

ORSANCO Biological Programs
Ohio River Valley Water Sanitation Commission
5735 Kellogg Ave. Cincinnati, OH 45230 www.orsanco.org

Table of Contents

Introduction 2
The River 3
Facts 3
Methods 4
Site Selection 4
Fish Collection 4
Collecting Macroinvertebrates 5
Characterizing Instream Habitat 6
Water Quality and Hydrology 6
Assessing Biological Condition 7
Survey Results 8
New Cumberland Pool 9
Meldahl Pool 10
Newburgh Pool 11
Conclusions 12
Pool Surveys 12
Assessment Comparisons 12
Present vs. Past Assessments 12
New Cumberland Pool (2005-2011-2017) 13
Meldahl Pool (2007-2012-2017) 13
Newburgh Pool (2007-2012-2017) 14
Acknowledgements 15
Life Below the Waterline 16
River-wide Catch Comparison (table) 17

Introduction

Based in Cincinnati, the Ohio River Valley Water Sanitation Commission (ORSANCO) is an interstate water pollution control agency created in 1948 by an act of Congress to monitor and improve the water quality of the Ohio River. A primary goal of ORSANCO programs is to work with state agencies to develop a set of pollution control standards for the Ohio River. Monitoring programs were established to develop and refine these standards. One of these programs, the ORSANCO biological program, uses fish studies to establish biological criteria (biocriteria) for the Ohio River. These biocriteria are ultimately used to provide insight into the overall health of the river ecosystem.

In 1993, ORSANCO developed and implemented a survey design that used electrofishing methods designed for the Ohio River. After years of collecting fish population data on the Ohio River, we developed the original Ohio River Fish Index (ORFIn) which was subsequently modified (mORFIn). Each year we collect fish and environmental data from various sections of the Ohio River and use these data to calculate mORFIn scores, which are numerical representations of the relative condition of Ohio River fish communities based on a suite of measurable attributes. The resulting scores allow us to assess the biological condition of each section of the river. The information included in these assessments is further used for regulatory, restorative and protective efforts within the Ohio River basin.

1948 - ORSANCO is created to, among other things, ensure the Ohio River is "capable of maintaining fish and other aquatic life"

How our achievements coincide with national milestones in the effort to restore our nation's water

1969 - The Cuyahoga River catches fire, fueling the movement to clean our nation's water

1970 - The Environmental Protection Agency (EPA) is created

1972 - The first incarnation
of the Clean Water Act, the
Federal Water Pollution Control Amendments, lays the foundation for more rigorous future legislation partners, we begin to sample fish tissue as a means for determining the presence or absence of certain pollutants

1987 - Fish tissue procedures are modified \& refined allowing appropriate state agencies to use the data for fish consumption advisories

1977 - The Clean Water Act (CWA) is passed with the goal to greatly reduce sources of water pollution

> 1987 - The Water Quality Act is amended to the CWA. One of its goals, to "restore the biological integrity of the nation's waters," emphasized the need for tools like the ORFIn
> 1990 - EPA initiates the Environmental Monitoring \& Assessment Program (EMAP) to assess the nation's water bodies. We participate in regional surveys of Ohio River tributaries conducted between $2004-2006$

1993-We institute a semi-random sampling design allowing us a more unbiased means to assess Ohio River fish communities
2003 - The Ohio River Fish Index
(ORFIn) is created
2005 - We begin routine surveys
employing the ORFIn and random
design, and a macroinvertebrate
methods comparison study 2008 - The ORFIn is further
refined \& modified creating
the m ORFIn

2012 - The Ohio River Macroinvertebrate Index (ORMIn) is created

2006 - EPA expands the scope of EMAP to include "Great Rivers". We lend our expertise as trainers \& surveyors gaining valuable data for modifying the ORFIn

2008 \& 2013 - The National Rivers and Stream Assessments are conducted across the US.
We participate gaining additional knowledge of the Ohio River basin

This report summarizes the 2017 New Cumberland, Meldahl and Newburgh pool assessment survey findings.

The River

The Ohio River begins at the confluence of the Monongahela and Allegheny rivers in Pittsburgh and flows 981 miles in a southwesterly direction to its confluence with the Mississippi River near Cairo, IL. The Ohio has several additional large tributaries including the: Muskingum, Scioto, Kanawha, Kentucky, Green, Wabash, Cumberland and Tennessee rivers. The Ohio River itself runs through or borders six states; Illinois, Indiana, Kentucky, Ohio, Pennsylvania and West Virginia. The river basin ($>200,000 \mathrm{mi}^{2}$) covers an additional eight states; New York, Maryland, Virginia, North Carolina, Tennessee, Georgia, Alabama and Mississippi. Nineteen high-lift locks and dams maintain a nine-foot minimum depth for commercial navigation throughout the river.

Facts

- Average depth 24 ft , max depth exceeding 90 ft
- Average width $1 ⁄ 2 \mathrm{mi}$, 1 mi max (Louisville, KY)
- ~344 fish species from Ohio River basin (18 exotic) = 40% of known N. American species (800 species)
- ~178 fish species found in the Ohio River (14 exotic)
- Deciduous forests continue to dominate the basin
- Major land uses: pastures, row crops and urban development
- Basin holds ~8\% of the nation (27 million people)
- 33 drinking water intakes provide drinking water for over 5 million people along the main stem
- 589 permitted discharges to the Ohio River
- 49 power-generating facilities on the main stem
- Coal and energy products comprise 70\% of the 250 million tons of cargo carried by barges each year

Site Selection

A random, probability-based survey design was used to select sampling site locations within each Ohio River navigational pool. The target areas of our surveys are both shorelines of each pool from the upstream dam to the downstream dam. The survey design provides coordinates for 15 sites (500m-long) in each of the selected pools. Biological and environmental data are then collected from these 15 sites and used to assess the biological condition of the pool.

Fish Collection

To maintain consistency across different sampling years, fish surveys are conducted between July $1^{\text {st }}$ and October $31^{\text {st }}$ and when water levels are within two feet of "normal flat pool". Fish are collected by a non-lethal method called boat electrofishing using an 18 ft aluminum johnboat equipped with a generator and an electrofishing unit (standard equipment used by federal and state agencies). Using the electrofishing unit to regulate the output from the generator, a mild current is applied to the water with an effective range of up to 20 ft . Because of our limited range, sites are fished at night along the shoreline when species are most active. This allows us to maximize the number of individuals and species captured, thus providing us

Collecting Macroinvertebrates

Macroinvertebrates (macros) are organisms that lack a true backbone and can be seen with the naked eye. They include aquatic insects, molluscs, arachnids, crustaceans, and worms. They can range from large adult forms (e.g. crayfish), to very small larval forms of terrestrial insects (e.g. flies).

Two sampling methods are used to collect macroinvertebrates (macros); Hester-Dendy (HD) samplers and multi-habitat kicks (MH). HD samplers are constructed of tempered masonite cardboard cut into 3 in square plates and 1in square spacers. Eight large plates and 12 spacers are stacked on a metal eyebolt to provide varying degrees of space for macro colonization. Five HDs are attached, in a ring, to a concrete paver. The paver is then placed on the river bottom in 10ft of water at the downstream end of each 500 m sampling site and secured to the shore. Similar to the fish, macro sampling is restricted to a defined season within each year. HDs are deployed for six weeks, beginning September $1^{\text {st }}$ allowing adequate time for macro colonization. After the six week colonization period, HDs are retrieved and MH kick surveys are conducted.

A MH kick is performed by actively disturbing the substrate and then sweeping a net through the resulting cloud. This technique allows the sampler to collect macros without compromising the sample with large amounts of sediment. To further exclude sediments, the net heads are " D " shaped (i.e. have flat bottoms), which also eases the scraping of woody debris and boulders. Samplers disturb/scrape 10 linear meters of substrate at each 100 m interval of a site in depths 1 m or shallower. At each of these intervals, every
attempt is made to sample available habitats (e.g. sand flats, woody debris, boulders, etc.) relative to the proportion of their availability. The kicks conducted at each 100 m interval are then combined to represent the community present at the site.

Once the kicks are completed and the HDs have been retrieved, the samples are preserved. The HDs are disassembled in the field. The plates from the HDs and large debris from the MH samples are rinsed and drained through a $500 \mu \mathrm{~m}$ sieve. The macros trapped by the sieve are then transferred to a preservative jar with 70% ethanol to be identified in a laboratory. At the lab, macros are identified to species level when possible; in all other cases the highest level of taxonomic resolution is obtained. The macro information is then reviewed and imported into a database from which index scores are generated, keeping HD and MH data separate.

Characterizing Instream Habitat

Intensive habitat surveys are conducted which include measures of woody cover, depth and prevalence of substrate types at each electrofishing site. Woody cover (e.g. submerged brush, logs and stumps) is estimated visually. More quantitative measures of depth and substrate proportions are obtained through the use of a 20^{\prime} copper pole. The pole is used to probe the bottom of the river to determine exact depth and the proportions of substrate types including: boulder, cobble, gravel, sand, fines and hardpan (clay) that occur at each site.

Because different fish species prefer different habitat types, it is important to classify the instream habitat at each of our sites to better understand mORFIn score variability. Using the habitat survey data, we assign each site to one of five statistically derived habitat classes simply named: A, B, C, D and E. The five habitat classes represent a gradient from
 highly coarse Class A habitats with high amounts of cobble and gravel, to the predominantly sandy/fine substrates of habitat classes "D" and "E" which differ by water depth (see below).

Water Quality and Hydrology

Basic measures of water quality such as water temperature, clarity, pH, DO and conductivity are measured at each site prior to electrofishing. Water samples may also be collected at the downstream end of each 500 m zone approximately 100ft from shore to determine various water quality parameters (e.g. nutrient levels and hardness). River stage is monitored using data obtained from the U.S. Army Corps of Engineers, who also provide measures of predicted daily average flow volumes and velocities from the nearest-upstream sampling station to any particular site. These data are compiled to aid in the interpretation of the fish index results.

A look at our five habitat classes

Assessing Biological Condition

ORSANCO uses two biological indices to assess the condition of the Ohio River. The modified Ohio River Fish Index (m ORFIn) and the Ohio River Macroinvertebrate Index (ORMIn using HD data only) were established in 2003 and 2012, respectively. Both indices include various measures (metrics) of the fish and macro communities such as: diversity, abundance, feeding and reproductive guilds, pollution tolerance, habits and health.

13 metrics used to generate mORFIn scores	
Fish Metric	Definition
Native Species	Number (No.) of species native to the Ohio River
Intolerant Species	No. of species intolerant to pollution and habitat degradation
Sucker Species	No. of sucker species (e.g. redhorse and buffalo)
Centrarchid Species	No. of black bass, sunfish and crappie species
Great River Species	No. of species primarily found in large rivers
\% Piscivores	\% of individuals (ind.) that consume other fish
\% Invertivores	\% of ind. that consume invertebrates
\% Detritivores	$\%$ of ind. that consume detritus (dead plant material)
\% Tolerants	\% of ind. tolerant to pollution and habitat degradation
\% Lithophils	\% of ind. belonging to breeding groups that require clean substrates for spawning
\% Non-natives	\% of ind. not native to the Ohio River, including both exotics and hybrids
No. DELT anomalies	No. of ind. with Deformities, Erosions, Lesions and Tumors present
Catch per unit effort (CPUE)	Total abundance of ind. (minus exotics, hybrids and tolerants)
8 metrics used to generate ORMIn scores	
Macro Metric	Definition
No. Taxa	Number (No.) of unique taxa
EPT Taxa	No. of taxa that belong to are either the
	Ephemeroptera, Plecoptera, or Trichoptera orders
Predator Taxa	No. of taxa that are predators
\% Collector-	\% of taxa that feed on fine particulate organic
Gatherer Taxa	matter
\% Caenids	\% of individuals (ind.) that belong to the pollution tolerant Caenidae family of Ephemeropterans
\% Odonates	\% of ind. that belong to the Odonata order
\% Intolerants	$\%$ of ind. intolerant to pollution and habitat degradation
\% Clingers	\% of ind. that cling to instream habitat

Each navigational pool is separately assessed with each index based upon the biological and environmental data collected from its 15 randomly selected sites. This involves a multi-step approach (depicted top right) that converts average metric scores ($0-100$) of each individual site into final index scores ($0-60$), based on varying expectations of the five different habitat classes. Index scores of the 15 sites are then averaged to provide an overall score and rating for the navigational pool specific to each index.

The presence of five distinct habitat classes A, B, C, D and E, coupled with the range of habitat preferences exhibited by individual fish and macro taxa required the translation of metric scores into relative index scores. By removing the effect of habitat, index scores can then be averaged within a pool to represent the overall condition of the biological community in question.

The averaged scores for both the mORFIn and ORMIn are then compared to a biocriterion. The $25^{\text {th }}$ percentile is the statistical threshold commonly used by regulatory agencies for establishing biocriteria. Using this threshold, our established biocriterion (i.e. a representation of healthy Ohio River fish communities) is set at an average index score of 20.0.

A pool is assessed to be in full support of its aquatic life-use (ALU) designation (i.e. possessing intact biological communities) if both the mORFIn and ORMIn scores are greater than or equal to 20.0 (i.e. a biological rating of "Fair", "Good", "Very Good", or "Excellent"). A pool is in partial support of its ALU designation if only one of the indices' scores greater than or equal to 20.0, while the other index score falls within 10.0-19.9 (i.e. a "Poor" rating). Any pool in which both indices score below a 20.0, or in which at least one index scores below 10.0 (i.e. a "Very Poor" rating), would be considered in non-support of its ALU designation.

2017 Pool Survey Results

The results of the 2017 biological surveys are detailed in the following pages (relative pool locations shown below). Included are brief descriptions of the land use \& hydrology, site level mORFIn \& ORMIn ratings, summaries of notible catches \& instream habitat, and the overall biological condition of each pool.

For more detailed catch, metric, and index scores visit www.orsanco.org/programs/biological-programs

DOMINANT MACRO GROUPS

MELDAHL POOL (2017) - Healthy Condition

This page summarizes the 2017 fish and macroinvertebrate (macro) surveys conducted by ORSANCO biologists in the Meldahl Pool of the Ohio River. Fish are collected via non-lethal electrofishing in the summer. Macros are collected in the fall from artificial substrate samplers placed in the water in late summer. The Meldahl pool is 95.2 miles long, extending from Greenup Locks and Dam (ORM 341.0) to Meldahl Locks and Dam (ORM 436.2). The pool has a gradient drop of 0.3 feet per mile, averages 1,603 feet wide and 23 feet deep. The pool flows adjacent to the states of Ohio and Kentucky. This scenic portion of the Ohio River has only a few small cities (Portsmouth, OH and Maysville, KY) and few anthropogenic impacts. The few impacts that do exist are agricultural $(\mathbf{1 0 . 8 \%})$ and pastoral (12.1%) land uses. Deciduous forests are the dominant land cover (59.3\%). As such, forested sandy shorelines are prevalent as well as instream woody cover. Meldahl receives water from one large tributary, the Scioto River (OH), and several smaller creeks in Ohio (Ohio Brush, Eagle, and Whiteoak) and Kentucky (Tygarts and Kinniconick).

AQUATIC INVASIVES WATCH

DOMINANT FISH FAMILIES

Gizzard Shad

DOMINANT MACRO GROUPS

Newburgh Pool (2017) - healthy Condition

This page summarizes the 2017 fish and macroinvertebrate (macro) surveys conducted by ORSANCO biologists in the Newburgh Pool of the Ohio River. Fish are collected via non-lethal electrofishing in the summer. Macros are collected in the fall from artificial substrate samplers placed in the water in late summer. Newburgh pool is 55.4 miles long, extending from Cannelton Locks and Dam (ORM 720.7) to Newburgh Locks and Dam (ORM 776.1). The pool has a gradient drop of 0.3 feet per mile and averages 2,477 feet wide and 28 feet deep. The pool flows adjacent to the states of Indiana and Kentucky. The Newburgh pool receives water from the following tributaries: Anderson River at mile point 731.5 with a drainage area of $\mathbf{2 7 6}$ square miles, Blackford Creek at mile point $\mathbf{7 4 2 . 2}$ with a drainage area of $\mathbf{1 2 4}$ square miles and Little Pigeon Creek with a drainage area of 415 square miles (ORSANCO 1994). The shorelines of this pool support a and Litte Pigeon Creek with a drainage area of 415 square miles (ORSANCO 1994). The shorelines of this pool support a

Channel Shiner use consists primarily of deciduous forest (53.9\%), but also has a considerable amount of row crops (13.1\%) and pasture

CONCLUSIONS

Pool Surveys

The 2017 pool surveys were successfully completed between July $5^{\text {th }}$ and September $18^{\text {th }}$. Wet weather conditions were frequent, coupled with high flow rates and sedimentation. All three pools experienced fluctuating flow regimes and as a result sampling events were postponed numerous times throughout the season. Nonetheless, all three pools surveyed during the 2017 field season were assessed as meeting their aquatic life-use designations (i.e. containing healthy fish communities).

Assessment Comparisons

Between 2005 and 2014, all 19 Ohio River navigational pools were surveyed and assessed twice. Both cycles revealed the majority of the river to be in 'Good' condition, even though some pools changed in condition rating between surveys. The 2017 surveys continued the third cycle, which enhances our ability to detect riverwide patterns. Some of the index and species variability observed across pools may be due in part to variations in natural distributions, instream habitat, invasive species distributions, annual variations in flow, weather conditions and water quality.

Present vs. Past Assessments

The focus of ORSANCO's biological assessments is to determine whether each pool "meets" or "fails to meet" its aquatic life use designation. To aid in interpretation, we assign one of six ratings (e.g. from "Very Poor" to "Excellent") to the pools based on the relative condition of their fish communities. Shifts between years in these condition ratings may be due to variations in environmental factors other than water quality. By examining these factors (e.g. invasive species, flows, etc.) and their effects on mORFIn metrics, we attempt to provide defensible explanations for the differences in final condition ratings observed between assessments.

River-wide Assessment Comparison
The 2017 surveys (ξ) had similar condition ratings to their neighboring pools. Reasons for the variability of ratings across the pools include, but are not limited to varying degrees of anthropogenic land uses (which can affect habitat and water quality), invasive aquatic vegetation, proximity to tributaries (which can affect species diversity based upon the biological condition of the tributary).

New Cumberland Pool
(Fish = FAIR, Macros = FAIR)

Variable	2005	2011	2017
Environmental Factors			
Avg. Conductivity	460	615	302
Avg. Secchi Depth	46.2	64	32
CPUE Score	46.9	34.4	22.5
Avg. \% Tol Score	91.8	61.5	28.4
Bluntnose Minnow	1	19	23
Common Carp	23	18	55
Avg. \% Piscivore Score	38.8	21.6	29.9
Sauger	48	29	54
Spotted Bass	35	17	20
Avg. Great River Species Score	42.6	20.0	8.9
Channel Darter	4	1	1
Mooneye	11	9	0
Silver Chub	7	2	0
Avg. Intolerant Score	77.7	35.7	42.5
Logperch	24	9	10
Northern Hog Sucker	32.0	2.0	14.0
Avg. Sucker Score	77.4	30.9	54.7
Total Suckers:	272	209	296
Assessment Result			
Avg. mORFIn Score	36.3	24	27.8
Fish Condition Rating	Good	Fair	Fair

Similar to 2011, New Cumberland Pool was assessed to be in Fair condition in 2017. Conductivity, average Secchi depth and CPUE have decreased with each assessment cycle, particularly in 2017 where the river as a whole was subject to numerous high water events. Since first noted after the first assessment cycle, abundant aquatic vegetation, primarily Hydrilla verticillata, is the primary environmental factor observed that could account for lower metric performance. Great river species observations continue to decline. Fewer intolerant species, greater numbers of observed piscivores and an improved average Sucker Score contributed to the elevated average mORFIn Score in 2017.

Meldahl Pool
(Fish = GOOD, Macros = FAIR)

Variable	2007	2012	2017
Environmental Factors			
Avg. Conductivity	499	456	380
Avg. Secchi Depth	52.6	38.5	28.3
Avg. \% Tolerant Score	96.9	93.2	91.4
Avg. \% Non-Native Score	98.1	95.7	78.5
Common Carp	7	8	12
Redear Sunfish	0	0	2
Striped Bass	0	0	3
Avg. \% Piscivore Score	62.1	32.4	22.5
Sauger	63	37	40
Flathead Catfish	40	21	26
Avg. Great River Species Score	77.8	57.8	37.8
Silver Chub	16	13	8
Mooneye	12	5	0
Assessment Result			
Avg. mORFIn Score	48.09	39.89	36.15
Fish Condition Rating	Very Good	Good	Good

Meldahl pool was again assessed to be in Good condition in 2017. Decreases in conductivity and average Secchi depth were similar to the other pools sampled as Meldahl Pool experienced the same inclement weather conditions and subsequent flow regime fluctuation. Metric performance revealed effects of increasing numbers of non-native species and low numbers of great river species. All other metric scores exhibited insignificant changes. The lower average mORFIn score is not considered significant as the pool demonstrates the inherent biological variability we would expect within a single condition rating.

Newburgh Pool
(Fish = GOOD, Macros = Unassessed)

Variable	2007	2012	2017
Environmental Factors			
Avg. Conductivity	460	615	302
Avg. Secchi Depth	46.2	64	32
Avg. CPUE Score	36.8	72.9	21.1
Avg. \% Tol Score	87.3	92.5	84.2
\# Tolerant individuals	56	108	60
Avg. Species Score	49.1	74.2	50.8
\# Species	44	44	22
Total \# Individuals:	530	775	565
Assessment Result			
Avg. mORFIn Score	42	46.2	33.6
Fish Condition Rating	Very Good	Very Good	Good

Newburgh pool was assessed to be in Good condition in 2017, dropping from the Very Good rating observed in the previous two assessment cycles. As in the other two pools assessed, unstable weather patterns throughout the basin affected not only ambient conditions, but also delayed ordinary sampling timeframe. Sampling was completed mid-September (under "normal" conditions sampling is typically completed during the month of July). The most notable metric performance difference in 2017 was a drop in average Species Score. Only 22 species were observed in 2017 as opposed to 44 species observed each of the previous two assessments.

Macroinvertebrate collections were severely depressed in Newburgh Pool in 2017. In 2017, a large discharge event took place during the second week of October just prior to retrieval. Likewise, gauge height at Newburgh Lock and Dam increased well above normal flat-pool height (13.3 feet) several times throughout the six week colonization period.

Low numbers of individuals collected were likely due to the higher 2017 discharge relative to previous assessment years. HD deployments in particular require passive colonization of drift organisms and individuals from the nearby benthos to be an effective sampling method, and are susceptible to high water velocities, discharge and subsequent scouring events. These high flow events likely scoured macroinvertebrates from and/or disturbed their colonization of the deployed Hester-Dendy (HD) samplers. As a result sampling efficiency was diminished and we were unable to collect a sample reflective of the six-week colonization period.

As the macro results were anomalous, and unreliable due to abiotic conditions (flow), we were unable to confidently assess the macroinvertebrate population. As a result, the Newburgh Pool assessment is based solely on mORFIn (fish) scores and is in "Full Support" based this single biological indicator.

Our assessments would not be possible without the guidance of our committee and hard work of our Seasonal Biologists. For information on seasonal employment opportunities available to recent graduates, contact Rob Tewes (rtewes@orsanco.org).

Look for our mobile 2,200 gallon educational aquarium displays at festivals and events along the

Ohio River filled with fishes
from local areas.

To request a
"Life Below the Waterline" display at your event, contact
Rob Tewes (rtewes@orsanco.org)
for pricing and scheduling.

River-wide Catch Comparison (data from most recent survey year shown

? On On	Species (common name)		$\begin{aligned} & \stackrel{m}{n} \\ & \frac{n}{0} \\ & \stackrel{0}{=} \\ & \\ & 0 \end{aligned}$										$\begin{aligned} & \text { N } \\ & \frac{\Sigma}{n} \\ & \frac{\pi}{0} \\ & \end{aligned}$							
ঞ্ত	Longnose Gar	23	19	11	31	16	64	34	28	64	25	42	59	28	24	50	30	16	11	61
	Spotted Gar															1			2	
	Shortnose Gar												1				12	12	28	101
$\stackrel{Q}{\underset{S}{4}}$	Skipjack Herring		1				1	2			1				1	2	3	5	2	1
	Gizzard Shad	3417	37	26	83	5092	43	154	117	147	176	158	591	274	54	378	216	650	557	278
	Threadfin Shad																		14	74
N	Common Carp	48	70	45	75	36	46	11	26	3	32	7	13	5	4	3	4	8	7	2
	Grass Carp								1								2			1
	Silver Carp														1	3		15	17	25
	Bighead Carp																			
	Goldfish								1									1		
	Carp x Goldfish	1																		
3 0 2 \sum 	Cyprinidae sp.																			
	Golden Shiner								1											1
	Striped Shiner				2	7							11		5					
	Spottail Shiner			4				11	2	4	1	2			3					
	Spotfin Shiner	77	35	68	165	62	72	295	58	127	19	52	19	10	28	73	8	112	218	14
	Notropis sp.																			
	Emerald Shiner	848	46	216	357	892	79	1085	240	1208	172	221	423	470	227	407	195	102	86	20
	Silverband Shiner																			
	Sand Shiner																			
	Channel Shiner	492	108	323	845	481	167	1173	410	733	684	2017	872	897	609	1822	426	255	102	47
	River Shiner				42				5			16	69	156	30	145	47	104	8	15
	Shoal Chub																			
	Silver Chub								1		1	11	38	33	51	32	10	10	12	10
	Streamline Chub	11	1																	
	River Chub																			
	Gravel Chub																			

River-wide Catch Comparison (data from most recent survey year shown

$\begin{aligned} & \text { Q } \\ & \text { OU } \\ & \text { OU } \end{aligned}$	Species (common name)												$\begin{aligned} & \text { N } \\ & \frac{\Gamma}{\sqrt{0}} \\ & \frac{\pi}{0} \\ & \stackrel{N}{N} \end{aligned}$							
	Creek Chub											1								
	Central Stoneroller						1	9					1	1	3					
	Mississippi Silvery																		15	
	Suckermouth Minnow																			
	Bluntnose Minnow	120	1	30	224	28	98	227	8	12		2	3	4	2		12	9		2
	Bullhead Minnow				0			12	5		1	17	14	2	1	11	13	24	1	6
	Silverjaw Minnow																			
$\begin{aligned} & \text { un } \\ & \text { ư } \\ & \text { un } \\ & \text { un } \end{aligned}$	Ictiobinae sp.																			
	Ictiobus sp.																1			
	Smallmouth Buffalo	51	84	82	37	58	40	26	38	33	32	19	45	89	31	17	11	32	106	32
	Bigmouth Buffalo											1					1	4	4	5
	Black Buffalo	1	4	18	13		4	3	7			3	14	5	4	2		2		10
	Carpiodes sp.					1			1					1		1				1
	Quillback	1	13	6	13	9	14	9	7	3	12	3	28	61	9	3	3	7	31	5
	River Carpsucker	8	47	47	15	36	33	18	33	20	26	38	151	221	161	19	48	187	263	139
	Highfin Carpsucker	5	14	12		1	5		3	8	1	6	6	4	4			3	91	3
	Northern Hog Sucker	3		6	16	6	6	8	1	5	2	1			6					
	Moxostoma sp.				22		3				1									
	Shorthead Redhorse																			10
	Smallmouth Redhorse	33	153	27	3	16	54	41	61	11	22	38	114	44	31	40	13			
	Silver Redhorse	75	252	215	122	23	59	42	31	16	22	39	31	19	14	5	2			
	River Redhorse	14	65	23	6	2	12	1		2	6	25	4		1	4				
	Black Redhorse	8	10	25	27	3	16	6												
	Golden Redhorse	56	155	156	442	93	273	219	64	56	56	124	112	26	67	17	25	8		1
	Spotted Sucker						4	13	8	1		2	1	1	1					
	White Sucker																			
$\stackrel{n}{k}$	Yellow Bullhead														1					
	Brown Bullhead																			

River-wide Catch Comparison (data from most recent survey year shown

$\begin{aligned} & \text { De } \\ & \text { OU } \\ & \text { OU } \end{aligned}$	Species (common name)												$\begin{aligned} & \text { N } \\ & \stackrel{\Gamma}{\Gamma} \\ & \frac{\pi}{0} \\ & \Sigma \end{aligned}$							
	Northern Madtom																			
	Blue Catfish													2		4		1	5	
	Channel Catfish	35	63	83	59	54	83	35	177	52	114	61	98	112	122	46	68	106	478	65
	Flathead Catfish	19	6	8	9	47	39	22	36	24	40	29	26	21	19	10	19	20	30	12
$\stackrel{\text { In }}{\substack{n \\ \sum_{n}^{n}}}$	Lepomis sp.													2	2					5
	Warmouth														3					
	Rock Bass	75	89	22	238	24	64	11	2											
	Bluegill	154	34	88	215	131	523	540	391	220	254	205	73	207	89	65	32	65	270	41
	Green Sunfish	3	3	1	3	3	2	1	1	4	4	2	2	1	1	2	2	1		4
	Pumpkinseed	4	4	3	54	2	33	14		2	6									
	Orangespotted Sunfish						5	197		5		5	13			2	2	6	1	
	Longear Sunfish	2	1		1	8	242	18	24	13	56	15	17	71	65	31	32	137	207	16
$\begin{aligned} & \text { I } \\ & \substack{4 \\ \sum_{n} \\ \hline} \end{aligned}$	Redear Sunfish		1					2	7	2	3	4	2	2	1	20	8	1	32	
	Lepomis Hybrid				3	1	2		1		2			1					2	
	Bluegill X Longear																			
	Bluegill X Green									1										
	Longear X Green																			
	Morone sp.	50		3		110	12	49	79	8	15	35	25	11	81	28	37	72	86	733
	White Perch																2			
	Striped Bass								1		1		3				4			
	White Bass	6	65	7	3	2	28	4	16	1	71	16	59	18	18	20	43	13	83	34
	Yellow Bass															1			15	25
	Hybrid Striped Bass	1	5	2			2		3	1	2	6	16	3	1	13	6	2	6	10
	Micropterus sp.	57	1		4			5			9		21	10	18	12	3	14		16
	Smallmouth Bass	167	250	184	241	431	270	198	27	41	38	24	55	19	15	13	11	2	2	7
	Largemouth Bass	8	3	12	16	8	7	20	10	19	18	18	6	12	10	4		2	10	6
	Spotted Bass	24	18	6	28	77	99	46	26	17	60	59	46	51	38	48	50	133	48	26

River-wide Catch Comparison (data from most recent survey year shown

$\begin{aligned} & \frac{2}{0} \\ & 0 . \\ & \text { OU } \end{aligned}$	Species (common name)												$\begin{aligned} & \text { N } \\ & \frac{N}{N} \\ & \frac{\pi}{0} \\ & \dot{N} \end{aligned}$							
$\begin{gathered} \text { 品 } \\ \stackrel{y y}{c} \\ \frac{2}{2} \end{gathered}$	Johnny Darter			1																
	Greenside Darter					8	1													
	Variegate Darter																			
	Rainbow Darter			2		1		1							1					
	Fantail Darter													1	1					
	Bluebreast Darter																			
	Banded Darter																			
	Dusky Darter	1																		
	Channel Darter	1			1		1	1	1			1								
	Blackside Darter																			
	Slenderhead Darter																			
	River Darter						2							1						
	Logperch	29	15	26	15	40	89	73	5	9	5	16	4	14	9	2		2		2
$\begin{aligned} & \text { I } \\ & \text { 눙 } \end{aligned}$	Yellow Perch			44	15		5	7	3											
	Walleye	20	74	68	29	2	10	1	13	1			1		1		7	5		
	Saugeye	2	11	42	1		1		25	25			14	22	8	2	23	4	4	6
	Sauger	39	264	110	110	39	147	73	89	15	128	194	58	116	226	94	52	225	23	46
MISC.	Silver Lamprey											1								
	Ohio Lamprey		2						1											
$\begin{aligned} & \text { n } \\ & 0 \\ & \text { u } \\ & \vdots \\ & 4 \\ & 0 \\ & \text { N } \end{aligned}$	Goldeye														1			10	1	
	Mooneye	10	1	26	11	2	2	2			3	2		5	1	5	4	1		1
	Paddlefish																1			
	Northern Pike					1														
	Muskellunge		1																	
	White Crappie	2			2			1	4	2	1	6	2	4	1	3	3	7	2	1
	Black Crappie	1	4	9	8	1	1	4	6	6		6	10	2			2	7	5	
	Inland Silverside																		16	14
	Brook Silverside	14			4	10	3	1							1		2	1	1	
20																				

River-wide Catch Comparison (data from most recent survey year shown

$\begin{aligned} & \text { a } \\ & \text { OU } \\ & \text { O } \end{aligned}$	Species (common name)		$\begin{aligned} & \text { m } \\ & \frac{n}{0} \\ & \frac{0}{0} \\ & \\ & \text { O} \end{aligned}$										$\begin{aligned} & \text { N } \\ & \text { N } \\ & \frac{\Gamma}{\pi} \\ & \frac{\pi}{0} \end{aligned}$							
	Atlantic Needlefish																			
	Trout-Perch		11	137	21				2											
	Banded Killifish				10		5	14	1											
	Western Mosquitofish																	1		
	Bowfin																			
	Freshwater Drum	55	136	36	34	239	47	16	82	36	89	116	158	146	238	47	157	114	328	746
	Total No. of Individuals	6071	2177	2260	6071	8103	2819	4755	2190	2957	2211	3666	3329	3205	2344	3507	1652	2518	3230	2680
	Total No. of Species	45	43	42	40	42	50	49	52	40	41	45	45	46	53	43	45	47	43	46

