 | 0.4 | 0.4 | 0.3 | 0.7 | 0.5 |
| * 531.5 MARKLAND  | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.1 | 0.1 | 0.1 | 0.3 | 0.1 |
| 600.6 LOUISVL     | 0.6 | 0.4 | 0.3 | 0.1 | 0.2 | 0.2 | 0.2 | 0.1 | 0.3 | 0.2 | 0.1 |
| 625.9 W POINT     | 0.6 | 0.7 | 0.4 | 0.2 | 0.3 | 0.3 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
| * 720.7 CANNELIN  | 0.4 | 0.5 | 0.2 | 0.1 | 0.2 | 0.3 | 0.2 | 0.1 | 0.1 | 0.7 | 0.1 |
| 784.2 GREEN R     | 0.3 | 0.3 | 0.1 | 0.1 | 0.3 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
| 791.5 EVANSVL     | 0.5 | 0.8 | 0.3 | 0.5 | 0.4 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
| * 846.0 UNIONTOWN | 0.3 | 0.5 | 0.3 | 0.3 | 0.2 | 0.2 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
| * 848.0 WABASH R  | 0.4 | 0.6 | 0.2 | 0.3 | 0.3 | 0.4 | 0.2 | 0.2 | 0.2 | 0.4 | 0.1 |
| * 918.5 SMITHLAND |     |     |     |     |     | 0.2 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
| 920.4 CUMBRLD R   | 0.2 | 0.5 | 0.2 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.2 | 0.1 |
| 934.5 TENNESS R   | 0.2 | 0.4 | 0.2 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.2 | 0.1 |
| 952.3 JOPPA       | 0.3 | 0.7 | 0.2 | 0.2 | 0.2 | 0.2 | 0.1 | 0.1 | 0.2 | 0.2 | 0.1 |
|                   |     |     |     |     |     |     |     |     |     |     |     |

\* INCOMPLETE DATA SETS

#### ANNUAL MEAN OF AMMONIA (MG/L)

|                  | 77    | 78  | 79  | 80  | 81  | 82  | 83  | 84  | 85       | 86     | 87   |
|------------------|-------|-----|-----|-----|-----|-----|-----|-----|----------|--------|------|
| STATION          |       |     |     |     |     |     |     |     |          |        |      |
| 0.0 ALLEGY R     | 0.3   | 0.2 | 0.2 | 0.2 | 0.2 | 0.1 | 0.2 | 0.1 | 0.1      | 0.1    | 0.1  |
| 0.0 MONOGA R     | 0.5   | 0.3 | 0.2 | 0.2 | 0.2 | 0.1 | 0.4 | 0.2 | 0.2      | 0.2    | 0.1  |
| 15.2 S HEIGHT    | s 0.5 | 0.4 | 0.3 | 0.3 | 0.4 | 0.2 | 0.4 | 0.2 | 0.2      | 0.2    | 0.1  |
| 25.4 BEAVER R    | 0.9   | 0.6 | 0.5 | 0.6 | 0.6 | 0.4 | 0.4 | 0.3 | 0.3      | 0.3    | 0.3  |
| 40.2 E LIVERP    | L 0.5 | 0.4 | 0.3 | 0.3 | 0.3 | 0.2 | 0.6 | 0.2 | 0.2      | 0.2    | 0.2  |
| 86.8 WHEELING    | 0.5   | 0.4 | 0.3 | 0.3 | 0.3 | 0.2 | 0.7 | 0.2 | 0.2      | 0.2    | 0.1  |
| 126.4 HANNIBAL   | 0.3   | 0.3 | 0.3 | 0.2 | 0.3 | 0.2 | 0.2 | 0.2 | 0.2      | 0.1    | 0.2  |
| 161.8 WILLOW I   | s 0.5 | 0.3 | 0.3 | 0.2 | 0.3 | 0.2 | 0.2 | 0.2 | 0.2      | 0.1    | 0.2  |
| * 172.2 MUSKGM R | 0.3   | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.1 | 0.1 | 0.1      | 0.1    | 0.1  |
| 203.9 BELLEVL    | 0.4   | 0.3 | 0.2 | 0.3 | 0.3 | 0.2 | 0.2 | 0.2 | 0.2      | 0.2    | 0.2  |
| 260.0 ADDISON    | 0.5   | 0.2 | 0.2 | 0.2 | 0.2 | 0.1 | 0.1 | 0.2 | 0.1      | 0.1    | 0.1  |
| * 265.7 KANAWA R | 0.4   | 0.2 | 0.1 | 0.2 | 0.2 | 0.2 | 0.2 | 0.1 | 0.3      | 0.1    | 0.1  |
| 279.2 GALLIPOL   | 0.5   | 0.2 | 0.2 | 0.2 | 0.2 | 0.1 | 0.1 | 0.2 | 0.1      | 0.1    | 0.1  |
| 306.9 HUNTING    | 0.3   | 0.1 | 0.1 | 0.1 | 0.2 | 0.1 | 0.1 | 0.1 | 0.1      | 0.0    | 0.0  |
| 317.1 BIG SAND   | Y 0.2 | 0.2 | 0.2 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1      | 0.0    | 0.0  |
| 350.7 PORTSM     | 0.5   | 0.1 | 0.2 | 0.2 | 0.2 | 0.2 | 0.1 | 0.2 | 0.1      | 0.1    | 0.1  |
| * 356.5 SCIOTO R | 0.5   | 0.2 | 0.2 | 0.2 | 0.3 | 0.1 | 0.2 | 0.1 | 0.2      | 0.1    | 0.0  |
| * 408.5 MAYSVILL | E 0.5 | 0.1 | 0.2 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1      | 0.1    | 0.1  |
|                  |       |     |     |     |     |     |     | *   | INCOMPLE | TE DAT | SETS |

ANNUAL MEAN OF AMMONIA (MG/L)

| (CONTINUED)       |     |     |     |     |     | YY  |     |     |         |         |        |
|-------------------|-----|-----|-----|-----|-----|-----|-----|-----|---------|---------|--------|
|                   | 77  | 78  | 79  | 80  | 81  | 82  | 83  | 84  | 85      | 86      | 87     |
| STATION           |     |     |     | •   |     |     |     |     |         |         |        |
| * 462.8 CINCINN   | 0.3 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1     | 0.1     | 0.0    |
| * 464.1 LIL MIAMI | 0.4 | 0.2 | 0.2 | 0.1 | 0.2 | 0.1 | 0.2 | 0.1 | 0.2     | 0.2     | 0.1    |
| 470.2 LICKING R   | 0.3 | 0.1 | 0.1 | 0.1 | 0.1 | 0.2 | 0.1 | 0.1 | 0.1     | 0.1     | 0.1    |
| * 490.0 N BEND    | 0.3 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.3     | 0.2     | 0.1    |
| * 491.1 GR MIAMI  | 0.7 | 0.4 | 0.3 | 0.3 | 0.4 | 0.2 | 0.3 | 0.1 | 0.1     | 0.2     | 0.1    |
| * 531.5 MARKLAND  | 0.4 | 0.2 | 0.1 | 0.1 | 0.2 | 0.2 | 0.1 | 0.2 | 0.2     | 0.1     | 0.0    |
| 600.6 LOUISVL     | 0.2 | 0.2 | 0.1 | 0.1 | 0.2 | 0.2 | 0.1 | 0.2 | 0.1     | 0.1     | 0.1    |
| 625.9 W POINT     | 0.3 | 0.2 | 0.2 | 0.3 | 0.3 | 0.3 | 0.2 | 0.3 | 0.2     | 0.3     | 0.3    |
| * 720.7 CANNELIN  | 0.3 | 0.2 | 0.1 | 0.2 | 0.2 | 0.3 | 0.1 | 0.1 | 0.1     | 0.1     | 0.0    |
| 784.2 GREEN R     | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.2 | 0.1 | 0.1 | 0.1     | 0.1     | 0.1    |
| 791.5 EVANSVL     | 0.2 | 0.2 | 0.1 | 0.1 | 0.2 | 0.2 | 0.1 | 0.1 | 0.1     | 0.1     | 0.1    |
| * 846.0 UNIONTOWN | 0.2 | 0.2 | 0.1 | 0.2 | 0.2 | 0.2 | 0.1 | 0.1 | 0.1     | 0.1     | 0.0    |
| * 848.0 WABASH R  | 0.2 | 0.2 | 0.2 | 0.1 | 0.2 | 0.3 | 0.1 | 0.1 | 0.1     | 0.1     | 0.0    |
| * 918.5 SMITHLAND |     |     |     |     |     | 0.1 | 0.1 | 0.1 | 0.1     | 0.1     | 0.0    |
| 920.4 CUMBRLD R   | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1     | 0.0     | 0.0    |
| 934.5 TENNESS R   | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1     | 0.1     | 0.1    |
| 952.3 JOPPA       | 0.2 | 0.2 | 0.1 | 0.1 | 0.2 | 0.2 | 0.1 | 0.1 | 0.1     | 0.1     | 0.1    |
|                   |     |     |     |     |     |     |     |     | INCOMPL | ETE DAT | A SETS |

.

ANNUAL MEAN OF TOTAL KJELDAHL NITROGEN (MG/L)

|                 |     |     |     |     |       | YY  |     |     |          |        |        |
|-----------------|-----|-----|-----|-----|-------|-----|-----|-----|----------|--------|--------|
|                 | 77  | 78  | 79  | 80  | 81    | 82  | 83  | 84  | 85       | 86     | 87     |
| STATION         |     |     |     |     |       |     |     |     |          |        |        |
| 0.0 ALLEGY R    | 1.3 | 0.5 | 0.5 | 0.5 | 0.8   | 0.7 | 0.5 | 0.4 | 0.4      | 0.3    | 0.3    |
| 0.0 MONOGA R    | 1.7 | 0.7 | 0.7 | 0.7 | , 0.8 | 0.7 | 0.7 | 0.4 | 0.5      | 0.4    | 0.5    |
| 15.2 S HEIGHTS  | 1.5 | 0.8 | 0.7 | 0.8 | 0.9   | 0.9 | 0.8 | 0.5 | 0.6      | 0.4    | 0.4    |
| 25.4 BEAVER R   | 2.1 | 1.2 | 1.2 | 1.3 | 1.3   | 1.7 | 1.1 | 0.9 | 1.1      | 0.8    | 1.1    |
| 40.2 E LIVERPL  | 1.5 | 0.8 | 0.8 | 1.1 | 1.0   | 1.0 | 1.7 | 0.7 | 0.6      | 0.5    | 0.6    |
| 86.8 WHEELING   | 1.6 | 0.8 | 0.8 | 0.8 | 0.8   | 1.0 | 1.2 | 0.5 | 0.6      | 0.5    | 0.5    |
| 126.4 HANNIBAL  | 0.8 | 0.7 | 0.7 | 0.7 | 0.8   | 0.9 | 0.4 | 0.4 | 0.5      | 0.4    | 0.5    |
| 161.8 WILLOW IS | 1.5 | 0.7 | 1.1 | 0.8 | 0.7   | 0.9 | 0.5 | 0.5 | 0.5      | 0.6    | 0.5    |
| 172.2 MUSKGM R  | 1.6 | 0.8 | 1.1 | 1.5 | 1.1   | 1.1 | 0.5 | 0.8 | 1.0      | 0.8    | 0.8    |
| 203.9 BELLEVL   | 1.5 | 0.7 | 1.0 | 0.8 | 1.0   | 1.1 | 0.6 | 0.6 | 0.7      | 0.6    | 0.5    |
| 260.0 ADDISON   | 1.6 | 0.7 | 0.9 | 0.8 | 0.8   | 0.9 | 0.5 | 0.5 | 0.5      | 0.7    | 0.5    |
| 265.7 KANAWA R  | 1.5 | 0.8 | 1.0 | 0.8 | 0.7   | 1.0 | 0.4 | 0.5 | 0.8      | 0.6    | 0.5    |
| 279.2 GALLIPOL  | 1.6 | 0.6 | 0.8 | 0.8 | 0.8   | 0.8 | 0.5 | 0.5 | 0.6      | 0.6    | 0.5    |
| 306.9 HUNTING   | 1.5 | 0.6 | 0.7 | 0.6 | 0.8   | 0.5 | 0.4 | 0.2 | 0.2      | 0.3    | 0.2    |
| 317.1 BIG SANDY | 1.6 | 0.9 | 0.9 | 0.5 | 0.8   | 0.8 | 0.4 | 0.5 | 0.4      | 0.3    | 0.2    |
| 350.7 PORTSM    | 3.9 | 0_9 | 0.8 | 0.8 | 0.7   | 1.0 | 0.4 | 0.6 | 0.6      | 0.5    | 0.4    |
| 356.5 SCIOTO R  | 3.6 | 1.1 | 1.2 | 1.1 | 6.8   | 1.9 | 0.7 | 1.4 | 1.6      | 1.1    | 1.2    |
| 408.5 MAYSVILLE | 3.6 | 0.9 | 0.5 | 1.3 | 0.7   | 1.0 | 0.6 | 0.4 | 0.5      | 0.4    | 0.4    |
|                 |     |     |     |     |       |     |     | *   | INCOMPLE | TE DAT | A SETS |

ANNUAL MEAN OF TOTAL KJELDAHL NITROGEN (MG/L)

| (CONTINUED)       |     |     |     |     |     | YY  |     |     |     |     |     |
|-------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|                   | 77  | 78  | 79  | 80  | 81  | 82  | 83  | 84  | 85  | 86  | 87  |
| STATION           |     |     |     |     |     |     |     |     |     |     |     |
| * 462.8 CINCINN   | 1.3 | 0.6 | 0.6 | 0.8 | 0.7 | 1.0 | 0.6 | 0.4 | 0.6 | 0.6 | 0.3 |
| * 464.1 LIL MIAMI | 2.1 | 1.2 | 0.8 | 1.1 | 1.0 | 1.5 | 0.7 | 1.0 | 1.0 | 0.9 | 1.0 |
| 470.2 LICKING R   | 1.8 | 0.8 | 0.6 | 0.7 | 0.8 | 1.0 | 0.5 | 0.8 | 0.4 | 0.6 | 0.5 |
| * 490.0 N BEND    | 1.5 | 0.7 | 0.7 | 0.6 | 0.8 | 1.1 | 0.7 | 0.6 | 0.6 | 0.7 | 0.5 |
| * 491.1 GR MIAMI  | 2.3 | 1.5 | 1.1 | 1.2 | 1.3 | 1.7 | 1.0 | 1.0 | 1.2 | 1.3 | 1.5 |
| * 531.5 MARKLAND  | 1.7 | 0.6 | 0.6 | 0.7 | 1.2 | 0.9 | 0.5 | 0.5 | 0.7 | 0.6 | 0.5 |
| 600.6 LOUISVL     | 0.6 | 0.6 | 0.6 | 0.4 | 0.6 | 0.9 | 0.5 | 0.6 | 0.5 | 0.5 | 0.4 |
| 625.9 W POINT     | 0.9 | 1.1 | 1.0 | 0.8 | 0.9 | 1.4 | 0.7 | 0.7 | 0.6 | 0.8 | 0.8 |
| * 720.7 CANNELTN  | 0.6 | 0.7 | 0.7 | 0.4 | 0.7 | 1.1 | 0.5 | 0.5 | 0.4 | 0.5 | 0.4 |
| 784.2 GREEN R     | 0.5 | 0.7 | 0.5 | 0.4 | 0.6 | 0.9 | 0.5 | 0.5 | 0.5 | 0.5 | 0.6 |
| 791.5 EVANSVL     | 0.7 | 1.0 | 0.8 | 0.5 | 1.2 | 1.1 | 0.6 | 0.6 | 0.6 | 0.5 | 0.6 |
| * 846.0 UNIONTOWN | 0.6 | 0.7 | 0.7 | 0.5 | 0.8 | 0.9 | 0.5 | 0.5 | 0.5 | 0.5 | 0.4 |
| * 848.0 WABASH R  | 1.1 | 1.2 | 1.1 | 1.0 | 1.1 | 1.7 | 1.0 | 1.1 | 1.0 | 1.3 | 1.4 |
| * 918.5 SMITHLAND |     |     |     |     | •   | 1.0 | 0.5 | 0.4 | 0.5 | 0.6 | 0.4 |
| 920.4 CUMBRLD R   | 0.4 | 0.5 | 0.5 | 0.4 | 0.6 | 0.7 | 0.4 | 0.5 | 0.4 | 0.4 | 0.4 |
| 934.5 TENNESS R   | 0.3 | 0.5 | 0.4 | 0.3 | 0.6 | 0.7 | 0.3 | 0.3 | 0.4 | 0.4 | 0.4 |
| 952.3 JOPPA       | 0.6 | 1.0 | 0.7 | 0.5 | 0.7 | 1.0 | 0.5 | 0.6 | 0.6 | 0.7 | 0.5 |
|                   |     |     |     |     |     |     |     |     |     |     |     |

\* INCOMPLETE DATA SETS

ANNUAL MEAN OF NITRATE/NITRITES (MG/L)

|                   |     |     |     |     |     | TT  |       |     |          |        |        |
|-------------------|-----|-----|-----|-----|-----|-----|-------|-----|----------|--------|--------|
|                   | 77  | 78  | 79  | 80  | 81  | 82  | 83    | 84  | 85       | 86     | 87     |
| STATION           |     |     |     |     |     |     |       |     |          |        |        |
| 0.0 ALLEGY R      | 0.6 | 0.8 | 0.6 | 0.7 | 0.7 | 0.6 | 0.7   | 1.0 | 0.7      | 0.6    | 0.6    |
| 0.0 MONOGA R      | 0.9 | 1.0 | 0.8 | 0.9 | 6.9 | 0.8 | 1.0   | 0.9 | 0.9      | 0.8    | 0.8    |
| 15.2 S HEIGHTS    | 0.7 | 0.9 | 1.0 | 0.9 | 0.9 | 0.8 | 0.9 - | 0.8 | 0.9      | 0.7    | 0.7    |
| 25.4 BEAVER R     | 1.2 | 1.4 | 1.6 | 1.1 | 1.3 | 1.2 | 1.2   | 1.2 | 1.5      | 1.1    | 1.1    |
| 40.2 E LIVERPL    | 0.9 | 1.2 | 1.1 | 1.1 | 1.0 | 0.9 | 0.9   | 0.9 | 0.9      | 0.9    | 0.9    |
| 86.8 WHEELING     | 0.8 | 1.2 | 1.0 | 1.1 | 1.0 | 1.0 | 0.9   | 0.8 | 1.0      | 1.1    | 0.8    |
| 126.4 HANNIBAL    | 0.8 | 1.3 | 1.1 | 1.1 | 1.1 | 1.0 | 1.0   | 0.9 | 1.0      | 0.8    | 0.7    |
| 161.8 WILLOW IS   | 0.9 | 1.2 | 1.2 | 1.1 | 1.0 | 0.9 | 1.0   | 0.9 | 1.1      | 0.8    | 0.7    |
| * 172.2 MUSKGM R  | 1.1 | 1.4 | 1.5 | 1.2 | 1.5 | 1.4 | 0.7   | 1.1 | 1.4      | 0.9    | 1.0    |
| 203.9 BELLEVL     | 0.9 | 1.2 | 1.1 | 1.3 | 1.1 | 1.0 | 1.0   | 1.0 | 1.1      | 1.0    | 0.8    |
| 260.0 ADDISON     | 1.0 | 1.1 | 1.2 | 1.2 | 1.2 | 1.0 | 1.1   | 0.9 | 1.2      | 1.2    | 0.9    |
| * 265.7 KANAWA R  | 0.5 | 0.7 | 0.6 | 0.8 | 0.7 | 0.7 | 0.7   | 0.7 | 0.6      | 0.5    | 0.6    |
| 279.2 GALLIPOL    | 0.9 | 1.0 | 1.0 | 1.2 | 1.0 | 0.9 | 1.0   | 0.9 | 1.1      | 0.8    | 0.8    |
| 306.9 HUNTING     | 0.7 | 0.9 | 0.9 | 1.0 | 1.0 | 0.9 | 0.9   | 0.9 | 1.1      | 0.8    | 0.8    |
| 317.1 BIG SANDY   | 0.4 | 0.5 | 0.4 | 0.4 | 0.5 | 4.1 | 0.4   | 0.4 | 0.4      | 0.5    | 0.3    |
| 350.7 PORTSM      | 0.8 | 1.0 | 1.0 | 1.5 | 1.0 | 0.9 | 0.9   | 0.8 | 1.2      | 1.1    | 0.8    |
| * 356.5 SCIOTO R  | 2.1 | 2.1 | 3.5 | 2.6 | 2.9 | 2.3 | 2.7   | 1.9 | 1.8      | 2.4    | 2.6    |
| * 408.5 MAYSVILLE | 1.0 | 1.2 | 1.1 | 1.1 | 1.1 | 0.9 | 1.0   | 0.5 | 1.2      | 0.7    | 0.9    |
|                   |     |     |     |     |     |     |       |     | INCOMPLE | TE DAT | A SETS |

ANNUAL MEAN OF NITRATE/NITRITES (MG/L)

| (CONTINUED)       |     |     |     |     |       | YY  |     |       |         |         |        |
|-------------------|-----|-----|-----|-----|-------|-----|-----|-------|---------|---------|--------|
|                   | 77  | 78  | 79  | 80  | 81    | 82  | 83  | 84    | 85      | 86      | 87     |
| STATION           |     |     |     |     |       |     |     |       |         |         | •      |
| * 462.8 CINCINN   | 1.0 | 1.2 | 1.0 | 1.2 | 1.2   | 0.9 | 1.0 | 0.5   | 1.2     | 0.8     | 0.9    |
| * 464.1 LIL MIAMI | 1.7 | 2.2 | 3.0 | 2.8 | - 2.4 | 2.5 | 2.3 | 1.6   | 2.9     | 2.1     | 2.8    |
| 470.2 LICKING R   | 0.7 | 1.0 | 0.7 | 0.6 | 0.6   | 0.9 | 1.0 | - 1.1 | 0.9     | 0.7     | 0.6    |
| * 490.0 N &END    | 1.0 | 1.3 | 1.4 | 1.3 | 1.3   | 1.1 | 1.1 | 1.2   | 1.3     | 0.7     | 1.1    |
| = 491.1 GR MIAMI  | 2.6 | 3.3 | 3.8 | 4.8 | 4.5   | 3.8 | 4.2 | 3.7   | 2.1     | 3.4     | 2.7    |
| * 531.5 MARKLAND  | 1.1 | 1.4 | 1.3 | 1.3 | 1.4   | 1.3 | 1.2 | 1.1   | 1.5     | 0.9     | 1.2    |
| 600.6 LOUISVL     | 1.1 | 1.2 | 1.2 | 1.3 | 1.4   | 1.3 | 1.4 | 1.5   | 1.3     | 1.3     | 1.2    |
| 625.9 W POINT     | 1.1 | 1.3 | 1.2 | 1.4 | 1.4   | 1.3 | 1.4 | 1.3   | 1.3     | 1.3     | 1.2    |
| * 720.7 CANNELIN  | 1.1 | 1.3 | 1.2 | 1.2 | 1.4   | 1.2 | 1.2 | 1.2   | 1.4     | 1.2     | 1.4    |
| 784.2 GREEN R     | 0.8 | 1.0 | 0.9 | 1.3 | 1.2   | 1.0 | 0.9 | 5.6   | 1.0     | 1.2     | 0.7    |
| 791.5 EVANSVL     | 1.1 | 1.3 | 1.2 | 1.2 | 1.5   | 1.2 | 1.2 | 1.8   | 1.3     | 1.3     | 1.1    |
| * 846.0 UNIONTOWN | 1.2 | 1.3 | 1.3 | 1.4 | 1.8   | 1.3 | 1.1 | 1.2   | 1.3     | 1.1     | 1.1    |
| * 848.0 WABASH R  | 2.0 | 2.2 | 2.0 | 1.4 | 3.3   | 2.6 | 2.2 | 2.4   | 2.0     | 2.7     | 1.1    |
| * 918.5 SMITHLAND |     |     |     |     |       | 1.6 | 1.2 | 1.3   | 1.4     | 1.6     | 0.4    |
| 920.4 CUMBRLD R   | 0.4 | 0.5 | 0.5 | 0.2 | 0.3   | 0.5 | 0.5 | 0.3   | 0.1     | 0.1     | 0.1    |
| 934.5 TENNESS R   | 0.4 | 0.4 | 0.4 | 0.3 | 0.2   | 0.3 | 0.5 | 0.4   | 0.2     | 0.2     | 0.2    |
| 952.3 JOPPA       | 1.0 | 1.5 | 1.4 | 1.3 | 1.9   | 1.7 | 1.4 | 1.5   | 1.5     | 1.6     | 0.7    |
|                   |     |     |     |     |       |     |     |       | INCOMPL | ETE DAT | A SETS |

-

#### ANNUAL MEAN OF TOTAL NITROGEN (MG/L)

|   |                 | 77  | 78  | 79  | 80  | 81  | 82  | 83  | 84  | 85       | 86     | 87     |
|---|-----------------|-----|-----|-----|-----|-----|-----|-----|-----|----------|--------|--------|
|   | STATION         |     |     |     |     |     |     |     |     |          |        |        |
|   | 0.0 ALLEGY R    | 1.9 | 1.3 | 1.2 | 1.2 | 1.5 | 1.3 | 1.2 | 1.5 | 1.1      | 0.9    | 0.9    |
|   | 0.0 MONOGA R    | 2.6 | 1.7 | 1.5 | 1.5 | 1.7 | 1.6 | 1.6 | 1.4 | 1.4      | 1.2    | 1.2    |
|   | 15.2 S HEIGHTS  | 2.2 | 1.8 | 1.6 | 1.7 | 1.8 | 1.7 | 1.7 | 1.2 | 1.5      | 1.2    | 1.1    |
|   | 25.4 BEAVER R   | 3.2 | 2.6 | 2.8 | 2.5 | 2.7 | 2.9 | 2.2 | 2.0 | 2.6      | 2.0    | 2.2    |
|   | 40.2 E LIVERPL  | 2.4 | 2.0 | 1.9 | 2.2 | 2.1 | 1.9 | 2.6 | 1.6 | 1.5      | 1.4    | 1.5    |
|   | 86.8 WHEELING   | 2.4 | 2.0 | 1.8 | 1.9 | 1.8 | 2.0 | 2.1 | 1.3 | 1.7      | 1.6    | 1.3    |
|   | 126.4 HANNIBAL  | 1.6 | 2.0 | 1.8 | 1.3 | 1.9 | 1.9 | 1.5 | 1.3 | 1.6      | 1.3    | 1.2    |
|   | 161.8 WILLOW IS | 2.4 | 1.8 | 2.2 | 1.8 | 1.8 | 1.8 | 1.5 | 1.4 | 1.5      | 1.4    | 1.2    |
| * | 172.2 MUSKGM R  | 2.7 | 2.1 | 2.6 | 2.3 | 2.6 | 2.5 | 1.2 | 1.9 | 2.4      | 1.7    | 1.8    |
|   | 203.9 BELLEVL   | 2.3 | 1.9 | 2.1 | 2.0 | 2.1 | 2.1 | 1.6 | 1.5 | 1.8      | 1.6    | 1.3    |
|   | 260.0 ADDISON   | 2.6 | 1.8 | 2.1 | 1.9 | 2.0 | 1.9 | 1.6 | 1.5 | 1.7      | 1.9    | 1.4    |
| * | 265.7 KANAWA R  | 2.0 | 1.5 | 1.6 | 1.6 | 1.4 | 1.7 | 1.1 | 1.2 | 1.4      | 1.2    | 1.1    |
|   | 279.2 GALLIPOL  | 2.5 | 1.6 | 1.8 | 2.0 | 1.8 | 1.7 | 1.5 | 1.4 | 1.6      | 1.4    | 1.3    |
|   | 306.9 HUNTING   | 2.2 | 1.6 | 1.5 | 1.6 | 1.8 | 1.4 | 1.4 | 1.1 | 1.3      | 1.1    | 1.0    |
|   | 317.1 BIG SANDY | 2.0 | 1.4 | 1.3 | 1.0 | 1.2 | 5.0 | 0.7 | 0.9 | 0.8      | 0.8    | 0.5    |
|   | 350.7 PORTSM    | 4.7 | 1.9 | 1.8 | 2.3 | 1.7 | 1.9 | 1.3 | 1.3 | 1.8      | 1.7    | 1.3    |
| * | 356.5 SCIOTO R  | 5.8 | 3.2 | 4.7 | 3.7 | 9.7 | 4.1 | 3.4 | 3.3 | 3.4      | 3.5    | 3.9    |
| * | 408.5 MAYSVILLE | 4.6 | 2.1 | 1.7 | 2.4 | 1.7 | 1.9 | 1.6 | 0.9 | 1.7      | 1.1    | 1.3    |
|   |                 |     |     |     |     |     |     |     | *   | INCOMPLI | TE DAT | A SETS |

ANNUAL MEAN OF TOTAL NITROGEN (MG/L)

| (CONTINUED)       |     |     |     |     |     | YY  |     |     |         |          |        |
|-------------------|-----|-----|-----|-----|-----|-----|-----|-----|---------|----------|--------|
| STATION           | 77  | 78  | 79  | 80  | 81  | 82  | 83  | 84  | 85      | 86       | 87     |
| * 462.8 CINCINN   | 2.3 | 1.8 | 1.6 | 1.9 | 2.0 | 1.8 | 1.6 | 0.9 | 1.8     | 1.4      | 1.2    |
| * 464.1 LIL MIAMI | 3.8 | 3.4 | 3.8 | 3.9 | 3.5 | 3.9 | 3.0 | 2.6 | 3.9     | 3.0      | 3.8    |
| 470.2 LICKING R   | 2.5 | 1.7 | 1.3 | 1.3 | 1.4 | 1.9 | 1.4 | 1.7 | 1.3     | 1.3      | 1.0    |
| * 490.0 N BEND    | 2.6 | 2.0 | 2.1 | 1.9 | 2.1 | 2.2 | 1.8 | 1.7 | 1.9     | 1.4      | 1.6    |
| * 491.1 GR MIAMI  | 5.0 | 4.8 | 4.9 | 5.9 | 5.8 | 5.5 | 5.2 | 4.8 | 3.3     | 4.7      | 4.2    |
| * 531.5 MARKLAND  | 2.8 | 2.1 | 1.9 | 2.0 | 2.7 | 2.2 | 1.6 | 1.6 | 2.2     | 1.6      | 1.7    |
| 600.6 LOUISVL     | 1.7 | 1.8 | 1.8 | 1.8 | 2.1 | 2.2 | 1.8 | 2.0 | 1.8     | 1.8      | 1.6    |
| 625.9 W POINT     | 2.0 | 2.4 | 2.2 | 2.1 | 2.3 | 2.7 | 2.1 | 2.0 | 1.9     | 2.0      | 2.0    |
| * 720.7 CANNELTN  | 1.6 | 2.0 | 1.9 | 1.6 | 2.1 | 2.3 | 1.7 | 1.7 | 1.8     | 1.7      | 1.8    |
| 784.2 GREEN R     | 1.3 | 1.6 | 1.4 | 1.6 | 1.8 | 2.0 | 1.3 | 6.1 | 1.4     | 1.6      | 1.3    |
| 791.5 EVANSVL     | 1.8 | 2.3 | 2.0 | 1.7 | 2.7 | 2.3 | 1.9 | 2.3 | 1.9     | 1.8      | 1.7    |
| * 846.0 UNIONTOWN | 1.8 | 2.0 | 2.0 | 1.9 | 2.7 | 2.2 | 1.6 | 1.7 | 1.8     | 1.5      | 1.5    |
| * 848.0 WABASH R  | 3.2 | 3.4 | 3.1 | 2.5 | 4.3 | 4.3 | 3.2 | 3.4 | 3.1     | 3.9      | 2.5    |
| * 918.5 SMITHLAND |     |     |     |     |     | 2.6 | 1.8 | 1.7 | 1.9     | 2.2      | 0.8    |
| 920.4 CUMBRLD R   | 0.7 | 0.9 | 0.9 | 0.6 | 0.9 | 1.1 | 0.9 | 0.7 | 0.5     | 0.5      | 0.4    |
| 934.5 TENNESS R   | 0.7 | 0.9 | 0.8 | 0.6 | 0.8 | 1.1 | 0.8 | 0.7 | 0.6     | 0.6      | 0.6    |
| 952.3 JOPPA       | 1.7 | 2.5 | 2.1 | 1.8 | 2.5 | 2.7 | 1.9 | 2.1 | 2.1     | 2.3      | 1.1    |
|                   |     |     |     |     |     |     |     | *   | INCOMPL | ETE DAT. | A SETS |

ANNUAL MEAN OF PHENOLICS (UG/L)

| ч.              | 77   | 78   | 79   | 80   | 81   | 82   | 83   | 84   | 85  | 86  | 87  |
|-----------------|------|------|------|------|------|------|------|------|-----|-----|-----|
| STATION         |      |      |      |      |      |      |      |      |     |     |     |
| 0.0 ALLEGY R    | 8.5  | 4.6  | 3.3  | 6.5  | 7.5  | 5.0  |      | 4.1  | 2.6 | 8.4 | 2.0 |
| 0.0 MONOGA R    | 7.2  | 5.5  | 6.9  | 6.7  | 5.6  | 4.0  | 10.0 | 6.9  | 3.1 | 8.8 | 3.7 |
| 15.2 S HEIGHTS  | 11.0 | 8.7  | 5.7  | 9.3  | 4.2  | 3.5  | 8.5- | 11.6 | 3.5 | 8.2 | 2.3 |
| 25.4 BEAVER R   | 9.4  | 13.4 | 6.5  | 7.9  | 5.2  | 17.0 | 2.6  | 13.3 | 6.0 | 8.8 | 3.1 |
| 40.2 E LIVERPL  | 13.7 | 7.2  | 5.5  | 5.8  | 4.5  | 6.5  | 2.5  | 4.3  | 4.5 | 7.3 | 2.8 |
| 86.8 WHEELING   | 14.1 | 8.0  | 4.4  | 8.1  | 5.6  | 11.0 | 1.5  | 3.9  | 4.4 | 9.7 | 2.9 |
| 126.4 HANNIBAL  | 79.3 | 6.2  | 4.6  | 6.6  | 8.9  | 7.0  | 1.5  | 2.4  | 3.4 | 5.8 | 3.0 |
| 161.8 WILLOW IS | 7.2  | 5.2  | 6.1  | 5.2  | 7.2  | 4.0  | 1.3  | 2.6  | 3.4 | 7.0 | 2.4 |
| 172.2 MUSKGM R  | 6.9  | 4.7  | 4.7  | 5.2  | 5.3  | 5.0  | 1.7  | 3.6  | 5.3 | 8.4 | 3.1 |
| 203.9 BELLEVL   | 6.3  | 5.0  | 3.9  | 3.1  | 3.5  | 4.0  | 2.5  | 2.2  | 5.4 | 7.1 | 2.4 |
| 260.0 ADDISON   | 11.4 | 5.7  | 15.8 | 3.4  | 11.1 | 2.5  | 2.0  | 2.4  | 3.9 | 6.8 | 3.0 |
| 265.7 KANAWA R  | 11.9 | 6.8  | 11.1 | 3.7  | 4.9  | 2.0  | 1.3  | 1.8  | 2.5 | 7.3 | 2.5 |
| 279.2 GALLIPOL  | 5.5  | 6.3  | 8.0  | 5.8  | 4.1  | 6.0  | 1.8  | 2.3  | 3.0 | 6.0 | 4.7 |
| 306.9 HUNTING   | 8.1  | 13.6 | 4.0  | 4.5  | 34.6 | 4.0  | 2.0  | 2.2  | 2.8 | 3.6 | 2.6 |
| 317.1 BIG SANDY | 10.4 | 8.5  | 3.1  | 4.6  | 12.0 |      | 1.0  | 1.4  | 2.3 | 7.5 | 2.0 |
| 350.7 PORTSM    | 8.4  | 4.5  | 4.8  | 11.0 | 18.5 | 3.5  | 1.5  | 3.5  | 3.8 | 5.3 | 2.3 |
| 356.5 SCIOTO R  | 19.5 | 5.4  | 6.3  | 4.4  | 3.9  | 7.0  | 2.2  | 5.5  | 8.3 | 8.7 | 7.3 |
| 408.5 MAYSVILLE | 10.2 | 9.0  | 6.1  | 4.6  | 4.0  | 3.0  | 2.3  | 3.1  | 3.9 | 4.1 | 3.0 |
# ANNUAL MEAN OF PHENOLICS (UG/L)

| (CONTINUED)     |      |      |            |      |      | YY   |      |      |     |     |     |
|-----------------|------|------|------------|------|------|------|------|------|-----|-----|-----|
|                 | 77   | 78   | 7 <b>9</b> | 80   | 81   | 82   | 83   | 84   | 85  | 86  | 87  |
| STATION         |      |      |            |      |      |      |      |      |     |     |     |
| 462.8 CINCINN   | 10.4 | 11.1 | 3.8        | 3.1  | 11.4 | 2.0  | 1.8  | 2.8  | 3.5 | 3.7 | 2.8 |
| 464.1 LIL MIAMI | 8.4  | 7.1  | 16.2       | 3.1  | 9.2  | 7.0  | 2.1  | 4.2  | 5.0 | 6.1 | 3.9 |
| 470.2 LICKING R | 7.0  | 15.1 | 8.9        | 7.3  | 10.2 | 7.0  | 1.7  | 4.0  | 3.6 | 4.0 | 3.6 |
| 490.0 N BEND    | 10.8 | 14.3 | 3.4        | 9.5  | 11.1 | 15.0 | 19.0 |      | 4.7 | 4.0 | 2.8 |
| 491.1 GR MIAMI  | 25.0 | 9.6  | 4.2        | 5.2  | 11.8 | 11.5 | 16.0 | 10.0 | 9.7 | 5.9 | 5.0 |
| 531.5 MARKLAND  | 11.2 | 19.7 | 2.4        | 4.3  | 20.6 | 6.5  | 10.0 |      | 4.7 | 3.3 | 3.0 |
| 600.6 LOUISVL   | 6.2  | 4.8  | 3.3        | 14.0 | 12.0 | 5.0  | 16.0 | 18.0 | 4.0 | 4.4 | 2.3 |
| 625.9 W POINT   | 5.5  | 5.6  | 3.0        | 2.9  | 17.7 | 5.0  | 6.5  | 14.0 | 3.7 | 4.4 | 2.3 |
| 720.7 CANNELTN  | 6.1  | 4.7  | 2.5        | 11.0 | 18.9 | 3.5  |      | 11.0 | 4.0 | 3.1 | 2.0 |
| 784.2 GREEN R   | 7.3  | 4.0  | 2.0        | 6.2  | 8.9  | 3.5  | 10.0 |      | 4.2 | 3.0 | 2.8 |
| 791.5 EVANSVL   | 6.4  | 5.3  | 2.7        | 5.8  | 5.1  | 5.0  | 18.0 | 10.5 | 3.8 | 3.6 | 2.4 |
| 846.0 UNIONTOWN | 10.9 | 4.6  | 2.5        | 4.1  | 3.0  | 2.5  | 17.0 |      | 3.2 | 2.9 | 2.4 |
| 848.0 WABASH R  | 11.4 | 5.1  | 4.1        | 4.6  | 7.5  | 3.5  | 6.3  | 10.5 | 4.8 | 3.0 | 3.4 |
| 918.5 SMITHLAND |      |      |            |      |      | 8.0  | 9.5  | 10.0 | 4.2 | 3.9 | 2.4 |
| 920.4 CUMBRLD R | 13.9 | 3.3  | 2.3        | 3.5  | 3.3  | 4.0  | 2.0  |      | 2.5 | 3.3 | 2.2 |
| 934.5 TENNESS R | 5.6  | 3.0  | 2.0        | 5.3  | 2.7  | 9.0  | 12.0 | 15.0 | 2.5 | 3.5 | 2.2 |
| 952.3 JOPPA     | 6.4  | 4.8  | 2.0        | 5.6  | 7.4  | 3.0  | 13.5 | 12.0 | 4.0 | 3.3 | 2.7 |

### ANNUAL MEAN OF COPPER (UG/L)

|                | 77     | 78    | 79    | 80    | 81   | 82   | 83   | 84   | 85    | 86   | 87   |  |
|----------------|--------|-------|-------|-------|------|------|------|------|-------|------|------|--|
| STATION        |        |       |       |       |      |      |      |      |       |      |      |  |
| 0.0 ALLEGY R   | 11.3   | 26.2  | 16.2  | 30.2  | 26.6 | 14.2 | 18.0 | 6.1  | 5.1   | 8.5  | 6.7  |  |
| 0.0 MONOGA R   | 13.1   | 16.2  | 19.7  | 23.3  | 20.8 | 14.2 | 14.7 | 8.0  | 54.0  | 7.0  | 5.5  |  |
| 15.2 SHEIGHT   | s 15.1 | 22.5  | 14.8  | 31.1  | 26.2 | 8.0  | 13.5 | 7.3  | 6.4   | 5.1  | 23.3 |  |
| 25.4 BEAVER R  | 20.8   | 18.3  | 16.7  | 76.8  | 23.4 | 9.8  | 17.8 | 9.9  | 6.4   | 8.9  | 6.9  |  |
| 40.2 E LIVERP  | L 40.0 | 15.5  | 17.0  | 28.6  | 23.0 | 15.2 | 23.8 | 16.9 | 82.8  | 9.9  | 3.5  |  |
| 86.8 WHEELING  | 10.8   | 20.7  | 16.2  | 84.7  | 33.0 | 12.7 | 36.9 | 27.5 | 8.4   | 12.8 | 20.3 |  |
| 126.4 HANNIBAL | 11.3   | 13.3  | 25.3  | 23.7  | 39.0 | 10.5 | 7.7  | 5.9  | 6.5   | 13.9 | 4.5  |  |
| 161.8 WILLOW I | s 9.8  | 14.3  | 22.0  | 48.4  | 60.7 | 14.0 | 8.3  | 5.8  | 6.2   | 12.8 | 3.8  |  |
| 172.2 MUSKGM R | 16.2   | 17.3  | 21.4  | 48.5  | 34.8 | 12.8 | 14.2 | 7.9  | 8.8   | 13.6 | 6.8  |  |
| 203.9 BELLEVL  | 11.2   | 24.2  | 25.7  | 42.5  | 34.8 | 13.8 | 8.3  | 8.1  | 6.6   | 11.4 | 3.8  |  |
| 260.0 ADDISON  | 24.0   | 45.7  | 138.3 | 127.8 | 45.1 | 20.0 | 11.8 | 11.6 | 17.8  | 15.0 | 37.0 |  |
| 265.7 KANAWA R | 24.9   | 20.8  | 54.4  | 14.8  | 23.3 | 11.6 | 9.7  | 5.6  | 4.1   | 28.2 | 3.5  |  |
| 279.2 GALLIPOL | 15.2   | 35.2  | 32.9  | 69.0  | 21.8 | 9.8  | 9.5  | 7.0  | 11.1  | 7.7  | 6.3  |  |
| 306.9 HUNTING  | 290.0  | 136.8 | 84.9  | 78.8  | 69.3 | 13.4 | 8.5  | 8.7  | 14.2  | 54.0 | 18.5 |  |
| 317.1 BIG SAND | ¥ 36.7 | 95.7  | 27.4  | 120.0 | 19.3 | 11.1 | 8.8  | 11.7 | 8.9   | 15.7 | 6.4  |  |
| 350.7 PORTSM   | 20.5   | 40.9  | 31.8  | 67.2  | 10.2 | 12.5 | 17.0 | 8.7  | 8.9   | 12.8 | 7.3  |  |
| 356.5 SCIOTO R | 20.0   | 34.7  | 21.7  | 150.5 | 39.8 | 17.5 | 10.6 | 7.3  | 7.4   | 12.8 | 5.7  |  |
| 408.5 MAYSVILL | E 53.1 | 19.3  | 8.8   | 81.8  | 33.3 | 20.3 | 17.5 | 83.9 | 210.6 | 23.1 | 26.6 |  |
|                |        |       |       |       |      |      |      |      |       |      |      |  |

ANNUAL MEAN OF COPPER (UG/L)

| (CONTINUED)     |       |      |       |       |       | YY   |      |       |       |       |      |
|-----------------|-------|------|-------|-------|-------|------|------|-------|-------|-------|------|
|                 | 77    | 78   | 79    | 80    | 81    | 82   | 83   | 84    | 85    | 86    | 87   |
| STATION         |       |      |       |       |       |      |      |       |       |       |      |
| 462.8 CINCINN   | 35.7  | 21.4 | 158.5 | 118.1 | 244.2 | 11.8 | 17.2 | 69.8  | 318.3 | 419.5 | 61.5 |
| 464.1 LIL MIAMI | 34.6  | 20.1 | 7.0   | 21.5  | 10.9  | 9.1  | 11.6 | 48.8  | 8.7   | 11.3  | 4.7  |
| 470.2 LICKING R | 24.4  | 13.8 | 5.5   | 118.3 | 13.3  | 9.8  | 8.8  | 117.9 | 4.8   | 35.5  | 12.8 |
| 490.0 N BEND    | 25.5  | 35.8 | 15.5  | 15.3  | 13.2  | 11.3 | 18.4 | 26.7  | 17.0  | 8.9   | 39.5 |
| 491.1 GR MIAMI  | 21.5  | 16.4 | 17.0  | 15.0  | 15.0  | 11.0 | 11.3 | 13.6  | 21.1  | 14.2  | 9.5  |
| 531.5 MARKLAND  | 39.6  | 14.7 | 10.7  | 22.5  | 24.8  | 16.0 | 14.8 | 55.8  | 17.7  | 19.8  | 12.8 |
| 600.6 LOUISVL   | 33.3  | 59.3 | 64.7  | 16.3  | 44.3  | 19.5 | 23.9 | 26.3  | 26.4  | 32.7  | 26.8 |
| 625.9 W POINT   | 30.0  | 41.0 | 14.3  | 14.5  | 15.2  | 17.5 | 22.1 | 13.5  | 11.4  | 7.5   | 6.9  |
| 720.7 CANNELTN  |       | 20.0 | 27.0  | 14.9  | 13.5  | 67.0 | 16.2 | 57.1  | 12.3  | 7.6   | 13.6 |
| 784.2 GREEN R   |       | 29.6 | 8.7   | 16.5  | 12.2  | 8.0  | 10.0 | 12.5  | 10.0  | 5.6   | 6.5  |
| 791.5 EVANSVL   | 68.9  | 94.6 | 26.0  | 17.8  | 27.1  | 12.2 | 13.7 | 16.1  | 16.1  | 8.5   | 10.3 |
| 846.0 UNIONTOWN |       | 22.8 | 11.8  | 22.3  | 14.7  | 9.2  | 13.1 | 13.6  | 12.1  | 7.6   | 9.2  |
| 848.0 WABASH R  |       | 17.3 | 24.3  | 12.0  | 13.3  | 26.7 | 15.4 | 24.3  | 12.2  | 12.3  | 19.9 |
| 918.5 SMITHLAND |       |      |       |       |       | 9.7  | 17.4 | 14.4  | 8.8   | 6.8   | 16.8 |
| 920.4 CUMBRLD R |       | 38.3 | 21.8  | 24.0  | 9.6   | 10.4 | 15.3 | 15.6  | 17.4  | 13.6  | 65.6 |
| 934.5 TENNESS R | 190.0 | 17.5 | 7.5   | 6.0   | 6.5   | 5.9  | 6.4  | 12.5  | 4.3   | 3.6   | 8.9  |
| 952.3 JOPPA     |       | 33.0 | 18.7  | 14.4  | 19.3  | 13.7 | 25.1 | 15.5  | 13.0  | 30.2  | 17.6 |

ANNUAL MEAN OF IRON (UG/L)

|                 |         |        |        |        |        | YY     |        |        |        |        |        |  |
|-----------------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--|
|                 | 77      | 78     | 79     | 80     | 81     | 82     | 83     | 84     | 85     | 86     | 87     |  |
| STATION         |         |        |        |        |        |        |        |        |        |        |        |  |
| 0.0 ALLEGY R    | 1566.7  | 1250.0 | 2465.8 | 1950.8 | 1525.6 | 1439.2 | 1398.3 | 1060.9 | 1701.7 | 1314.2 | 950.5  |  |
| 0.0 MONOGA R    | 1291.7  | 2531.8 | 2093.3 | 2346.7 | 2455.8 | 1311.7 | 1384.2 | 1475.0 | 2491.7 | 1280.8 | 1358.3 |  |
| 15.2 S HEIGHTS  | -2011.7 | 2916.7 | 1673.3 | 2266.9 | 2725.8 | 1703.3 | 1215.5 | 1644.2 | 2305.8 | 1355.8 | 1588.3 |  |
| 25.4 BEAVER R   | 1526.7  | 2600.0 | 1852.5 | 2492.7 | 1903.1 | 1342.5 | 1388.2 | 1764.2 | 1633.3 | 1305.8 | 2431.7 |  |
| 40.2 E LIVERPL  | 2474.2  | 1766.7 | 3233.3 | 4325.8 | 5521.7 | 2894.2 | 5249.1 | 2370.8 | 2230.0 | 1500.8 | 710.8  |  |
| 86.8 WHEELING   | 1700.0  | 4166.7 | 2852.5 | 2726.7 | 1514.2 | 2535.8 | 1633.3 | 1357.5 | 2275.0 | 1281.7 | 1306.7 |  |
| 126.4 HANNIBAL  | 993.3   | 1031.3 | 1111.7 | 1352.5 | 1000.0 | 1360.8 | 866.5  | 868.7  | 1325.0 | 1050.8 | 801.2  |  |
| 161.8 WILLOW IS | 1040.8  | 1341.7 | 1942.5 | 1183.8 | 1129.2 | 1768.3 | 1964.7 | 940.8  | 1072.5 | 922.5  | 898.2  |  |
| 172.2 MUSKGM R  | 1676.7  | 1858.3 | 2921.7 | 2417.5 | 3931.7 | 2370.8 | 3240.8 | 1341.7 | 2296.7 | 1579.8 | 1345.5 |  |
| 203.9 BELLEVL   | 1262.9  | 1452.1 | 2317.5 | 1540.8 | 4180.8 | 2277.5 | 2167.5 | 1349.3 | 1550.0 | 1818.3 | 908.8  |  |
| 260.0 ADDISON   | 1672.7  | 3300.0 | 2833.3 | 2009.2 | 4198.2 | 2085.8 | 1663.3 | 2087.2 | 3870.0 | 2480.7 | 1074.2 |  |
| 265.7 KANAWA R  | 756.8   | 2283.3 | 3359.1 | 1458.0 | 1301.7 | 2453.3 | 1148.7 | 1572.8 | 851.7  | 1491.0 | 587.5  |  |
| 279.2 GALLIPOL  | 850.0   | 2361.5 | 2635.8 | 2316.7 | 3089.1 | 1971.7 | 2045.5 | 1879.2 | 2483.3 | 3013.3 | 940.0  |  |
| 306.9 HUNTING   | 3663.3  | 4670.8 | 3725.9 | 1950.8 | 3193.3 | 330.0  | 702.5  | 253.8  | 934.8  | 1031.0 | 86.5   |  |
| 317.1 BIG SANDY | 5963.6  | 7591.7 | 6697.0 | 2712.9 | 5841.8 | 4076.7 | 1558.0 | 5412.2 | 2482.5 | 3098.0 | 1115.0 |  |
| 350.7 PORTSM    | 2280.0  | 3719.2 | 1858.3 | 1338.0 | 2546.9 | 2783.3 | 2614.0 | 3429.2 | 3281.7 | 2692.5 | 1331.7 |  |
| 356.5 SCIOTO R  | 2450.0  | 3077.3 | 1922.5 | 2478.3 | 2910.8 | 3116.7 | 2900.0 | 1413.6 | 2737.5 | 2631.8 | 1544.2 |  |
| 408.5 MAYSVILLE | 2322.7  | 1545.5 | 1915.8 | 2190.8 | 2240.0 | 1981.7 | 3570.2 | 2548.3 | 4389.2 | 2136.7 | 1585.5 |  |

#### ANNUAL MEAN OF IRON (UG/L)

(CCNTINUED)

YY 77 78 79 80 81 83 84 85 86 87 82 STATICN 462.8 CINCINN 3453.8 3388.5 3137.5 2706.7 3188.3 2612.5 3425.0 2669.2 6700.0 3311.7 1482.7 464.1 LIL MIAMI 3744.2 1163.6 1370.8 2498.3 2943.6 1332.5 2322.5 2828.3 1925.8 3582.5 1267.3 470.2 LICKING R- 3365.4 3316.7 2326.7 1955.0 2200.0 2905.8 2410.9 3230.8 2187.5 3369.2 2649.1 490.0 N BEND 2391.4 5370.8 2938.3 1523.8 3074.2 3806.7 2878.2 2165.8 1989.0 2002.5 1440.8 491.1 GR MIAMI 3286.2 2854.5 2212.5 3180.8 1729.2 3915.5 1969.0 1841.8 2553.0 3140.0 2428.3 531.5 MARKLAND 931.1 2604.2 2342.5 1420.8 2401.2 3759.2 1322.0 2019.1 5786.0 2370.8 1250.8 600.6 LOUISVL 4411.7 2695.3 2750.0 1330.8 2624.2 3692.5 2180.4 2408.3 2697.5 1824.2 1340.8 625.9 W POINT 4882.5 6733.3 5208.3 1626.3 3305.0 4755.8 4125.1 2170.0 3239.2 2427.3 2004.2 720.7 CANNELTN 2230.0 2927.3 3235.8 1926.7 1716.2 5101.8 3014.4 2525.8 3877.9 2626.7 928.3 784.2 GREEN R 2171.7 4941.8 3162.5 1360.8 2054.5 3070.8 2192.5 2716.7 2558.3 2254.2 2108.3 791.5 EVANSVL 4701.7 5642.7 9716.7 7743.3 4323.1 4305.0 3933.3 3650.8 6331.8 3701.5 3023.3 846.0 UNIONTOWN 2681.7 3069.2 4207.5 2426.7 2707.5 2761.7 2118.3 2491.7 4619.2 3915.8 2174.2 848.0 WABASH R 4091.7 3883.6 6477.5 3233.6 4018.6 7942.5 4122.5 3675.8 4405.0 5960.0 2933.3

920.4 CUMBRLD R 942.5 858.8 1145.0 379.2 329.1 410.8 769.0 492.5 470.0 516.0 453.3

934.5 TENNESS R 971.7 756.0 859.2 629.2 466.4 650.8 725.5 626.7 524.2 682.8 367.5

952.3 JOPPA 2873.3 3870.8 3863.3 2586.2 3058.3 3575.8 2458.3 2667.5 3046.7 3325.0 1441.7

### ANNUAL MEAN OF LEAD (UG/L)

|                 | 77   | 78   | 79   | 80   | 81     | 82   | 83   | 84   | 85   | 86   | 87   |
|-----------------|------|------|------|------|--------|------|------|------|------|------|------|
| STATION         |      |      |      |      |        |      |      |      |      |      |      |
| 0.0 ALLEGY R    | 17.5 | 19.4 | 13.8 | 10.0 | 22.0   | 14.0 | 12.3 | 24.7 | 13.1 | 13.0 | 10.0 |
| 0.0 MONOGA R    | 25.4 | 27.7 | 15.8 | 14.4 | - 18.0 | 10.0 | 14.1 | 25.4 | 14.7 | 12.9 | 12.5 |
| 15.2 S HEIGHTS  | 18.1 | 28.5 | 15.1 | 12.7 | 83.8   | 12.0 | 11.4 | 24.9 | 13.5 | 10.0 | 12.3 |
| 25.4 BEAVER R   | 28.1 | 38.3 | 19.2 | 18.4 | 14.8   | 12.0 | 16.7 | 25.6 | 13.1 | 13.5 | 17.4 |
| 40.2 E LIVERPL  | 28.5 | 25.4 | 18.2 | 20.0 | 21.1   | 16.5 | 28.4 | 16.6 | 16.0 | 14.0 | 12.0 |
| 86.8 WHEELING   | 30.4 | 31.9 | 17.8 | 16.4 | 14.0   | 16.0 | 15.9 | 20.8 | 15.2 | 11.5 | 11.5 |
| 126.4 HANNIBAL  | 16.0 | 20.2 | 14.2 | 15.3 | 10.0   | 20.0 | 15.4 | 29.0 | 12.0 | 10.0 | 10.2 |
| 161.8 WILLOW IS | 22.3 | 22.5 | 17.6 | 20.4 | 100.7  | 82.0 | 14.5 | 23.4 | 12.4 | 10.3 | 10.5 |
| 172.2 MUSKGM R  | 31.4 | 27.3 | 55.2 | 40.7 | 12.0   | 14.0 | 16.2 | 26.9 | 18.7 | 16.3 | 16.0 |
| 203.9 BELLEVL   | 19.8 | 19.6 | 15.5 | 20.8 | 13.5   | 17.0 | 16.8 | 17.3 | 12.5 | 14.4 | 10.3 |
| 260.0 ADDISON   | 28.6 | 45.2 | 18.2 | 14.8 | 16.0   | 14.0 | 12.3 | 20.2 | 15.9 | 14.0 | 11.8 |
| 265.7 KANAWA R  | 31.9 | 37.3 | 17.1 | 10.7 | 22.0   | 10.0 | 22.5 | 23.7 | 10.0 | 15.3 | 24.2 |
| 279.2 GALLIPOL  | 31.5 | 41.5 | 18.4 | 14.4 | 15.0   |      | 12.0 | 20.7 | 14.3 | 12.9 | 27.0 |
| 306.9 HUNTING   | 40.5 | 26.9 | 20.5 | 17.0 | 11.3   | 24.0 | 16.7 | 26.3 | 12.7 | 14.7 | 10.7 |
| 317.1 BIG SANDY | 35.0 | 33.3 | 17.8 | 15.0 | 28.0   | 17.0 | 38.4 | 23.8 | 12.0 | 14.0 | 11.0 |
| 350.7 PORTSM    | 41.0 | 36.1 | 15.5 | 22.0 | 14.5   | 18.0 | 14.3 | 19.6 | 14.6 | 13.7 | 11.6 |
| 356.5 SCIOTO R  | 45.5 | 36.4 | 31.5 | 23.3 | 17.6   | 12.0 | 21.9 | 23.1 | 16.2 | 17.1 | 33.0 |
| 408.5 MAYSVILLE | 41.8 | 36.5 | 30.2 | 19.5 | 12.0   | 12.0 | 17.9 | 17.6 | 19.1 | 12.0 | 12.0 |

# ANNUAL MEAN OF LEAD (UC (1)

| ANNUAL MEAN OF LE. | AD (UG/I | -)   |      |      |      |      |       |      |      |      |      |
|--------------------|----------|------|------|------|------|------|-------|------|------|------|------|
| (CONTINUED)        |          |      |      |      |      | YY   |       |      |      |      |      |
|                    | 77       | 78   | 79   | 80   | 81   | 82   | 83    | 84   | 85   | 86   | 87   |
| STATION            |          |      |      |      |      |      |       |      |      |      |      |
| 462.8 CINCINN      | 32.5     | 24.8 | 14.0 | 12.3 | 33.0 | 18.0 | 14.7  | 16.4 | 31.8 | 13.3 | 12.4 |
| 464.1 LIL MIAMI    | 44.6     | 41.9 | 17.3 | 15.3 | 16.3 |      | 19.6  | 22.2 | 16.2 | 17.0 | 16.4 |
| 470.2 LICKING R    | 25.5     | 20.9 | 15.8 | 6.0  | 10.0 |      | 14.6  | 16.8 | 14.7 | 11.4 | 11.1 |
| 490.0 N BEND       | 23.0     | 26.8 | 21.1 | 21.0 | 19.5 | 16.0 | 16.4  | 4.3  | 8.0  | 12.0 | 11.0 |
| 491.1 GR MIAMI     | 51.7     | 37.5 | 28.8 | 42.3 | 25.0 | 12.0 | 66.0  | 3.7  | 17.4 | 18.8 | 20.8 |
| 531.5 MARKLAND     | 23.3     | 31.1 | 52.0 | 14.0 | 14.0 | 14.0 | 53.3  | 4.3  | 19.0 | 12.0 | 10.8 |
| 600.6 LOUISVL      | 15.1     | 20.6 | 44.8 | 30.2 | 12.7 | 11.0 | 15.0  | 4.9  | 8.9  | 11.0 | 11.5 |
| 625.9 W POINT      | 22.3     | 28.7 | 32.5 | 23.0 | 14.3 | 14.7 | 13.5  | 5.8  | 9.8  | 12.4 | 11.8 |
| 720.7 CANNELIN     | 16.2     | 20.6 | 64.4 | 20.3 | 18.0 | 18.0 | 268.1 | 7.6  | 10.9 | 14.0 | 15.0 |
| 784.2 GREEN R      | 23.4     | 19.4 | 47.3 | 35.6 | 24.7 | 13.0 | 51.7  | 3.3  | 9.2  | 12.8 | 12.2 |
| 791.5 EVANSVL      | 14.9     | 21.2 | 48.7 | 33.0 | 24.0 | 13.3 | 38.1  | 5.6  | 14.1 | 14.8 | 13.2 |
| 846.0 UNIONTOWN    | 22.0     | 16.6 | 37.6 | 48.8 | 10.7 |      | 7.4   | 6.4  | 12.9 | 14.9 | 11.6 |
| 848.0 WABASH R     | 18.0     | 16.0 | 74.7 | 45.4 | 21.3 | 19.0 | 67.9  | 4.1  | 9.5  | 18.5 | 19.5 |
| 918.5 SMITHLAND    |          |      |      |      |      | 67.6 | 55.7  | 4.5  | 7.6  | 12.5 | 12.3 |

7.5 11.0 11.3 920.4 CUMBRLD R 11.2 20.9 38.0 36.0 100.0 10.0 100.0 2.0 934.5 TENNESS R 20.3 17.4 47.3 24.9 20.0 20.2 42.9 5.0 7.6 12.0 10.4

952.3 JOPPA 11.1 21.9 43.3 81.0 10.0 16.0 9.7 4.5 6.4 14.6 11.3

### ANNUAL MEAN OF MERCURY (UG/L)

.

|                 | 그는 그는 것이 잘 다 안에 다 가 같이 많이 있는 것이 없는 것이 없다. |     |     |     |       |     |     |     |     |     |     |  |  |
|-----------------|-------------------------------------------|-----|-----|-----|-------|-----|-----|-----|-----|-----|-----|--|--|
| ·               | 77                                        | 78  | 79  | 80  | 81    | 82  | 83  | 84  | 85  | 86  | 87  |  |  |
| STATION         |                                           |     |     |     |       |     |     |     |     |     |     |  |  |
| 0.0 ALLEGY R    | 0.8                                       | 0.2 | 0.1 | 0.1 | 0.1   | 0.3 | 0.4 | 0.2 | 0.2 | 0.3 | 0.1 |  |  |
| 0.0 MONOGA R    |                                           | 1.1 | 0.1 | 0.2 | , 0.1 | 0.2 | 0.3 | 0.1 | 0.4 | 0.1 | 0.2 |  |  |
| 15.2 S HEIGHTS  | • •                                       | 0.3 | 0.1 | 0.2 | 0.1   | 0.2 | 0.5 | 0.7 | 0.3 | 0.2 | 0.2 |  |  |
| 25.4 BEAVER R   |                                           | 0.2 | 0.1 | 0.1 | 0.7   | 0.2 | 0.2 |     | 0.2 | 0.2 | 0.2 |  |  |
| 40.2 E LIVERPL  |                                           | 0.2 | 0.1 | 0.2 | 0.2   |     | 0.4 |     | 0.3 | 0.2 | 0.1 |  |  |
| 86.8 WHEELING   | 1.0                                       | 0.8 | 0.1 | 0.2 | 0.2   | 0.2 | 0.5 | 0.1 | 0.3 | 0.2 | 0.1 |  |  |
| 126.4 HANNIBAL  |                                           | 0.3 | 0.2 | 0.1 | 0.2   | 0.3 | 0.4 | 0.1 | 0.3 | 0.2 | 0.1 |  |  |
| 161.8 WILLOW IS | 0.8                                       | 0.3 | 0.6 | 0.4 | 0.2   | 0.5 | 0.2 | 0.1 | 0.1 | 0.1 | 0.2 |  |  |
| 172.2 MUSKGM R  | 0.6                                       | 0.2 | 0.7 | 0.5 | 0.3   | 0.2 | 0.5 | 0.2 | 0.1 | 0.1 | 0.1 |  |  |
| 203.9 BELLEVL   | 0.8                                       | 0.3 | 0.7 | 0.5 | 0.1   | 0.5 | 0.2 |     | 0.3 | 0.1 | 0.2 |  |  |
| 260.0 ADDISON   |                                           | 0.2 | 0.8 | 0.2 | 0.2   | 0.3 | 0.3 | 0.2 | 0.2 | 0.3 | 0.2 |  |  |
| 265.7 KANAWA R  |                                           | 0.1 | 0.7 | 0.2 | 0.1   | 0.2 | 0.3 | 0.1 | 1.0 | 0.1 | 0.1 |  |  |
| 279.2 GALLIPOL  |                                           | 0.1 | 0.6 | 0.3 | 0.1   | 0.2 | 0.2 |     | 0.2 | 0.3 | 0.2 |  |  |
| 306.9 HUNTING   |                                           | 0.2 | 0.1 | 0.2 | 0.1   | 0.3 | 0.5 | 0.4 | 0.7 | 0.3 | 0.2 |  |  |
| 317.1 BIG SANDY |                                           | 0.2 | 0.4 | 0.2 | 0.4   | 0.2 | 0.2 | 0.1 | 0.1 | 0.1 | 0.1 |  |  |
| 350.7 PORTSM    |                                           | 0.2 | 0.6 | 0.2 | 0.1   | 0.4 | 0.3 | 0.2 | 0.2 | 2.3 | 0.2 |  |  |
| 356.5 SCIOTO R  |                                           | 0.2 | 0.7 | 0.3 | 0.2   | 0.2 | 0.3 | 0.2 | 0.1 | 0.4 | 0.1 |  |  |
| 408.5 MAYSVILLE |                                           | 0.2 | 0.1 | 0.2 | 0.2   | 0.3 | 0.4 | 0.3 | 0.1 | 0.2 | 0.1 |  |  |

# ANNUAL MEAN OF MERCURY (UG/L)

| (CONTINUED)     |     |     |     |     |     | YY  |      |     |     |     |     |  |
|-----------------|-----|-----|-----|-----|-----|-----|------|-----|-----|-----|-----|--|
|                 | 77  | 78  | 79  | 80  | 81  | 82  | 83   | 84  | 85  | 86  | 87  |  |
| STATION         |     |     |     |     |     |     |      |     |     |     |     |  |
| 462.8 CINCINN   | 0.7 | 0.1 | 0.1 | 0.2 | 0.4 | 0.3 | 16.5 | 0.3 | 0.2 | 0.1 | 0.1 |  |
| 464.1 LIL MIAMI |     | 0.1 | 0.1 | 0.2 | 0.1 | 0.3 | 1.8  | 1.4 | 0.2 | 0.1 | 0.1 |  |
| 470.2 LICKING R |     | 0.1 | 0.1 | 0.2 | 0.2 | 0.4 | 0.3  | 0.3 | 0.1 | 0.1 | 0.1 |  |
| 490.0 N BEND    |     | 0.1 | 0.2 | 0.4 | 1.3 | 0.3 |      | •   | 0.1 | 0.1 | 0.2 |  |
| 491.1 GR MIAMI  |     | 0.1 | 0.2 | 0.4 | 0.3 | 0.3 | 0.2  | •   | 0.2 | 0.2 | 0.2 |  |
| 531.5 MARKLAND  |     | 0.2 | 0.3 | 0.6 | 0.8 | 0.4 | 0.5  | 0.3 | 0.1 | 0.2 | 0.1 |  |
| 600.6 LOUISVL   |     | 0.1 | 0.3 | 0.2 | 0.4 | 0.3 | 0.4  |     | 0.2 | 0.1 | 0.2 |  |
| 625.9 W POINT   |     | 0.4 | 0.2 | 0.2 | 0.3 | 0.3 | 0.2  |     | 0.3 | 0.1 | 0.2 |  |
| 720.7 CANNELTN  |     | 1.7 | 0.6 | 0.4 | 0.4 | 0.2 | 0.2  |     | 0.1 | 0.2 | 0.1 |  |
| 784.2 GREEN R   |     | 1.0 | 0.3 | 0.2 | 0.3 | 0.3 |      |     | 0.2 | 0.1 | 0.1 |  |
| 791.5 EVANSVL   |     | 0.4 | 0.4 | 0.2 | 0.2 | 0.2 |      | 0.6 | 0.2 | 0.2 | 0.2 |  |
| 846.0 UNIONTOWN |     | 2.8 | 0.3 | 0.4 | 0.2 | 0.4 | 0.2  |     | 0.2 | 0.1 | 0.2 |  |
| 848.0 WABASH R  |     | 0.3 | 1.1 | 0.2 | 0.3 | 0.2 | 0.3  | 0.2 | 0.4 | 0.1 | 0.1 |  |
| 918.5 SMITHLAND |     |     |     |     |     | 2.8 | 0.4  | 0.3 | 0.1 | 0.1 | 0.2 |  |
| 920.4 CUMBRLD R | 0.5 | 0.2 | 0.3 | 0.2 | 0.2 | 0.4 | 0.2  |     | 0.1 | 0.1 | 0.1 |  |
| 934.5 TENNESS R | 1.4 | 0.3 | 0.4 | 0.2 | 0.5 | 0.3 | 0.6  |     | 0.1 | 0.2 | 0.2 |  |
| 952.3 JOPPA     | 0.8 | 0.3 | 0.3 | 0.3 | 0.2 | 0.4 |      |     | 0.1 | 0.1 | 0.2 |  |
|                 |     |     |     |     |     |     |      |     |     |     |     |  |

ANNUAL MEAN OF ZINC (UG/L)

|        |           | 77    | 78    | 79    | 80    | 81    | 82   | 83    | 84   | 85   | 86   | 87    |
|--------|-----------|-------|-------|-------|-------|-------|------|-------|------|------|------|-------|
| STATIO | N         |       |       |       |       |       |      |       |      |      |      |       |
| 0.0    | ALLEGY R  | 68.3  | 53.8  | 41.8  | 35.8  | 32.0  | 24.2 | 39.2  | 39.3 | 33.6 | 31.3 | 29.3  |
| 0.0    | MONOGA R  | 123.3 | 76.4  | 57.5  | 55.8  | 54.8  | 29.3 | 35.0  | 42.6 | 45.9 | 27.1 | 24.8  |
| 15.2   | S HEIGHTS | 86.7  | 81.7  | 55.5  | 49.2  | 55.8  | 27.3 | 34.2  | 41.2 | 35.6 | 29.3 | 25.1  |
| 25.4   | BEAVER R  | 88.3  | 118.3 | 75.8  | 83.3  | 70.6  | 50.8 | 74.2  | 67.0 | 57.1 | 56.8 | 69.1  |
| 40.2   | E LIVERPL | 91.7  | 65.0  | 74.5  | 93.8  | 101.8 | 53.5 | 115.0 | 88.4 | 48.3 | 37.2 | 36.6  |
| 86.8   | WHEELING  | 68.3  | 91.7  | 57.5  | 70.0  | 39.2  | 45.0 | 38.3  | 40.3 | 45.2 | 38.7 | 32.3  |
| 126.4  | HANNIBAL  | 33.3  | 50.6  | 40.8  | 48.3  | 40.3  | 34.0 | 20.9  | 43.8 | 26.3 | 29.7 | 57.4  |
| 161.8  | WILLOW IS | 64.2  | 40.8  | 45.8  | 40.9  | 37.3  | 38.8 | 27.1  | 24.5 | 24.4 | 32.8 | 25.4  |
| 172.2  | MUSKGM R  | 39.2  | 24.2  | 38.3  | 35.8  | 33.6  | 25.0 | 29.3  | 22.2 | 26.2 | 31.5 | 19.4  |
| 203.9  | BELLEVL   | 69.2  | 47.5  | 47.5  | 38.3  | 50.7  | 41.1 | 28.0  | 25.6 | 38.5 | 32.4 | 29.1  |
| 260.0  | ADDISON   | 59.1  | 70.8  | 115.0 | 47.3  | 52.7  | 32.7 | 95.7  | 32.3 | 45.9 | 43.7 | 22.8  |
| 265.7  | KANAWA R  | 70.9  | 64.5  | 46.0  | 23.3  | 27.0  | 28.2 | 15.5  | 15.6 | 10.9 | 35.6 | 10.7  |
| 279.2  | GALLIPOL  | 54.0  | 65.8  | 189.2 | 50.0  | 46.7  | 23.6 | 29.1  | 33.5 | 29.7 | 29.7 | 22.4  |
| 306.9  | HUNTING   | 105.0 | 57.5  | 44.5  | 28.2  | 41.2  | 27.2 |       | •    | •    | 30.9 | 275.8 |
| 317.1  | BIG SANDY | 74.5  | 60.0  | 54.4  | 50.0  | 43.1  | 28.4 | 15.7  | 29.8 | 17.8 | 21.3 | 24.8  |
| 350.7  | PORTSM    | 74.0  | 59.0  | 35.8  | 45.0  | 41.3  | 37.6 | 41.0  | 35.8 | 38.3 | 37.6 | 14.0  |
| 356.5  | SCIOTO R  | 64.5  | 56.7  | 33.3  | 101.8 | 49.5  | 56.5 | 28.0  | 20.8 | 28.3 | 29.3 | 21.6  |
| 408.5  | MAYSVILLE | 80.0  | 46.0  | 28.3  | 79.1  | 38.0  | 34.7 | 54.6  | 64.7 | 45.2 | 42.9 | 20.6  |

### ANNUAL MEAN OF ZINC (UG/L)

(CONTINUED)

|                 | 77    | 78    | 79    | 80    | 81   | 82   | 83           | 84   | 85   | 86    | 87   |
|-----------------|-------|-------|-------|-------|------|------|--------------|------|------|-------|------|
| STATION         |       |       |       |       |      |      |              |      |      | •     |      |
| 462.8 CINCINN   | 70.8  | 55.0  | 40.8  | 130.0 | 67.0 | 56.8 | 56.1         | 49.5 | 83.4 | 41.3  | 18.5 |
| 464.1 LIL MIAMI | 68.8  | 42.2  | 18.2  | 115.0 | 36.3 | 19.8 | 31.0         | 63.4 | 15.7 | 22.8  | 12.8 |
| 470.2 LICKING R | 44.6  | 28.6  | 16.7  | 30.0  | 20.0 | 21.4 | 17.9         | 98.7 | 14.0 | 118.8 | 14.2 |
| 490.0 N BEND    | 55.4  | 66.8  | 34.2  | 17.5  | 34.5 | 39.5 | 35 <b>.5</b> | 29.7 | 19.6 | 25.3  | 44.7 |
| 491.1 GR MIAMI  | 130.0 | 60.9  | 41.7  | 40.8  | 37.1 | 55.4 | 29.0         | 35.9 | 19.1 | 29.8  | 34.8 |
| 531.5 MARKLAND  | 46.7  | 47.8  | 34.2  | 19.2  | 30.0 | 55.7 | 22.5         | 33.2 | 54.4 | 30.1  | 16.1 |
| 600.6 LOUISVL   | 116.0 | 65.0  | 27.5  | 19.1  | 29.0 | 30.8 | 33.4         | 32.0 | 34.5 | 19.4  | 14.3 |
| 625.9 W POINT   | 85.0  | 213.6 | 92.5  | 28.2  | 37.5 | 44.7 | 57.9         | 30.0 | 38.8 | 28.3  | 24.6 |
| 720.7 CANNELIN  | 50.0  | 55.5  | 59.2  | 28.3  | 30.8 | 73.3 | 55.5         | 58.8 | 42.4 | 27.7  | 35.4 |
| 784.2 GREEN R   | 40.0  | 52.5  | 50.0  | 16.4  | 28.2 | 29.6 | 23.8         | 25.0 | 22.3 | 17.8  | 16.3 |
| 791.5 EVANSVL   | 81.0  | 112.5 | 153.6 | 94.5  | 56.4 | 33.3 | 41.8         | 42.9 | 55.5 | 32.8  | 32.1 |
| 846.0 UNIONTOWN | 52.9  | 54.3  | 53.6  | 22.5  | 29.0 | 32.2 | 32.5         | 33.6 | 41.2 | 31.1  | 32.8 |
| 848.0 WABASH R  | 48.3  | 37.5  | 46.7  | 22.8  | 35.5 | 47.7 | 27.5         | 37.5 | 36.8 | 38.3  | 39.3 |
| 918.5 SMITHLAND |       |       |       | ,     |      | 37.0 | 35.6         | 39.5 | 29.2 | 22.2  | 31.2 |
| 920.4 CUMBRLD R |       | 35.0  | 20.9  | 17.1  | 12.5 | 14.0 | 13.9         | 21.7 | 23.7 | 23.2  | 49.6 |
| 934.5 TENNESS R | 36.0  | 20.0  | 18.2  | 11.7  | 12.0 | 18.0 | 14.2         | 21.9 | 15.4 | 14.3  | 27.9 |
| 952.3 JOPPA     | 50.0  | 157.1 | 32.7  | 23.5  | 28.7 | 25.8 | 29.5         | 25.5 | 30.7 | 30.2  | 54.8 |

ANNUAL MEAN OF FLOW (CFS)

|                 |        |               |               |       |               | 11            |       |               |       |               |              |
|-----------------|--------|---------------|---------------|-------|---------------|---------------|-------|---------------|-------|---------------|--------------|
|                 | 77     | 78            | 79            | - 80  | 81            | 82            | 83    | 84            | 85    | 86            | 87           |
| STATION         |        |               |               |       |               |               |       |               |       |               |              |
| 0.0 ALLEGY R    | 44450  | 19641         | 30375         | 22400 | 21833         | 21333         | 16609 | 19145         | 22573 | 20758         | 15433        |
| 0.0 MONOGA R    | 11678  | 16223         | 23425         | 15100 | 13575         | 97 <b>92</b>  | 9427  | 11692         | 15191 | 12117         | 11425        |
| 15.2 S HEIGHTS  | 34986  | 36474         | 44350         | 30200 | 39492         | 32258         | 36473 | 33575         | 37625 | 34375         | 27717        |
| 25.4 BEAVER R   | 3878   | 4254          | 5908          | 3808  | 4560          | 3292          | 4330  | 4500          | 4642  | 3100          | 2892         |
| 40.2 E LIVERPL  | 40108  | 41336         | 51400         | 34792 | 45133         | 34725         | 37980 | 41658         | 42483 | 38558         | 31583        |
| 86.8 WHEELING   | 41770  | 41670         | 58 <b>550</b> | 47533 | 43267         | 43592         | 44908 | 36333         | 48092 | 43433         | 40427        |
| 126.4 HANNIBAL  | 53980  | 41238         | 50333         | 38417 | 47036         | 35 <b>375</b> | 44058 | 44567         | 46391 | 44683         | 35900        |
| 161.8 WILLOW IS | 44531  | 43 <b>263</b> | 57925         | 40236 | 46583         | 36550         | 42075 | 49233         | 48091 | 43117         | 37745        |
| 172.2 MUSKGM R  | 7389   | 10082         | 12117         | 9458  | 10808         | 7692          | 17042 | 10025         | 9183  | 7583          | 6070         |
| 203.9 BELLEVL   | 46865  | 56 <b>939</b> | 76375         | 54508 | 65050         | 44692         | 62675 | 54725         | 70408 | 66583         | 43609        |
| 260.0 ADDISON   | 62828  | 68004         | 78625         | 44379 | 70 <b>050</b> | 52517         | 61533 | 58 <b>675</b> | 71117 | 66618         | 42683        |
| 265.7 KANAWA R  | 19987  | 19400         | 28155         | 19591 | 12464         | 17983         | 18292 | 20200         | 17450 | 14883         | 17158        |
| 279.2 GALLIPOL  | 83991  | 148933        | 99625         | 72283 | 84308         | 69617         | 79383 | 79650         | 86633 | 71417         | 62583        |
| 306.9 HUNTING   | 88381  | 72122         | 113809        | 66383 | 84667         | 72867         | 81942 | 84342         | 70950 | 92525         | 66208        |
| 317.1 BIG SANDY | 6471   | 6800          | 90 <b>50</b>  | 3425  | 60 <b>67</b>  | 5100          | 2858  | 9033          | 4083  | 5400          | 6400         |
| 350.7 PORTSM    | 116709 | 95705         | 123542        | 72233 | 86067         | 87067         | 82190 | 103400        | 86100 | 80233         | 59982        |
| 356.5 SCIOTO R  | 5611   | 8235          | 9858          | 4608  | 5608          | 6650          | 5720  | 5427          | 4533  | 5633          | 3 <b>558</b> |
| 408.5 MAYSVILLE | 100963 | 82910         | 129408        | 96608 | 83283         | 96650         | 75066 | 98158         | 92083 | 98 <b>018</b> | 61758        |

ANNUAL MEAN OF FLOW (CFS)

| (CONTINUED)     |        |        |              |        |                 | YY           |        |               |         |              |               |
|-----------------|--------|--------|--------------|--------|-----------------|--------------|--------|---------------|---------|--------------|---------------|
|                 | 77     | 78     | 79           | 80     | 81              | 82           | 83     | 84            | 85      | 86           | 87            |
| STATION         |        |        |              |        |                 |              |        |               |         |              |               |
| 462.8 CINCINN   | 85018  | 122271 | 129267       | 100125 | , 95 <b>900</b> | 83400        | 87366  | 98 <b>692</b> | 112283  | 91808        | 61917         |
| 464.1 LIL MIAMI | 1082   | 1250   | 19 <b>92</b> | 2467   | 1573            | 910          | 2392   | 2200          | 1550    | 1842         | 1125          |
| 470.2 LICKING R | 2463   | 6659   | 59 <b>50</b> | 2917   | 2225            | 2617         | 2355   | 4942          | 3308    | 26 <b>92</b> | 2582          |
| 490.0 N BEND    | 85467  | 100439 | 137575       | 83783  | 142707          | 114350       | 116383 | 922 <b>92</b> | 72573   | 98475        | 135217        |
| 491.1 GR MIAMI  | 2483   | 19635  | 7258         | 4258   | 3683            | 6 <b>208</b> | 6133   | 4092          | 6545    | 8167         | 4142          |
| 531.5 MARKLAND  | 95443  | 94617  | 162891       | 86642  | 118660          | 122125       | 125217 | 113583        | 105092  | 104533       | 95 <b>992</b> |
| 600.6 LOUISVL   | 118780 | 135104 | 193800       | 79875  | 115992          | 127592       | 105591 | 110400        | 130417  | 95142        | 85045         |
| 625.9 W POINT   | 156109 | 136330 | 198817       | 82308  | 89592           | 117675       | 105845 | 115000        | 130417  | 93755        | 85045         |
| 720.7 CANNELTN  | 100633 | 148130 | 181117       | 116742 | 107909          | 147575       | 109245 | 127175        | 153292  | 119117       | 101158        |
| 784.2 GREEN R   | 12359  | 11457  | 24558        | 9108   | 16669           | 14875        | 18209  | 17950         | 11108   | 10692        | 9408          |
| 791.5 EVANSVL   | 132989 | 159732 | 228208       | 135483 | 137533          | 142900       | 149033 | 131483        | 174950  | 107350       | 113858        |
| 846.0 UNIONTOWN | 123428 | 143135 | 248425       | 138808 | 128117          | 111375       | 120591 | 159625        | 167842  | 128400       | 113292        |
| 848.0 WABASH R  | 26929  | 36468  | 53608        | 27167  | 24750           | 37500        | 43600  | 37125         | 51483   | 32558        | 16692         |
| 918.5 SMITHLAND |        |        |              |        |                 | 192367       | 173308 | 201150        | 238592  | 150317       | 113700        |
| 920.4 CUMBRLD R |        | •      |              |        | 56900           |              |        |               |         |              |               |
| 934.5 TENNESS R |        |        |              |        | 55250           |              |        |               |         |              |               |
| 952.3 JOPPA     | 280853 | 275527 | 430500       | 265333 | 227958          | 308517       | 281525 | 303725        | 319550  | 198942       | 168192        |
|                 |        |        |              |        |                 |              | •      |               | * INCOM | PLETE DA     | TA SETS       |

APPENDIX E: Z-STATISTIC TABLE



FLOW-ADJUSTED CONCENTRATION RESULTS TABLE OF Z-STATISTIC VALUES FOR

|         |                           |         |       |       |           |        | TOTAL |         |       | AITDATCI | TOT   |        |        |       |       |         |       |
|---------|---------------------------|---------|-------|-------|-----------|--------|-------|---------|-------|----------|-------|--------|--------|-------|-------|---------|-------|
| OHIO MP | STATION                   | TRIB RM | TSS   | TDS   | HARDNES S | ULFATE | PHOS  | AMMONIA | TKN   | NITRITE  | NITRO | PHENOL | COPPER | IRON  | LEAD  | MERCURY | ZINC  |
| 00      | MONONGAHELA B             | 4.6     | -1 76 | AR C  | 90.6-     | 81.0   | 2 63  | 81.8    | R 67  | 1 BG     | 6 07  | 69 1   | 141    | 9     | 010   | 00 0    | 0 01  |
| 0.0     |                           |         |       |       |           |        |       |         | 0.0   | 00.1     | 10.0- | 20.1   |        | 01.1- | 21.01 | 0.0     | 5.0   |
| 0.0     | ALLEGHENY H               | 4.1     | 0.43  | R1.7- | -0.37     | 18.7-  | 10.1- | 00.4    |       | -0.10    | 60.2- | 0.30   | -3.07  | 0.42  | 0.21  | 0.00    | -2.56 |
| 15.2    | SOUTH HEIGHTS             |         | 0.00  | 18.1- | -1.66     | CR.1-  | 4.00  | 19.7-   | -0.54 | -2.79    | -6.88 | -3.04  | -4.62  | -2.04 | -2.97 | 0.69    | -6.53 |
| 25.4    | <b>BEAVER R</b>           | 5.3     | 3.05  | -5.08 | -1.82     | -2.66  | -0.86 | -6.71   | -6.21 | 00.0     | -5.05 | -2.27  | -5.00  | 1.27  | -3.33 | -0.85   | -2.90 |
| 40.2    | EAST LIVERPOOL \          | ww      | -1.38 | -2.06 | 0.55      | -2.32  | -3.28 | -7.60   | -5.17 | -1.55    | -6.04 | -2.69  | -4.35  | -2.02 | -3.82 | 0.00    | -3.83 |
| 86.8    | WHEELING WTP              |         | -0.16 | -1.35 | 0.16      | -0.07  | -2.37 | 4.80    | -4.43 | -1.60    | -4.45 | -1.43  | -0.48  | -0.32 | -3.17 | -0.97   | -2.97 |
| 126.4   | HANNIBAL L&D              |         | -0.82 | -1.03 | -1.62     | 1.28   | -1.78 | -6.13   | 4.85  | -4.40    | -5.64 | -2.35  | -5.08  | 0.73  | -3.65 | -0.54   | -3.75 |
| 161.8   | WILLOW ISLAND L&          | 2D      | -1.96 | -1.06 | -2.06     | 1.30   | -1.55 | -6.59   | -6.07 | -3.40    | -6.97 | -1.75  | -5.01  | -1.45 | 4.95  | -1.53   | 4.83  |
| 172.2   | MUSKINGUM R               | 5.8     | -0.47 | -4.07 | -2.33     | -1.30  | :INS: | :INS:   | :INS: | :INS:    | :INS: | -0.72  | -5.88  | 0.49  | 4.09  | -2.50   | -0.83 |
| 203.9   | <b>BELLEVILLE L&amp;D</b> |         | -2.63 | -1.63 | -2.44     | 0.16   | -3.87 | -5.17   | -5.15 | -1.72    | -5.45 | -1.27  | -5.78  | 0.28  | -2.76 | -0.82   | -3.61 |
| 260.0   | ADDISON-KYGER (           | R       | -3.64 | -1.93 | -2.35     | 0.00   | -4.76 | -6.61   | -5.36 | -1.30    | -5.72 | -2.88  | -3.32  | -2.67 | 4.67  | 0.00    | -6.63 |
| 265.7   | KANAWHA R                 | 31.1    | -3.33 | -3.93 | 0.36      | 0.19   | :INS: | :INS:   | :INS: | :INS:    | :INS: | -3.79  | -6.82  | -1.37 | -1.57 | -0.94   | -6.11 |
| 279.2   | GALLIPOLIS L&D            |         | -3.29 | -3.49 | -2.48     | -1.47  | 4.39  | -6.99   | -5.07 | -1.66    | -5.25 | -1.04  | -6.34  | 0.02  | -2.03 | 0.08    | -4.97 |
| 306.9   | HUNTINGTON WAT            | ERCO    | -6.69 | -0.64 | -0.71     | -0.74  | 1.22  | -7.17   | -7.22 | 0.75     | -6.37 | -2.69  | -7.28  | -7.44 | -4.83 | 1.26    | 0.40  |
| 317.1   | <b>BIG SANDY R</b>        | 20.3    | -5.22 | 2.89  | 1.88      | 0.62   | -6.73 | -6.27   | -6.39 | -0.52    | -5.73 | -2.36  | -0.55  | -3.29 | -3.73 | 0.00    | 4.64  |
| 350.7   | PORTSMOUTH                |         | -1.40 | -1.42 | -1.98     | 1.30   | -3.89 | -2.37   | -3.19 | 0.08     | -2.26 | -0.76  | -2.53  | 0.00  | -2.45 | 0.69    | -0.14 |
| 356.5   | SCIOTO R                  | 15.0    | -1.24 | -0.20 | -1.62     | 0.48   | :INS: | :INS:   | :INS: | :INS:    | :INS: | 0.43   | -6.88  | 0.61  | -3.31 | -0.75   | -3.45 |
| 408.5   | MAYSVILLE WW              |         | 0.70  | -0.24 | 0.42      | 0.12   | :INS: | :INS:   | :INS: | :INS:    | :INS: | -1.36  | 0.47   | 1.30  | -4.08 | 0.96    | -1.29 |
| 462.8   | <b>CINCINNATI WW</b>      |         | -0.40 | -1.49 | -1.57     | -0.76  | :INS: | :INS:   | :INS: | :INS:    | :INS: | -1.53  | -0.23  | 1.24  | -2.63 | 0.67    | -3.04 |
| 464.1   | LITTLE MIAMI R            | 7.5     | -1.10 | 2.34  | -1.40     | 0.93   | :INS: | :INS:   | :INS: | :INS:    | :INS: | -1.69  | -4.53  | 0.46  | -3.75 | 0:30    | 4.20  |
| 470.2   | LICKING R                 | 4.6     | -0.53 | 3.91  | -0.48     | 1.90   | -3.00 | -4.17   | -4.53 | 0.00     | -2.66 | -2.18  | -4.02  | 0.86  | -3.08 | 0.00    | -2.60 |
| 490.0   | NORTH BEND                |         | -1.36 | -0.45 | -0.92     | 0.02   | :INS: | :INS:   | :INS: | :INS:    | :INS: | -2.94  | -3.07  | -0.38 | 4.43  | 1.45    | -1.90 |
| 491.1   | <b>GREAT MIAMI R</b>      | 6.5     | -1.47 | -0.85 | -2.85     | -0.66  | :INS: | :INS:   | :INS: | :INS:    | :INS: | -2.65  | -3.04  | -0.99 | 4.60  | 1.32    | -5.48 |
| 531.5   | MARKLAND L&D              |         | -0.64 | -0.34 | -0.31     | 1.50   | :INS: | :INS:   | :INS: | :INS:    | :INS: | -2.64  | 0.75   | 0.67  | -4.18 | -0.74   | -3.04 |
| 600.6   | LOUISVILLE WATE           | RCO     | -0.29 | -0.66 | -2.44     | -1.29  | -3.00 | 4.78    | -1.49 | 1.58     | 0.24  | -0.30  | -0.06  | 0.19  | -3.20 | -0.72   | -2.54 |
| 625.9   | WEST POINT                |         | 3.89  | -0.42 | -1.96     | -1.12  | 4.53  | -0.73   | -2.30 | 1.60     | -1.16 | -1.01  | 4.34   | -2.86 | -4.57 | 0.41    | -5.02 |
| 720.7   | <b>CANNELTON L&amp;D</b>  |         | -1.20 | -0.67 | -0.19     | -1.32  | :INS: | :INS:   | :INS: | :INS:    | :INS: | -1.93  | -2.65  | 0.02  | -2.23 | -2.29   | -1.41 |
| 784.2   | GREEN R                   | 41.3    | -0.90 | 2.74  | 1.89      | 2.60   | -3.82 | -0.72   | 0.95  | 1.81     | 1.88  | -1.62  | -2.42  | -0.12 | -3.68 | -1.76   | -2.84 |
| 791.5   | <b>EVANSVILLE WW</b>      |         | -3.21 | -1.09 | 0.31      | -2.18  | -5.05 | -3.35   | -2.02 | 0.70     | -0.68 | -0.50  | -5.14  | -1.97 | -1.14 | -2.33   | -3.62 |
| 846.0   | UNIONTOWN L&D             |         | 0.81  | -2.02 | -0.87     | -1.01  | :INS: | :INS:   | :INS: | :INS:    | :INS: | -1.56  | -1.17  | 1.12  | -2.02 | -1.53   | -0.73 |
| 848.0   | WABASH R                  | 51.5    | -0.88 | -1.53 | 1.62      | -1.23  | :INS: | :INS:   | :INS: | :INS:    | :INS: | -0.88  | -1.71  | 0.80  | -0.69 | -0.49   | -0.45 |
| 918.5   | SMITHLAND L&D             |         | -1.38 | -1.17 | -2.32     | 0.72   | :INS: | :INS:   | :INS: | :INS:    | :INS: | -2.77  | -1.40  | -0.49 | -0.84 | -1.70   | -1.43 |
| 920.4   | CUMBERLAND R              | 30.6    | :INS: | :INS: | :INS:     | :INS:  | :INS: | :INS:   | :INS: | :INS:    | :INS: | :INS:  | :INS:  | :INS: | :INS: | :INS:   | :INS: |
| 834.5   | TENNESSEE R               | 6.0     | :INS: | :INS: | :INS:     | :INS:  | :INS: | :INS:   | :INS: | :INS:    | :INS: | :INS:  | :INS:  | :INS: | :INS: | :INS:   | :INS: |
| 952.3   | JOPPA                     |         | -3.91 | 0.32  | -1.73     | -1.20  | -4.49 | -3.84   | -1.71 | 0.61     | 0.18  | -0.63  | -0.73  | -1.37 | -1.04 | 0.00    | -0.31 |
|         |                           |         |       |       |           |        |       |         |       |          |       |        |        |       |       |         |       |

:INS: Insufficient data available STRONG SIGNIFICANT INCREASING TREND has a z-statistic of 1:96 OR ABOVE SIGNIFICANT INCREASING TREND has a z-statistic BETWEEN 1.65 AND 1.96 NO TREND has a z-statistic BETWEEN 1.65 AND -1.65

SIGNIFICANT DECREASING TREND has a z-statistic BETWEEN -1.65 AND -1.96 STRONG SIGNIFICANT DECREASING TREND has a z-statistic ol -1.96 OR BELOW



APPENDIX F: TREND DIRECTION MAPS AND SLOPE MAGNITUDE BAR CHARTS









NUMBER IN () IS MILES FROM CONFLUENCE WITH OHIO RIVER







RIVER MILE POINT







TREND ASSESSMENT SLOPE ESTIMATOR













TREND ASSESSMENT SLOPE ESTIMATOR








































ESTIMATOR

TREND ASSESSMENT SLOPE







## TREND ASSESSMENT SLOPE ESTIMATOR







TREND ASSESSMENT SLOPE ESTIMATOR (Main Stem)

Zinc

Ohio River Valley Water Sanitation Commission 49 E. Fourth St., Suite 300 Cincinnati, OH 45202 (513) 421-1151

Printed on Recycled Paper