
Dr. David Wicks River City Paddlesports: Board President Ohio River Recreational Trail Committee Co-Chair

<u>We are here to show our support and willingness</u> <u>to participate in the development of the</u> Ohio River Basin Strategy.

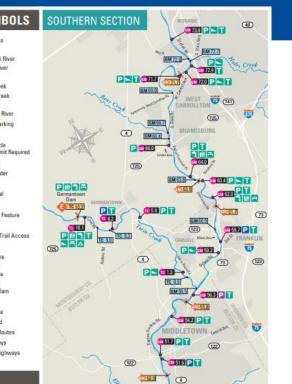
National Parks Service Water Trail System

A distinctive national network of exemplary water trails across the country is ready to be explored!

Great Miami Water Trail

Great Miami River

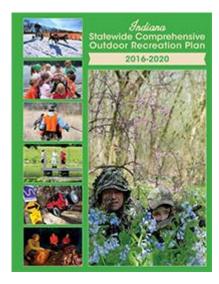
Our rivers and streams offer wonderful opportunities for recreation, from kayaking and canoeing to fishing and wildlife watching. But it's important to learn how to enjoy them safely. Review the information on the reverse side to make sure your next outing on the Great Miami River is a safe and fun adventure.



Crant Minmi River (CMI)

Triangle Park City of Dayton

Invre Park


Benefits of National Water Trail designation

- The Secretary of the Interior issues a letter and certificate announcing the designation as a national water trail.
- National promotion and visibility, including use by the management entity of the National Water Trails System logo.
- Opportunities to obtain technical assistance and funding for planning and implementing water trail projects.
- National water trails gain positive economic impact from increased tourism.
- Assistance with stewardship and sustainability projects.
- Increased protection for outdoor recreation and water resources.
- Contribution to public health and quality of life from maintaining and restoring watershed resources.

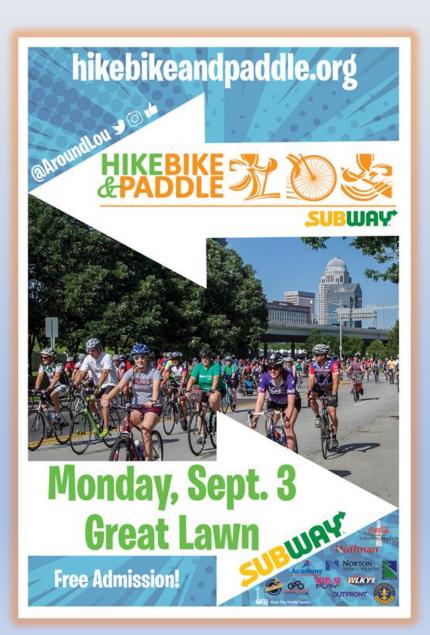
NATIONAL WATER TRAILS SYSTEM

Woodland Farm

The economic impact is huge, no one knows the number of river users

From canoeing and rowing on the river in the late 1800s to floating on the river today, the river is used for recreation.

Establishing the Ohio River Recreational Trail



NATIONAL WATER TRAILS SYSTEM

Ohio River Paddlefest

Hike Bike and Paddle

Environmental education on the Ohio River and Beargrass Creek

Mayor Fischer is a huge supporter of connecting with the Ohio River!

The Ohio River Voyageur Canoe Trip, June 6-9

Biking the Ohio River Corridor – Cincinnati to Louisville – June 6 to 7, in collaboration with the Ohio River Voyageur Canoe Trip.

Gilday Park, Cincinnati, Ohio River Mile 475.5

Louisville, Kentucky, <u>Waterfront Park</u>, Ohio River Mile 603.3

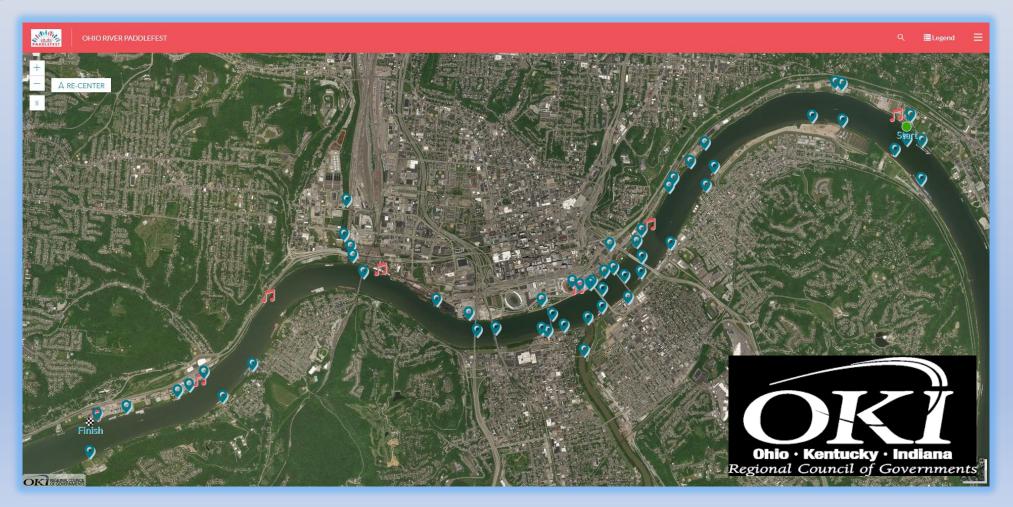

During the Ohio River Voyageur Trip we will be collecting the stories of the river.

The Artistic

Access Points

River towns

Interesting people – river rats


The Pollution

The Biodiversity

The Digital Guide to the Ohio River

Using the stories and data collected, the Digital Guide to the Ohio River by OKI that was developed for the Ohio River Paddlefest will be expanded to cover the entire Ohio River Recreational Trail.

The Ohio River Recreational Trail Committee is looking forward to work with <u>ORSANCO and the Ohio River Basin Alliance</u>

f in 🖸 У

Search ORSANCO

Ohio River Valley Water Sanitation Commission

Home About Programs Data Publications Commission Activities River Facts Education River Sweep Contact

The Ohio River Supports Over 160 Species of Fish and Other Wildlife

LEARN ABOUT OUR WORK

Ohio River Basin Strategy

We look forward to working with:

Recreation Work Group Education and Research Work Group

Through active involvement we will help energize the education and recreation communities to speak in a unified voice for the Ohio River.

February 2, 2019

Office of Research and Development

SAFE and SUSTAINABLE WATER RESOURCES RESEARCH PROGRAM

Proposed Research 2019-2021

SEPA

Science to Support EPA's Mission

EPA Mission

Protect Human Health and the Environment

Program Offices (Air, Water, Waste, Chemicals)

• Policies • Congressional

• Regulations mandates

National Decisions

Regional Offices

Primary Interface with States

Implementation

Scientific Foundation

Office of

Research and

Development (ORD)

Overarching Topics

SAFE AND SUSTAINABLE WATER RESOURCES RESEARCH PROGRAM

Clean Water Act

Safe Drinking Water Act

Research Topic and Research Areas

Assessment, Monitoring, and Management of Aquatic Resources

Will provide nationally consistent and scientifically defensible assessments of U.S. waters to implement the National Aquatic Resource Surveys (NARS).

Improved Aquatic Resource Mapping

Will provide methodologies, tools, and datasets for aquatic resource mapping of waters of the United States.

Human Health and Aquatic Life Criteria

Will provide science to support EPA's Office of Water (OW) to assist regions, states, and tribes with new or revised water quality criteria and their implementation, including support to protect human health and aquatic life from pollutants in surface water.

Watersheds

Research Topic

Assessment & Management of Harmful Algal Blooms

Will provide stakeholders and decision makers at the national, regional, state, and local levels with scientific information and tools to more effectively assess and manage HABs and associated toxicity events.

Science to Support Nutrient-Related Water Quality Goals

Will advance the science to inform decisions related to nutrient and copollutant water quality goals of program offices, regions, states, and tribes.

Assessment and Management of Nutrients

Will help our customers plan, implement, and track the effectiveness of nutrient reduction strategies at multiple scales, including watersheds draining to receiving waters potentially affected by HABs or other nutrient-related water quality issues.

Nutrients and HABs

SEPA

Research Topic

Drinking Water/Distribution Systems

Will provide essential results and tools to our customers for managing existing and future drinking water needs. Specifically, it focuses on areas of recent concern that require novel solutions.

Per- and Polyfluoroalkyl Substances (PFAS)

Will provide robust analytical methods for analyzing PFAS in water, solid, and tissue samples, and a centralized website for treatment and pretreatment recommendations for wastewater and water reuse. Will also provide characterization of PFAS in biosolids, wastewater, and landfill leachates with an emphasis on pretreatment strategies for minimizing PFAS contamination in water resources.

Research Area 3

Wastewater/Water Reuse/Integrated Stormwater Management

Will provide guidance on new and existing treatment technologies and analytical methods for emerging contaminants and contaminant risks. Will also focus on integrated aspects of green/gray infrastructure and stormwater flow control to help states, municipalities, and utilities reduce the number of combined sewer overflows.

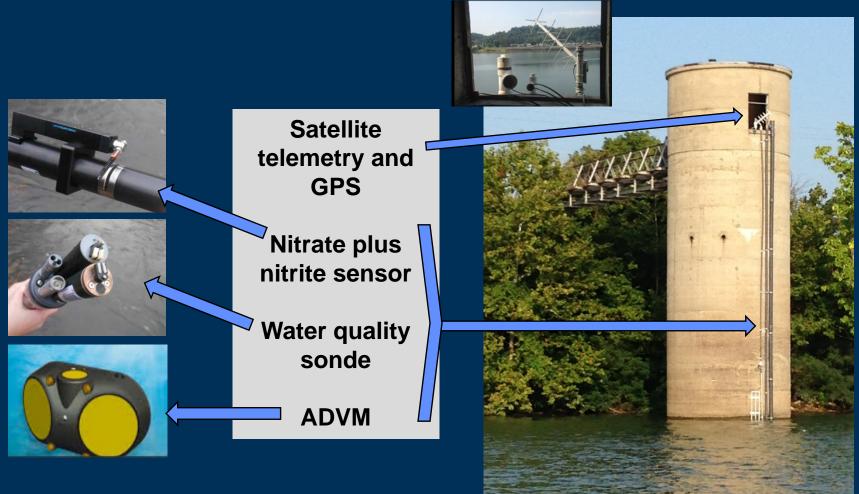
Research Area 4

Technical Support

Will provide a means for rapid response to specific, unplanned program office, state, tribe, and community research needs concerning high-priority issues.

Water Treatment and Infrastructure

USGS Ohio-Kentucky-Indiana Water Science Center Serving the Nation and providing high-quality science for over 100 years


Brief overview: USGS Super Gages Large-River Nutrient and Sediment Sampling Network – Fixed Station and Mobile Deployment

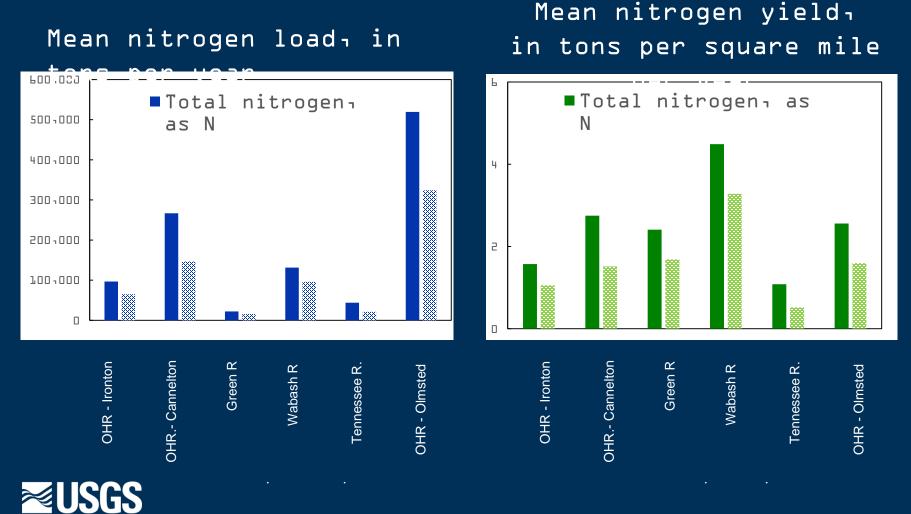
Pete Cinotto Deputy Director USGS OKI WSC Louisville, KY

U.S. Department of the Interior U.S. Geological Survey

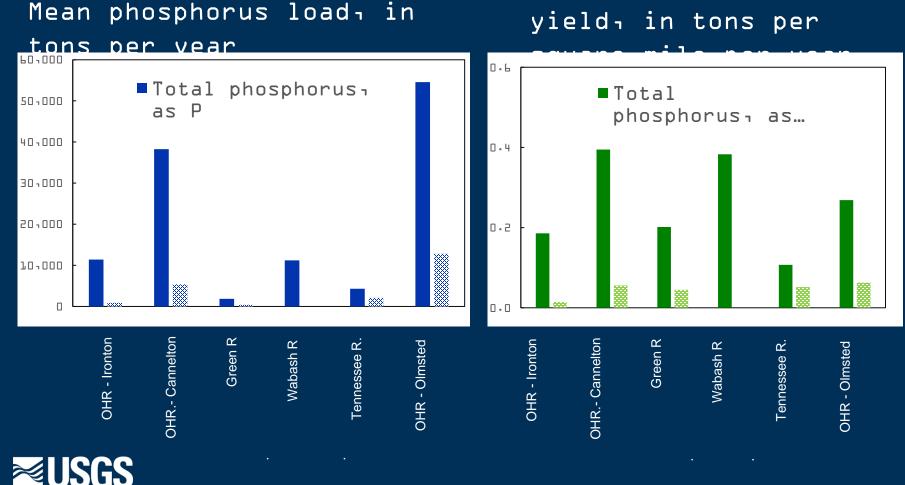
"Note: all Data Herein is Considered Preliminary Information and is Subject to Revision. Not for Citation or Distribution"

What is a USGS "super gage"?

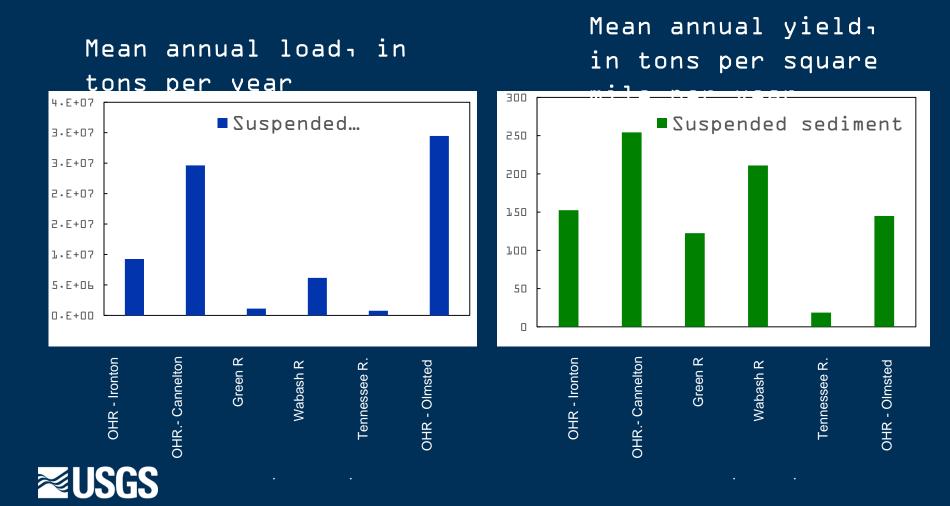
Fixed-site locations


- 1) Ohio River at Ironton, OH
- **2)** Licking River near Alexandria, KY
- **3)** Kentucky River at Lockport (Lock 2)
- 4) Ohio River at Cannelton, IN
- **5)** Green River at Spottsville, KY
- 6) *Wabash River at New Harmony, IN
- 7) Tennessee River near Paducah, KY
- 8) Ohio River at Olmsted, IL

Long-term fixed sites are required to compute loads, yields, climate response, etc.



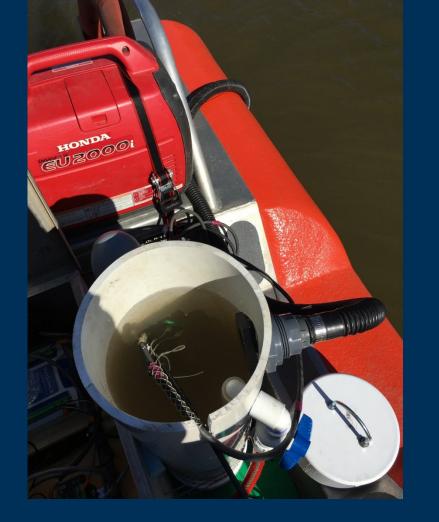
Mean Nitrogen Loads and Yields 2014-2017



Mean Phosphorus Loads and Yields 2014-2017

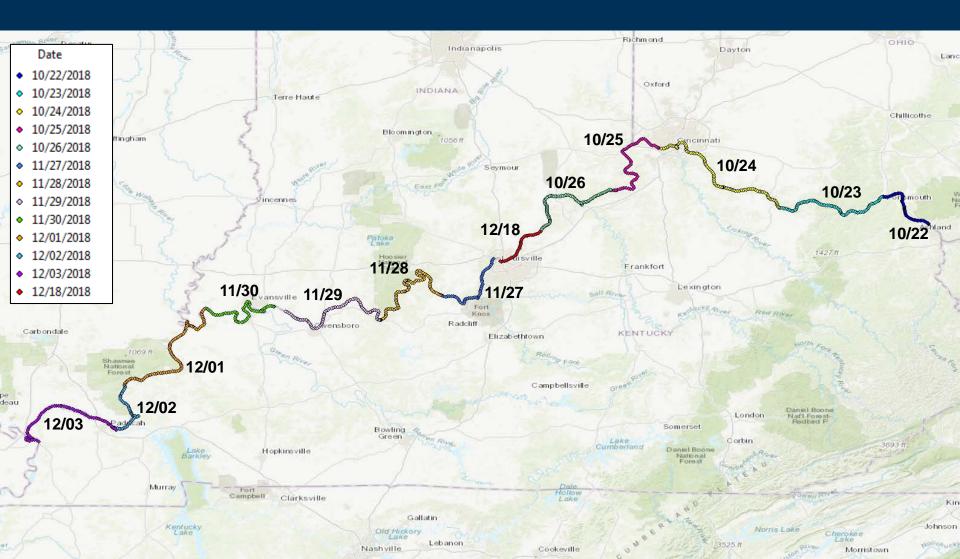
Mean phosphorus

Mean Suspended Sediment Loads and Yields - 2014-2017

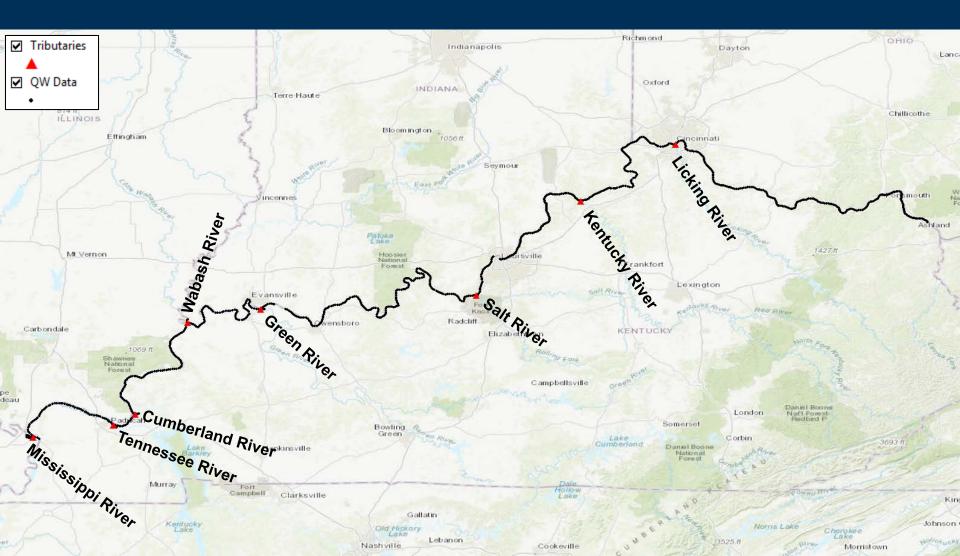

New prototype / concept – USGS MOBILE super gage

What is a USGS "mobile super gage"?

Water Quality Parameters

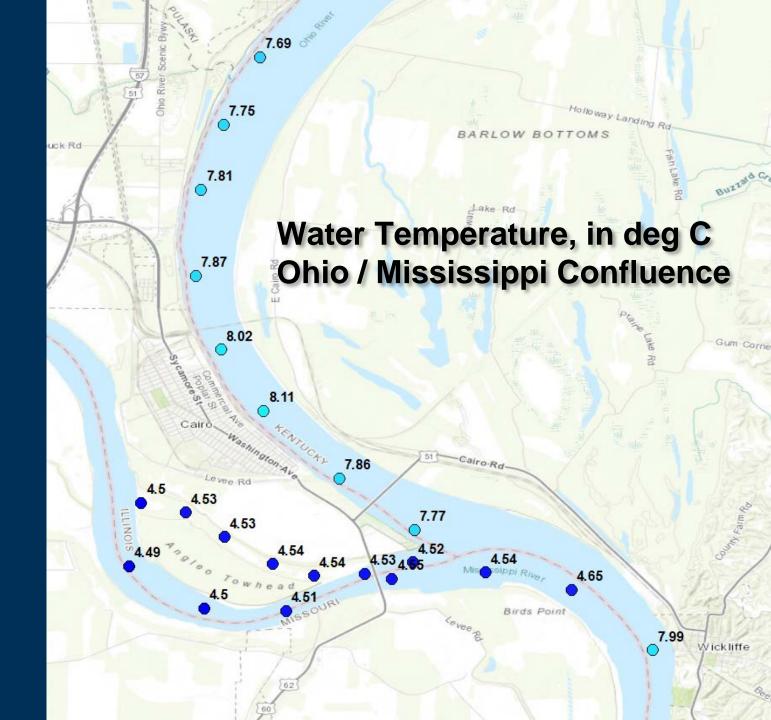

- Water Temperature
- Specific Conductance
- PH
- Dissolved Oxygen
- Turbidity
- Nitrate + Nitrite

😑 gps_tra	cker_log_20181026.csv 🔀
8134	10/25/2018,15:25:00,D0 base,9.49,,G
8135	10/25/2018,15:25:00,NTU_base,212.36,,G
8136	10/25/2018,15:25:00,SC_base,215,,G
8137	10/25/2018,15:26:58,Freq Disc,-154.9169,Hz,G
8138	10/25/2018,15:26:58,Battery,13.43,,G
8139	10/25/2018,15:30:00,Lat,38.906636,,G
8140	10/25/2018,15:30:00,Long,-84.872892,,G
8141	10/25/2018,15:30:00,Nitro,0.54,,G
8142	10/25/2018,15:30:00,Nitro_base,0.90,,G
8143	10/25/2018,15:30:00,WTemp,16.28,,G
8144	10/25/2018,15:30:00,SC,294.15,,G
8145	10/25/2018,15:30:00,pH,8.00,,G
8146	10/25/2018,15:30:00,DO,9.14,,G
8147	10/25/2018,15:30:00,NTU,14.40,,G
8148	10/25/2018,15:30:00,WTemp_base,15.60,,G
8149	10/25/2018,15:30:00,SC_base,265,,G
8150	10/25/2018,15:30:00,pH_base,7.91,,G
8151	10/25/2018,15:30:00,D0_base,9.49,,G
8152	10/25/2018,15:30:00,NTU_base,557.57,,G
8153	10/25/2018,15:31:58,Freq Disc,-155.7771,Hz,G
8154	10/25/2018,15:31:58,Battery,13.45,,G
8155	10/25/2018,15:34:25,Wi-Fi Disconnected,0,,G
8156	10/25/2018,15:35:00,Lat,38.899425,,G
8157	10/25/2018,15:35:00,Long,-84.861842,,G

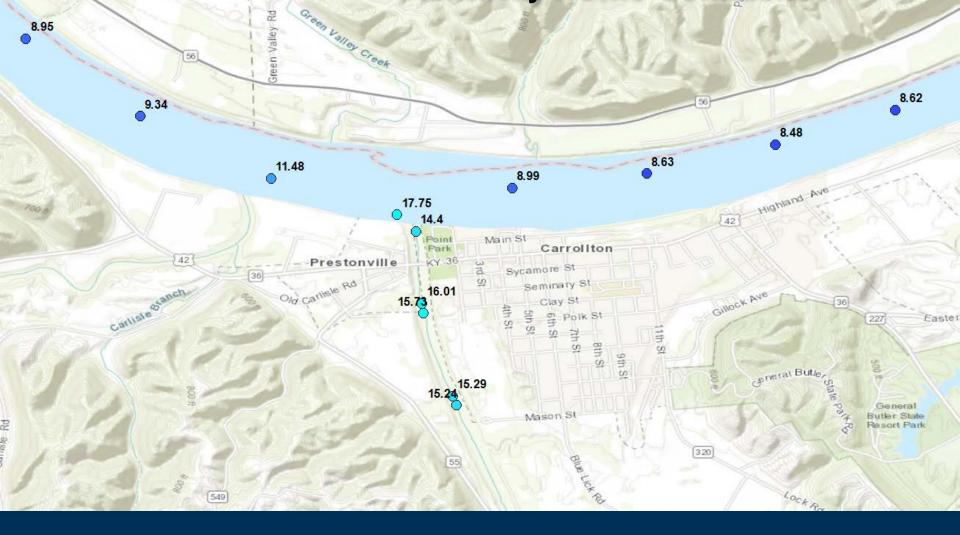

Chamber Unit and External Sonde (aka '_base')

Float Trip Dates – we ran the entire length of Kentucky for the test

Collected data up 8 tributaries

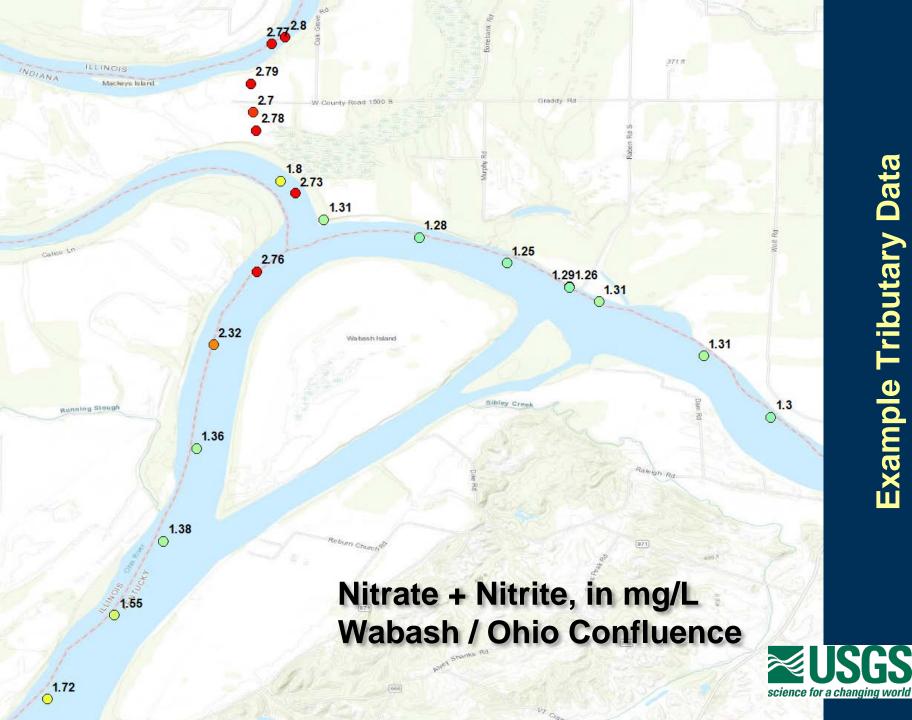


Example

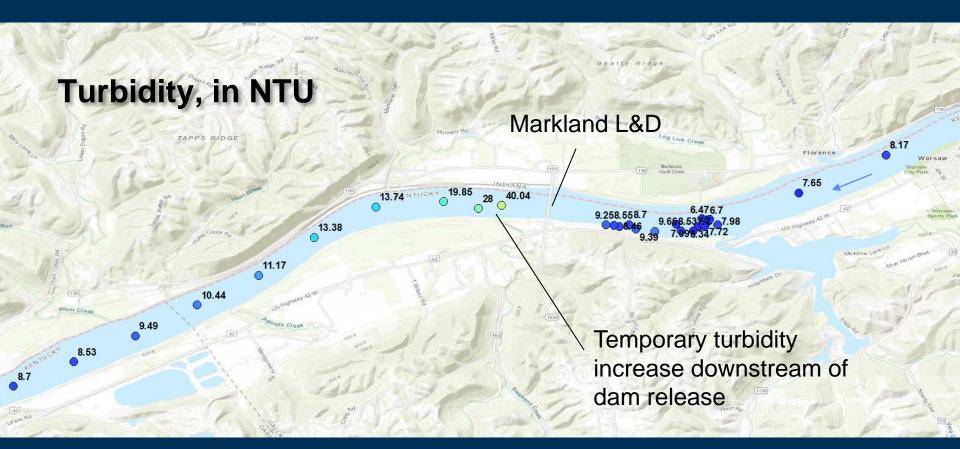

Tributary

Data

Turbidity, in NTU Kentucky / Ohio Confluence



Nright Brand


8.95

2

Example Tributary Data

Other locations of interest...

Turbidity, in NTU

Trimble County Generating Station

Boxplots & QA/QC – is this defensible? Difference = Chamber – Sonde

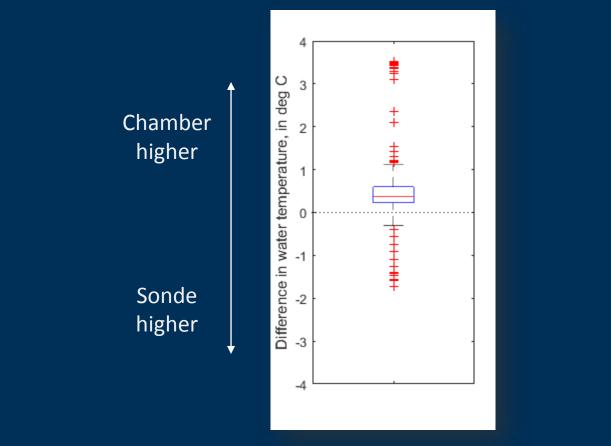
If the two values are the same or nearly the same, we should have a lot of differences near 0.

For example, $15.0^{\circ}C - 14.9^{\circ}C = 0.1$

- Outlier (points greater than Q75+1.5*IR)
 - Maximum value less than or equal to Q75+1.5*IR
 - 75th percentile (Q75)

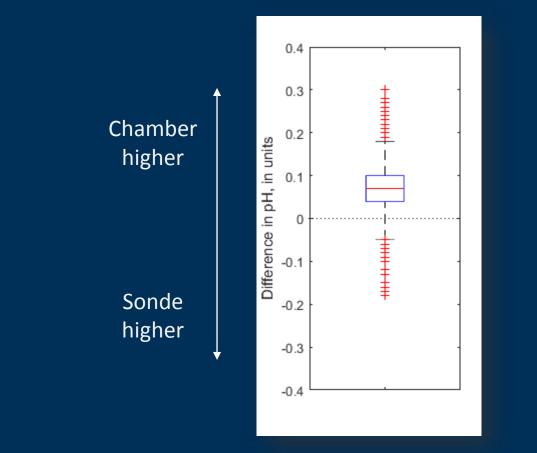
Median

+


Interquartile range (IR)

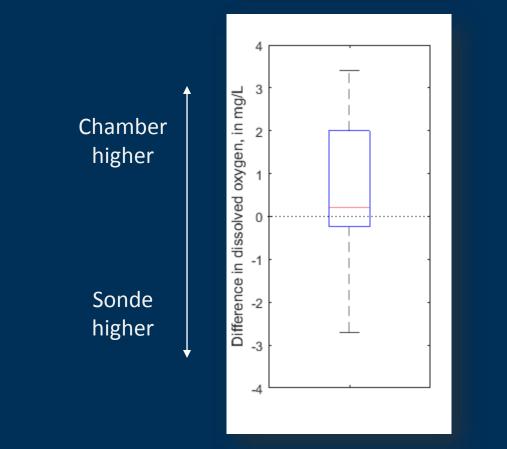
25th percentile (025)

Minimum value greater than or equal to Q25-1.5*IR


Boxplot: Water Temperature

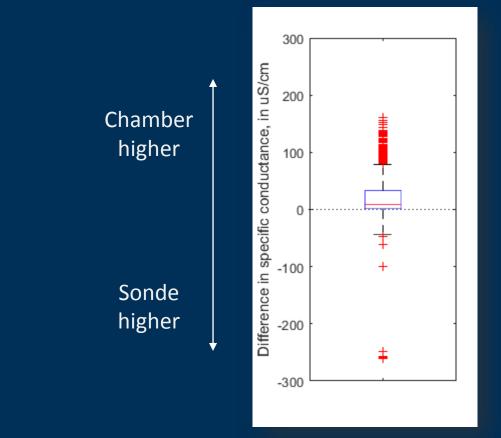
Median: +0.4°C

	10/22/2018	10/23/2018	10/24/2018	10/25/2018	10/26/2018	11/27/2018	11/28/2018	11/29/2018	11/30/2018	12/1/2018	12/2/2018	12/3/2018	12/18/2018	ALL DATA
min	2.2	-1.1	0.1	-1.5	0.5	-1.7	0.2	-0.1	0.3	0.3	-0.3	-0.3	0.4	-1.7
median	2.7	0.5	0.2	0.7	0.7	0.1	0.3	0.3	0.4	0.4	0.3	0.2	0.6	0.4
max	3.1	2.9	1.0	0.9	0.8	1.2	0.5	0.8	2.1	1.4	2.4	3.5	1.5	3.5


Boxplot: pH

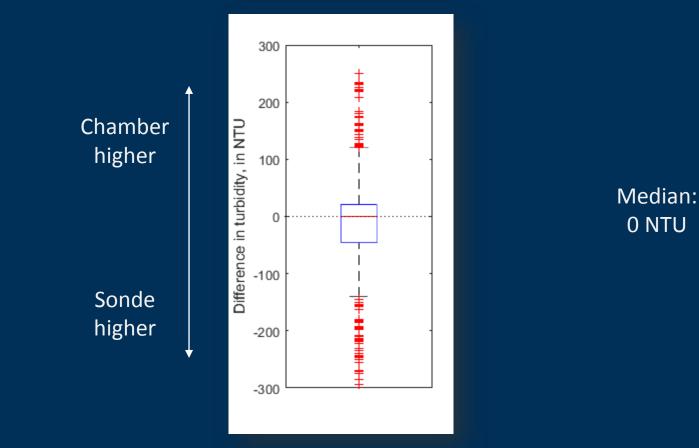
Median: +0.07 units

	10/22/2018	10/23/2018	10/24/2018	10/25/2018	10/26/2018	11/27/2018	11/28/2018	11/29/2018	11/30/2018	12/1/2018	12/2/2018	12/3/2018	12/18/2018	ALL DATA
min	0.1	0.2	-0.1	0.0	0.0	-1.7	-1.6	0.0	-0.1	-0.1	-0.1	-0.2	-0.1	-1.7
median	0.1	0.2	0.1	0.1	0.1	-1.6	-1.6	0.0	0.0	0.0	0.0	0.0	0.0	0.1
max	0.1	0.3	0.1	0.1	0.1	-1.4	-1.6	0.1	0.1	0.3	0.1	0.3	0.0	0.3

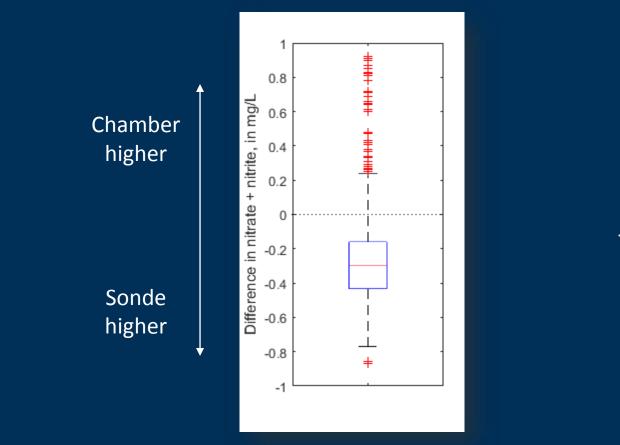

Boxplot: Dissolved Oxygen

Median: +0.2 mg/L

	10/22/2018	10/23/2018	10/24/2018	10/25/2018	10/26/2018	11/27/2018	11/28/2018	11/29/2018	11/30/2018	12/1/2018	12/2/2018	12/3/2018	12/18/2018	ALL DATA
min	-0.8	0.1	-0.4	-0.4	-0.3	-1.7	1.0	1.4	1.5	1.1	-1.8	-2.7	0.0	-2.7
median	-0.3	0.4	-0.3	-0.2	-0.2	0.5	1.9	2.7	2.6	2.4	-0.6	-0.5	0.5	0.2
max	0.1	1.0	0.1	0.8	0.6	2.4	2.2	3.4	3.0	3.3	-0.2	0.8	0.8	3.4

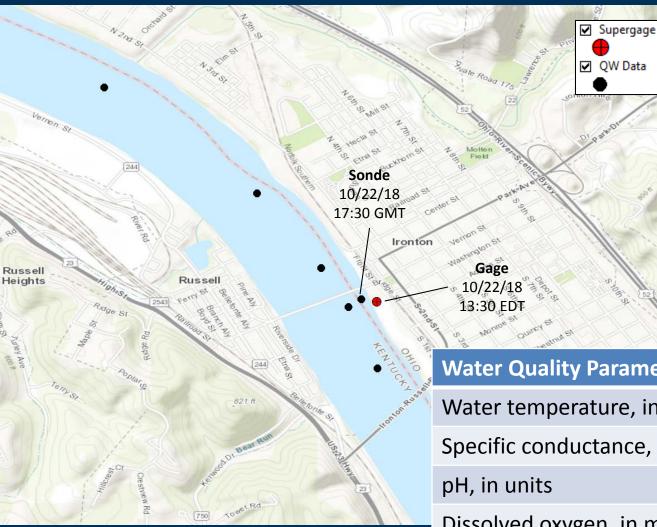

Boxplot: Specific Conductance

	10/22/2018	10/23/2018	10/24/2018	10/25/2018	10/26/2018	11/27/2018	11/28/2018	11/29/2018	11/30/2018	12/1/2018	12/2/2018	12/3/2018	12/18/2018	ALL DATA
min	-5	-13	0	-5	-4	-47	-6	-9	-40	- <mark>6</mark> 2	-38	-261	-11	-261
median	12	23	81	67	17	23	1	2	9	4	2	0	4	9
max	62	83	162	148	120	78	63	34	33	71	65	64	28	162


Boxplot: Turbidity

10/22/2018 10/23/2018 10/24/2018 10/25/2018 10/26/2018 11/27/2018 11/28/2018 11/29/2018 11/30/2018 12/1/2018 12/2/2018 12/3/2018 12/3/2018 12/3/2018 ALL DATA min -1532 -2345 -2227 -7226 -2551 -83 -1865 -184 -223 -294 -62 -157 -44 -7226 median 18 31 -97 -270 -193 120 5 27 15 -7 10 -11 -5 591 591 310 310 79 30 413 396 148 43 34 20 29 17 max

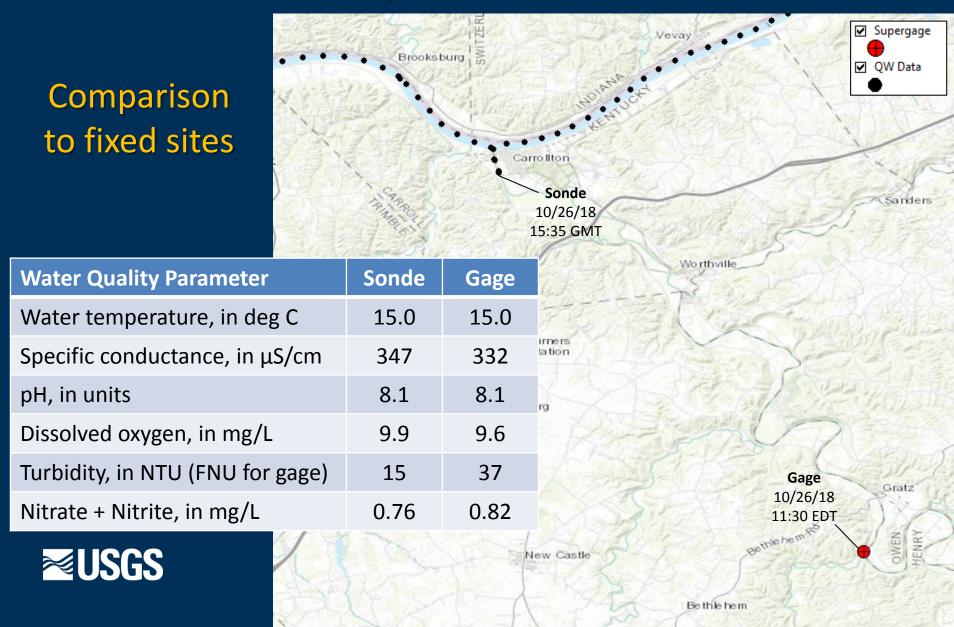
0


Boxplot: Nitrate + Nitrite

Median: -0.3 mg/L

	10/22/2018	10/23/2018	10/24/2018	10/25/2018	10/26/2018	11/27/2018	11/28/2018	11/29/2018	11/30/2018	12/1/2018	12/2/2018	12/3/2018	12/18/2018	ALL DATA
min	-0.7	-0.2	-0.3	-0.4	-0.3	-0.4	-0.8	-0.7	-0.4	-0.9	-0.6	-0.9	0.1	-0.9
median	-0.1	-0.1	-0.2	-0.3	-0.2	-0.3	-0.7	-0.5	-0.3	-0.3	-0.5	-0.5	0.2	-0.3
max	0.0	0.1	0.7	0.0	0.2	-0.2	-0.6	-0.3	0.5	0.1	-0.3	0.9	0.5	0.9

Ohio River at Ironton, OH



Water Quality Parameter	Sonde	Gage
Water temperature, in deg C	16.1	16.2
Specific conductance, in µS/cm	271	267
pH, in units	7.8	7.7
Dissolved oxygen, in mg/L	9.3	9.1
Turbidity, in NTU (FNU for gage)	11	10
Nitrate + Nitrite, in mg/L	0.87	0.93

Kentucky River at Lock 2

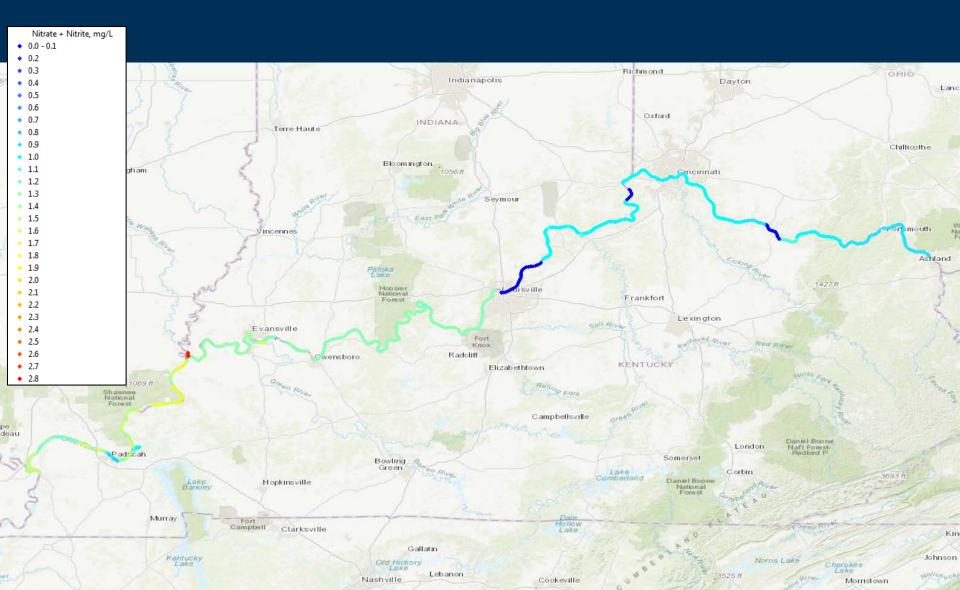
Wabash River at New Harmony, IN

Comparison to fixed sites

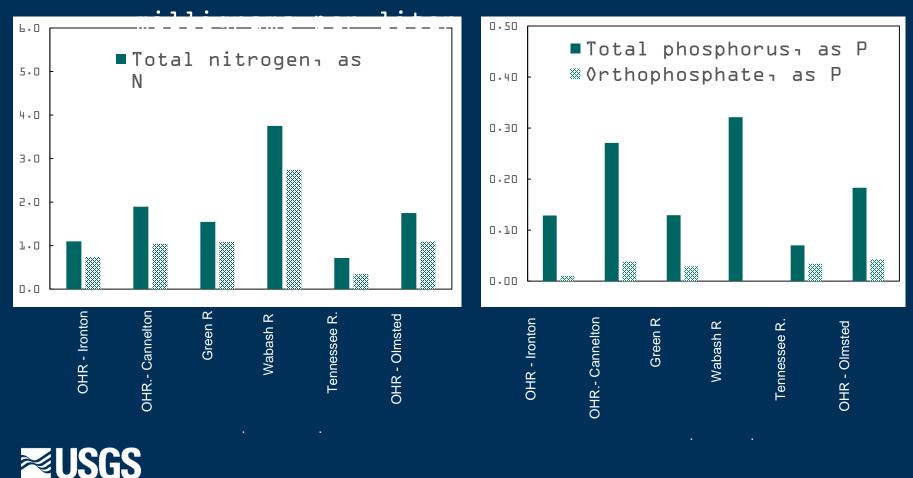
Supergage		2 LON
QW Data	- CA	Gage 12/01/18 08:45 CST
Maunk	ILLINOIS Harmoni State Pa	erite
	62	Mt Vermo'n
2	Sonde 12/01/18 15:10 GMT	KENTUCKY HENTICKY
	Wabesh Island	Unio nto wn

Water Quality Parameter	Sonde	Gage
Water temperature, in deg C	6.5	6.4
Specific conductance, in µS/cm	557	456
pH, in units	8.2	8.2
Dissolved oxygen, in mg/L	11.5	11.8
Turbidity, in NTU (FNU for gage)	52	78
Nitrate + Nitrite, in mg/L	2.8	3.0

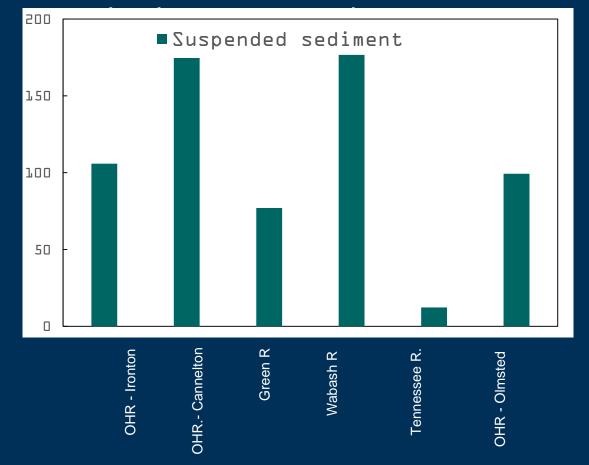
Questions?


Memorandum of Common Purpose signing, Quad Cities III, IA - 9/20/2018

Extra slides for discussion if required



Nitrate + Nitrite, in mg/L


Flow-Weighted Mean Concentration of Nutrients - 2014-2017

Flow-weighted mean concentrations, in

Flow-Weighted Mean Concentration of Sediment - 2014-2017

Flow-weighted mean concentrations, in

ITEM 5: BIOLOGICAL PROGRAMS UPDATE

FEBRUARY 12-13, 2019

Item 7: Biological Programs Update

- A. 2017 Final Pool Assessment Results
 - New Cumberland, Meldahl and Newburgh
- B. 2018 Pool Survey Results
 - Emsworth and Pike Island
- C. National Rivers and Streams Assessment (NRSA) Survey Update
- D. Ohio River Mussel Survey and Database

ORSANCO Survey Design

Typically Survey 3 Pools Annually

- 15 probabilistic sites collectively represent pool condition
 - Night-time electrofishing (July-Oct)
 - Macroinvertebrates with two methods (Sept-Oct)

Survey 18 fixed stations for fish and macros

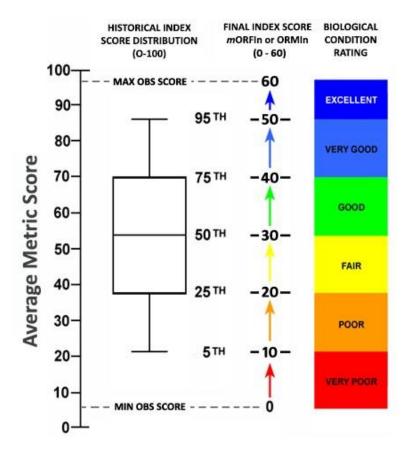
- Track long-term trends
- Contextualize pool survey results

Two Biological Indicators (since 2015)

- ORFIn (2003-2008)
 - Average score of 13 fish metrics (0-100)
- mORFIn (2009-present)
 - Scaled ORFIn score (0-60) to account for varying habitat expectation
- ORMIn (2015-present)
 - HDD primary, 200ind minimum MH

305(b) ALU Assessment Approach

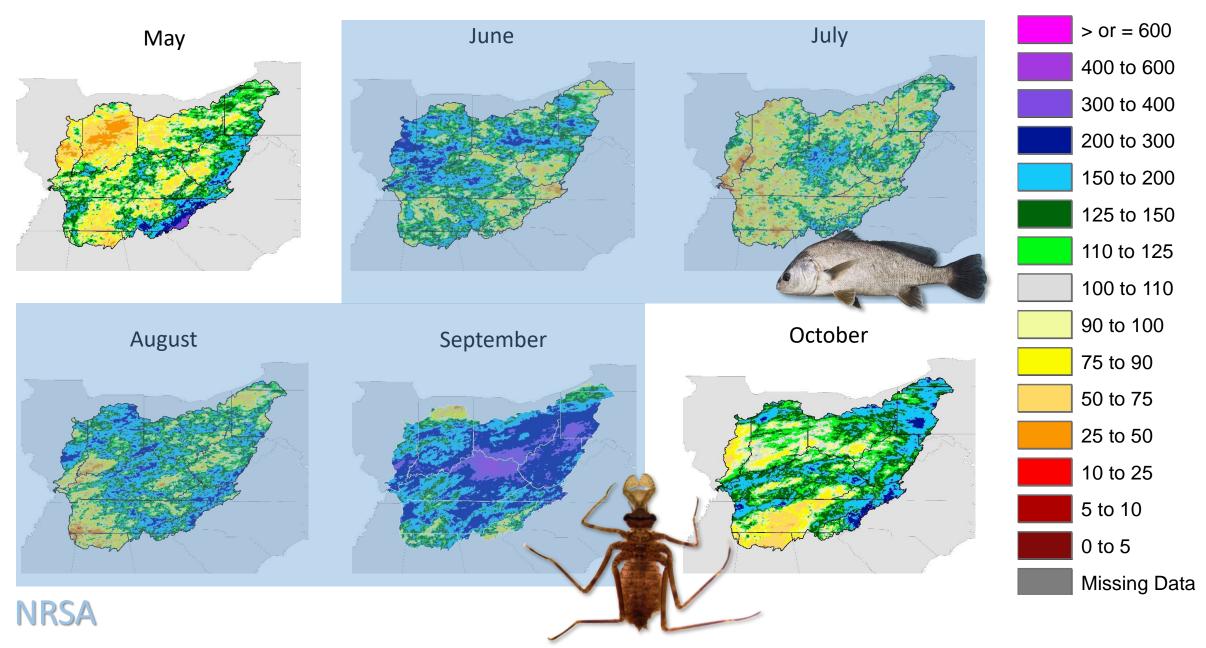
<u>full support</u>

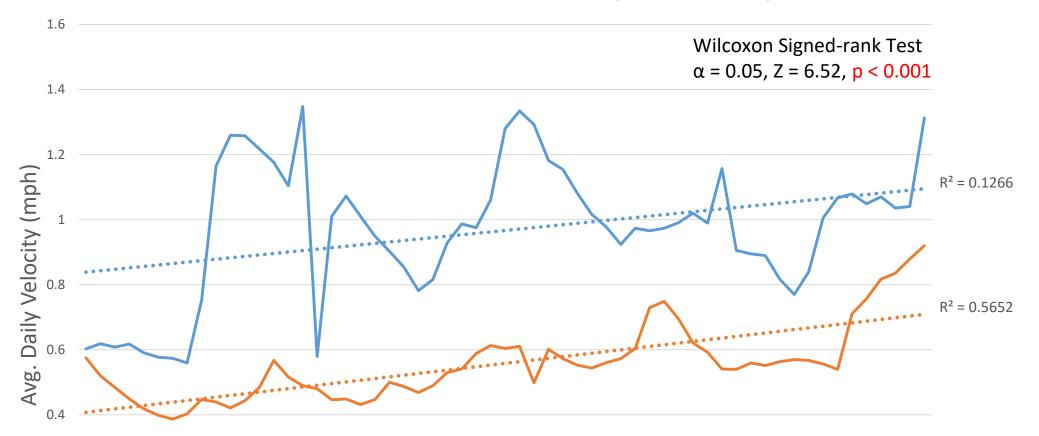

- mORFIn and ORMIn scores are greater than or equal to 20.0
 - (i.e. a condition rating of 'Fair', 'Good', 'Very Good', or 'Excellent')

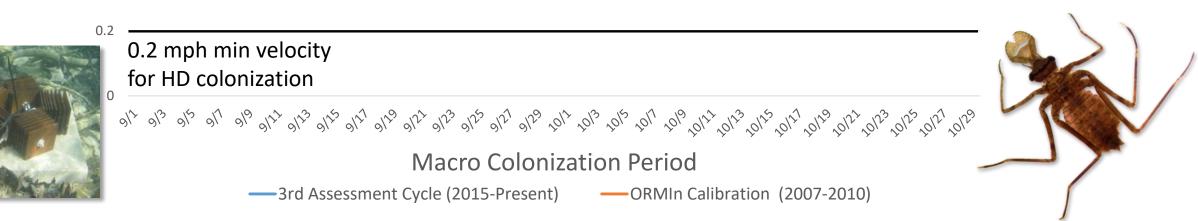
partial support

- one of the indices scores 'Fair' or better (>20.0)
- the other index scores 'Poor' (10.0 19.9)

<u>non support</u>


- pool in which both indices score 'Poor' (<20.0)
- or in which either or both indices score 'Very Poor' (<10.0)




2018 NWS Precipitation Data

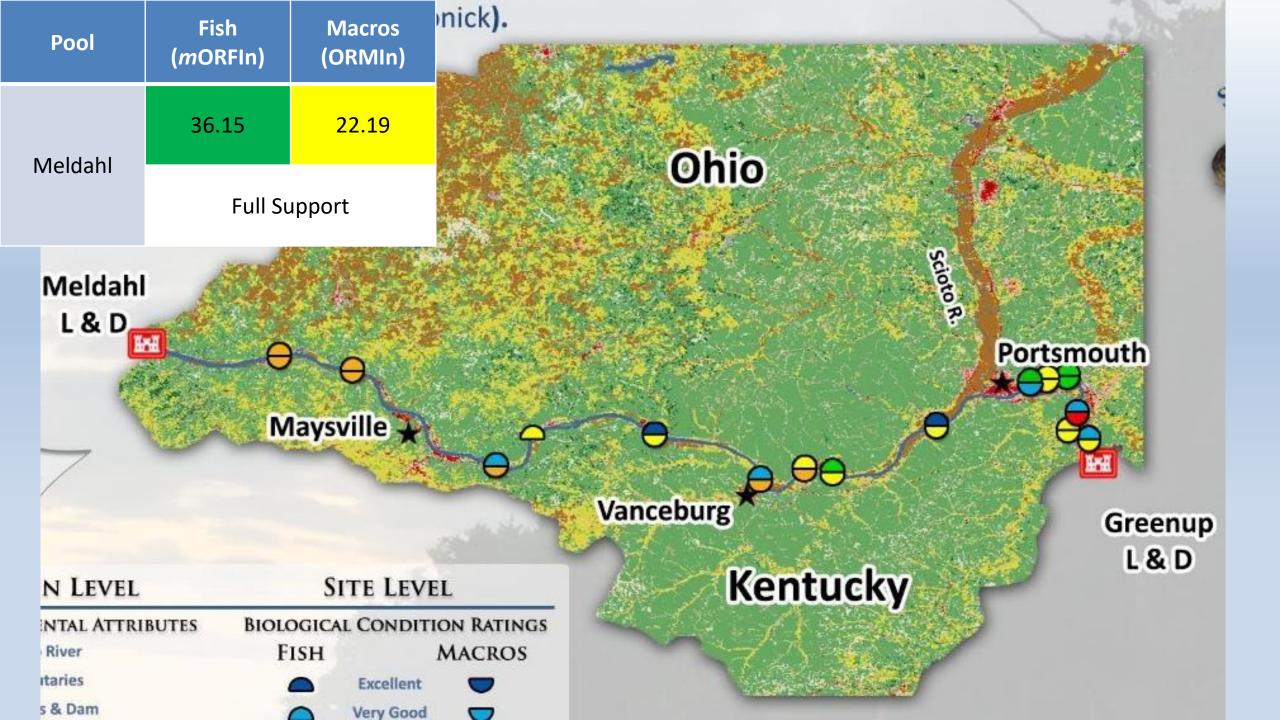
Percent of Normal

NOAA/NWS Ohio River Data (22 Stations)

NOAA/NWS Ohio River Data (22 Stations) 1.2 JULY - NWS Ohio River Data (22 Stations) 1.1 1.0 Avg Daily Velocity (f/s) 0.9 0.8 0.7 0.6 0.5 mORFINCal CYClez Cycles Median 25%-75% Min-Max Friedman ANOVA (N=31, df=2, p < 0.001) Kendall Coeff. Of Concordance = 0.403 0

Prior to (June) & Within the Electrofishing Index Period (July-Oct.)

— 2nd Assessment Cycle (2010-2014) -----mORFIn Calibration (1998-2008)

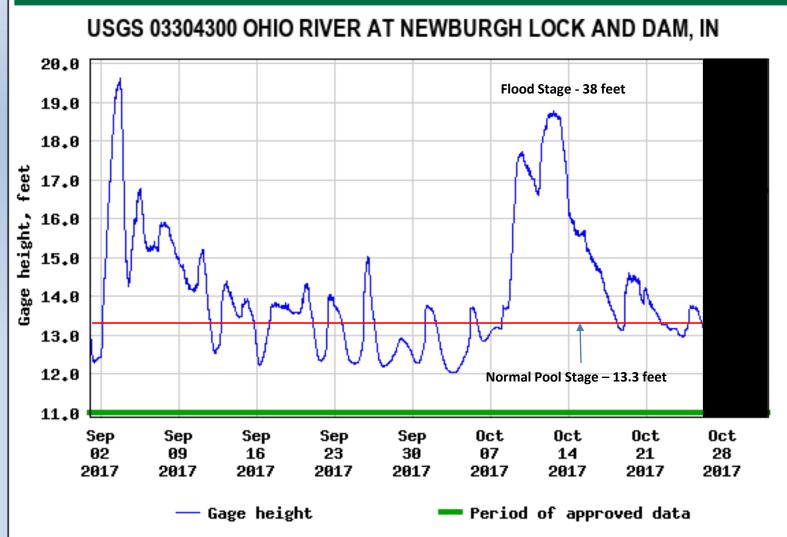

Available Ohio River Flow Data

Dataset/Model	Time Frame	OH Data points	Flow	Velocity	Stage/ Elevation
NOAA/NWS Gauges	1998-Present	25	Х	Х	Х
USGS Stations	Variable	~30	Х	Х	Х
Cascade Model (USACE)	1986-2016	234	X	Х	Х
HEC-RAS Model (USACE, NOAA, NWS)	2017-Present	1,000+	~	~	~

Item5a: 2017 Pool Assessments

Bridget Borrowdale Aquatic Biologist

Pool	Fish (<i>m</i> ORFIn)	Macros (ORMIn)		- Charles	
New	27.8	25.2		Pennsy	Ivania
Cumberland	Full St	upport	ast rpool	O Mi	dland Montgomery
		West	Chester Chester	Pennsyl	Contra L&D vania
Ser -		Virgin	ia		1. The main for the
		w Cumber		BASIN LEVEL ENVIRONMENTAL ATTRIBUTES Ohio River Tributaries EEE Locks & Dam ★ Most Populous Cities	SITE LEVEL BIOLOGICAL CONDITION RATINGS FISH MACROS Excellent Very Good Good Good MACROS
	- repeters	ENVI	BASIN LEV	Developed Areas Agricultural/Pastoral Lands Natural Forests	Fair Fair Poor Very Poor



2017 Newburgh Pool Flow Impacts

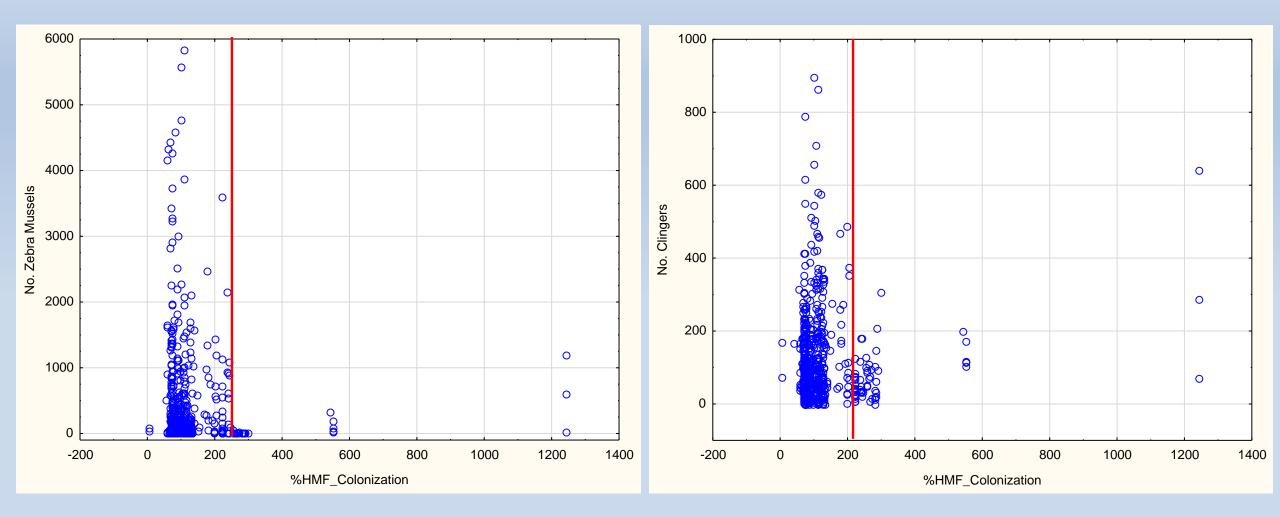
(Macro Colonization Period)

≪USGS

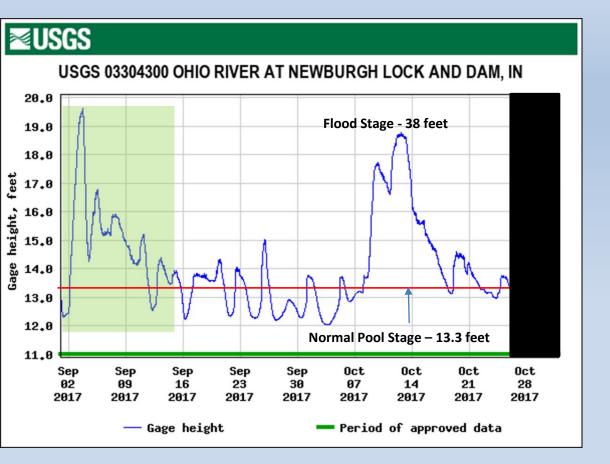
Available Ohio River Flow Data

Dataset/Model	Time Frame	OH Data points	Flow	Velocity	Stage/ Elevation
NWS/NOAA Gauges	1998-Present	25	Х	Х	Х
USGS Stations	Variable	~30	Х	Х	Х
Cascade Model (USACE)	1986-2016	234	X	Х	Х
HEC-RAS Model (USACE, NOAA, NWS)	2017-Present	1,000+	~	~	~

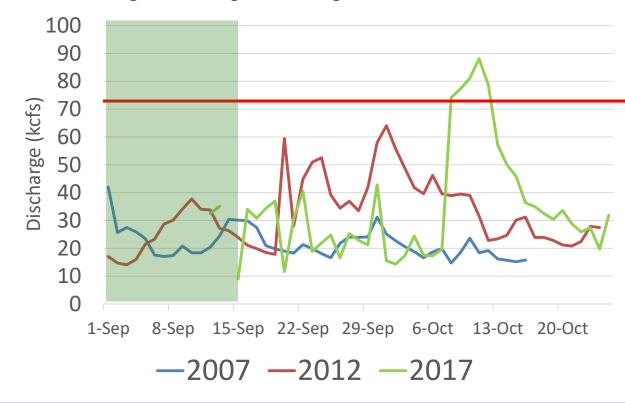
Logical Flow



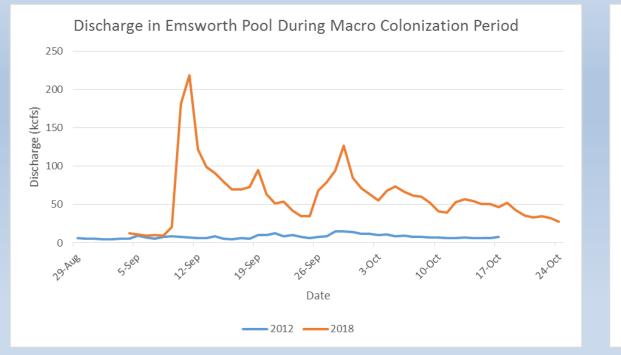
- Used Cascade data to calculate flow metrics
 - Harmonic Mean Flow by node for Sept-Oct from 1986 2016 (30yrs)
 - %HMF = HMF of sample year / HMF of 30yr
 - Compared with Macro metrics
 - Determine critical flow beyond which macro collections are depressed
- Determined the relative similarity of NWS/NOAA discharge measurements to Cascade Model
 - NWS/NOAA was ~6.5% higher, adjusted Cascade data
 - Calculated the discharge (cfs) value at each NWS/NOAA Station that related to the critical %HMF
 - Determined if the critical discharge was exceeded in the 2017 colonization periods

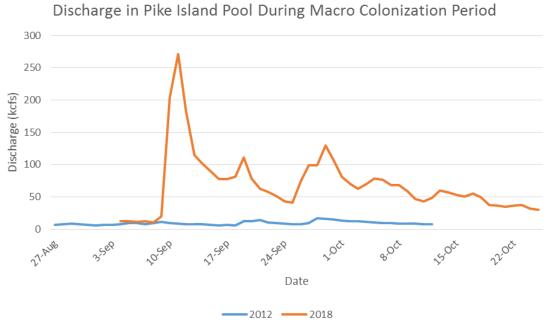

% Harmonic Mean Flow vs. Macro Metrics

Critical Discharge = 240% HMF



Newburgh Pool 240% HMF = 72.5 kcfs


Discharge in Newburgh Pool During Macro Colonization Periods



2018 Macro Colonization

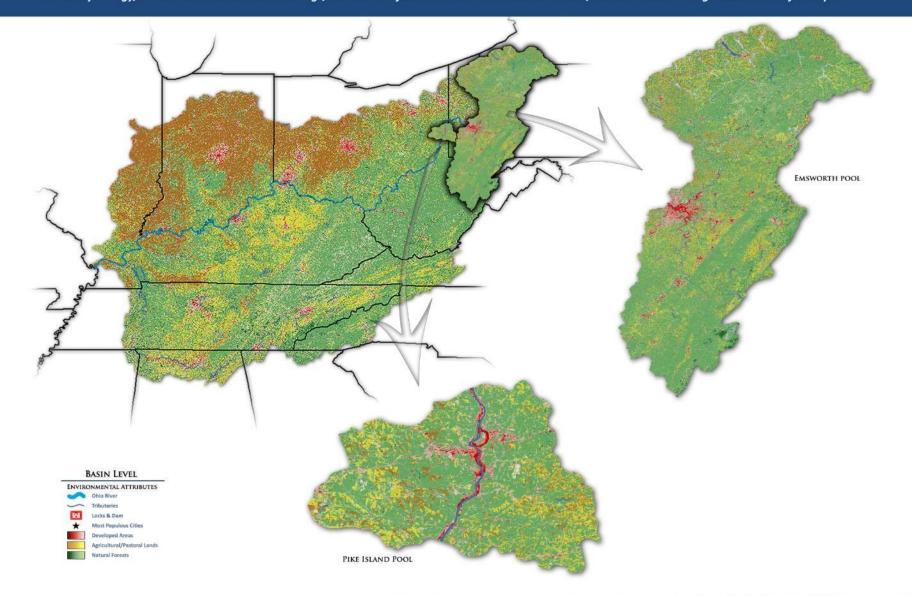
Macro Retrieval

HDD and MH samples collected at each EF site

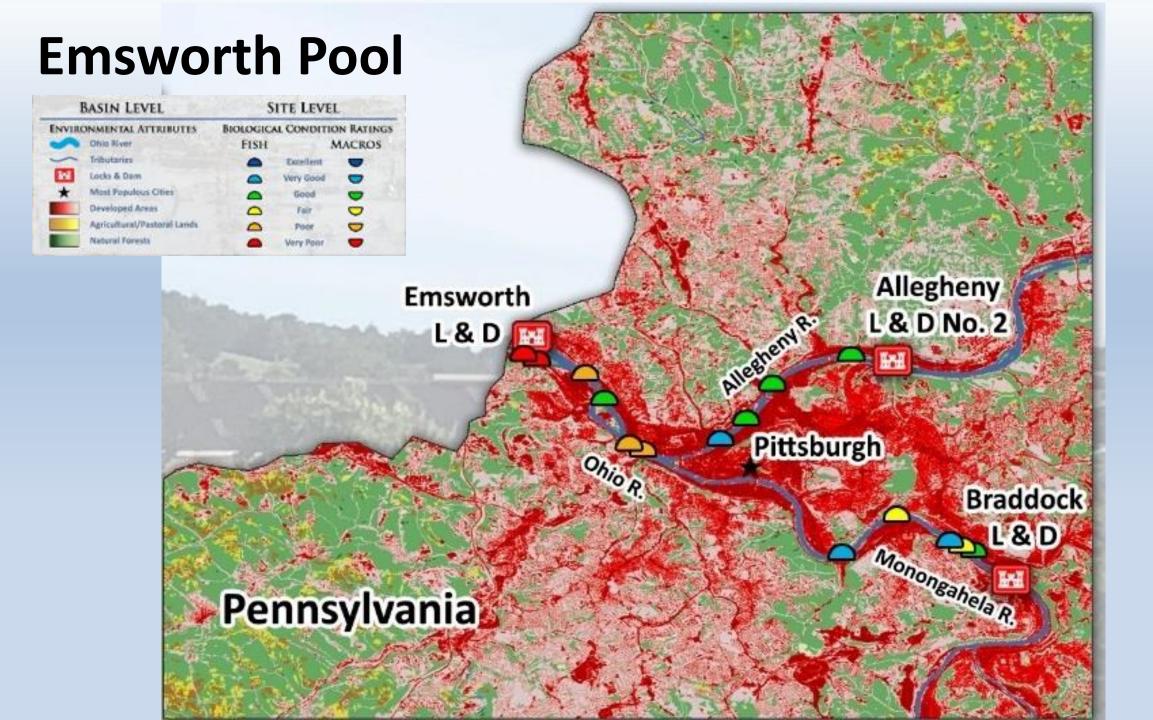
- Emsworth
 - > HDD 14/15 recovered -2 covered in fine sediment
 - ➢ MH 15/15 collected

• Pike Island

HDD 9/15 recovered-1 covered in fine sediment
 MH 15/15 collected



Item 5b: 2018 Monitoring Activities


Danny Cleves Aquatic Biologist

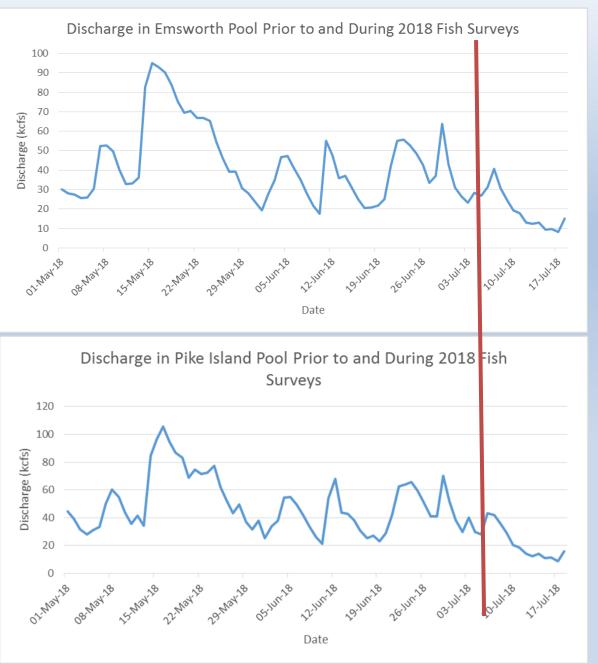
2018 POOL SURVEY RESULTS

The results of the 2018 biological surveys are detailed in the following pages (relative pool locations shown below). Included are brief descriptions of the land use & hydrology, site level mORFIn & ORMIn ratings, summaries of notible catches & instream habitat, and the overall biological condition of each pool.

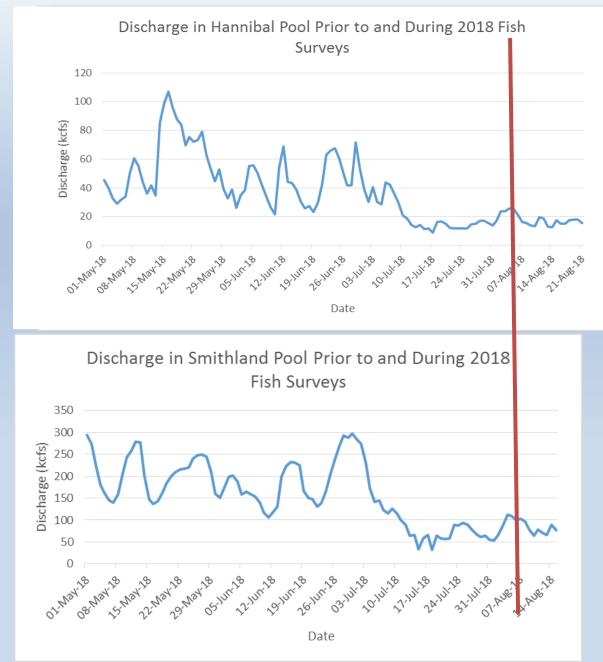
For more detailed catch, metric, and index scores visit www.orsanco.org/programs/biological-programs

Emsworth Pool (2007 – 2012 – 2018)

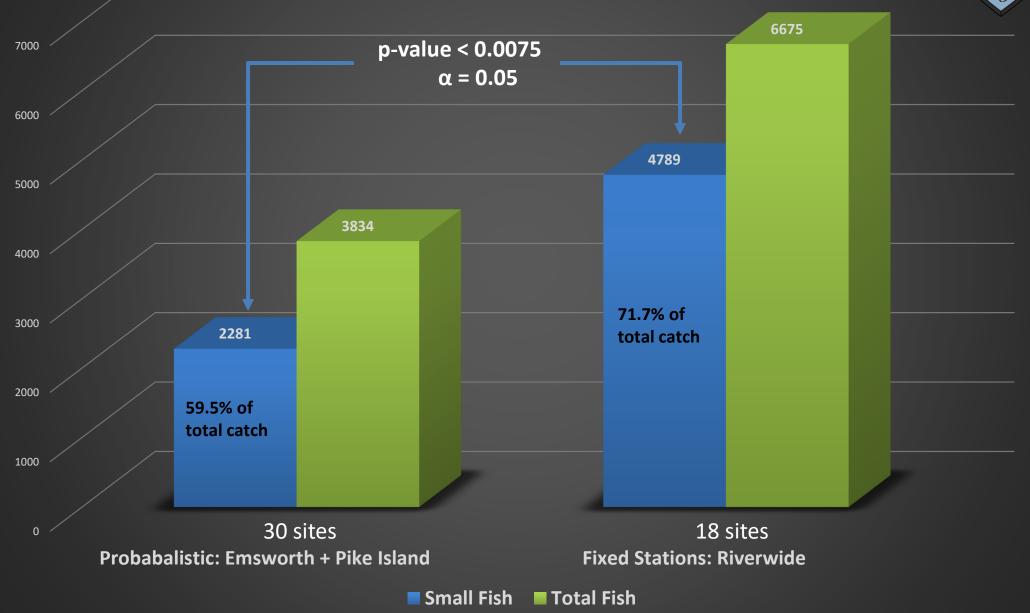
Pike Island Pool


BASIN LEVEL	SITE LEVEL			
ENVIRONMENTAL ATTRIBUTES	BIOLOGIC/ F1SH	L CONDIT	ION RATINGS MACROS	
 Tributaries 	-	Excellent	-	
Locks & Dam	0	Very Good	-	
* Mast Populous Oties	0	Good	-	
Developed Areas	0	Fair	0	
Agricultural/Pastoral Landa	0	Poor	-	
Natural Forests	-	Very Poor	-	

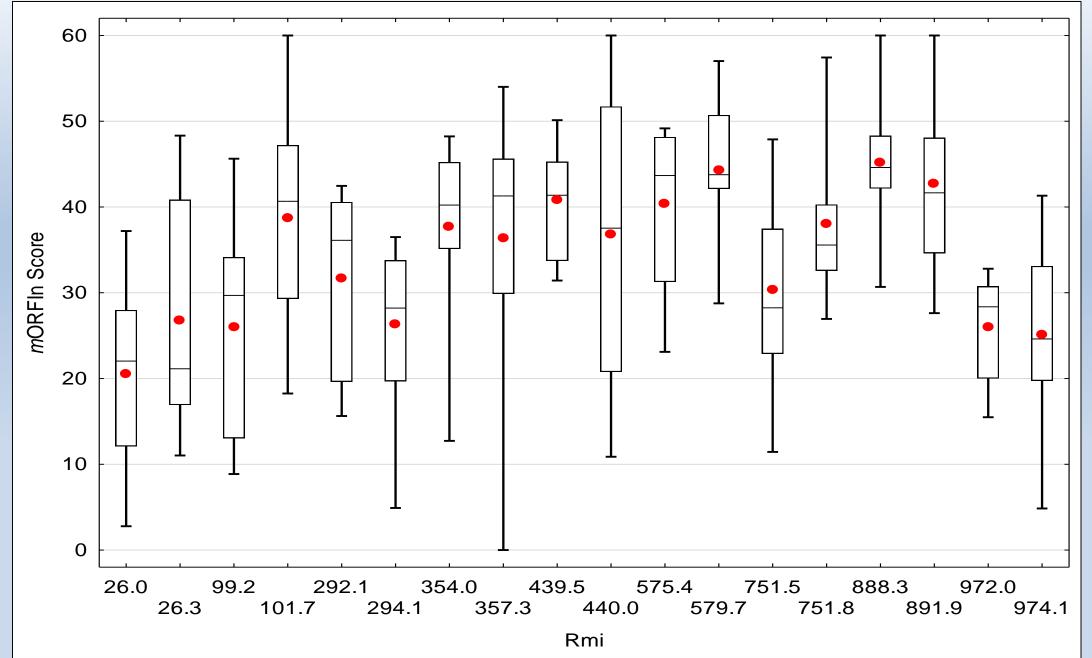
<u>Pike Island Pool (2007 – 2012 – 2018)</u>


FIRE ISIAIIU FUU	1 2007	<u> </u>	- 2010/
Variable	2007	2012	2018
Environmental Factors			
Avg. seasonal flow (cfs)	Low	Low	Declining/Low
Avg. Conductivity	541.9	517.1	353.1
Avg. Secchi Depth	47.6	56	37.5
Avg. CPUE Score	63.8	69.7	7.0
Gizzard Shad	7464	5092	37
All Fish	10097	8103	1666
Avg. % Tol Score	90.9	63.9	63.3
Bluntnose Minnow	2	28	33
Common Carp	15	36	16
Avg. % Piscivore Score	70.5	52.8	39.4
Sauger	244	39	31
Morone sp.	419	110	1
Flathead Catfish	35	47	10
Avg. GrRiver Score	48.9	4.8	6.7
Mooneye	37	2	3
Silver Chub	11	0	0
Avg. Intolerant Score	57.7	57.2	43.8
Logperch	85	40	35
Avg. Sucker Score	69.8	46.4	34.0
Total Round Bodied Suckers	203	143	182
Total Deep Bodied Suckers	186	105	63
Assessment Result			
Avg. mORFIn Score	43.0	32.9	24.2
Fish Condition Rating	Very Good	Good	Fair

Flows Prior to Pool Surveys



Flows Prior to Fixed Station Surveys


2018 Probabilistic Sites vs Fixed Station Sites

OBP

Fixed Station *m*ORFIn Performance

2004-2017 Boxplots = Median, Interquartile range, 5th & 95th %tiles 2018

Submerged Aquatic Vegetation (SAV) Summary

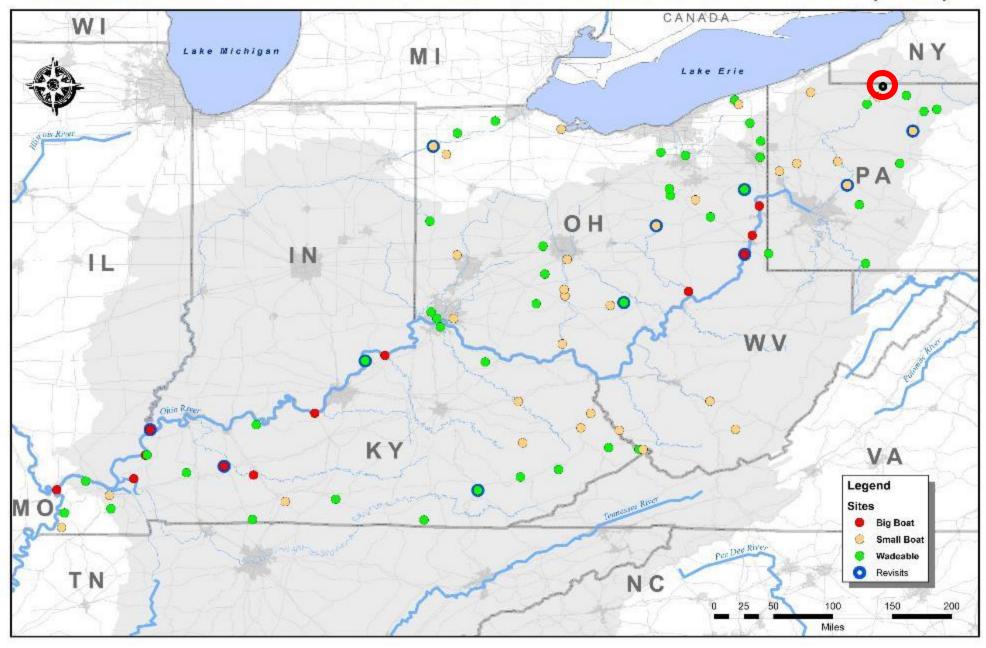
Emsworth			Pike Island					
All Ve	All Vegetation		Invasives		All Ve	getation	Inv	asives
% Sites	% Transects	% Sites	% Transects		% Sites	% Transects	% Sites	% Transects
60	9.7	33.3	4.7		100	20.6	100	18.9

- Preliminary SAV data show a shift in species composition with increases in SAV density
- Continue to collect objective SAV data
- Goal: link changes in SAV communities to changes in the fish communities

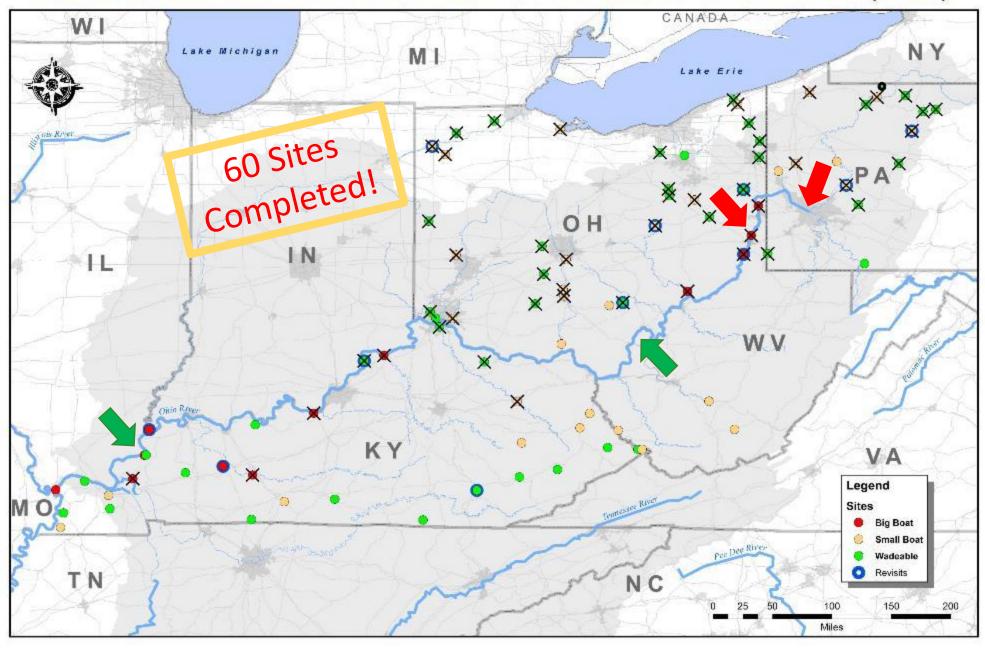
OH River Fish Tissue Update

- 17 composite fish tissue samples were submitted to the lab for analysis in 2018.
 Data expected by February 2019.
- Staff conducted an RFP process in 2017 and selected PACE Analytical Services LLC. to continue to provide analyses and logistical support for the next 5 years.

Item 5c: Special Project Collaborations


• PADEP – Set/Retrieved HDD samplers near ALCOSAN

• OEPA – Set/Retrieved HDD samplers in near Steubenville


 USACE Louisville District – Supported Fixed Station water quality & macro collections within District

Item 5d: NRSA Update Ryan Hudson Contractual Biologist

ORSANCO Sites for the 2018-2019 National Rivers and Streams Assessment (NRSA)

ORSANCO Sites for the 2018-2019 National Rivers and Streams Assessment (NRSA)

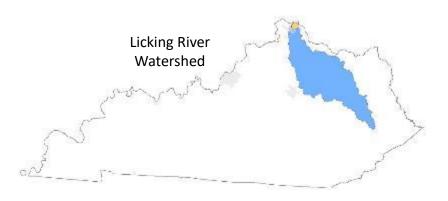
NRSA Crew

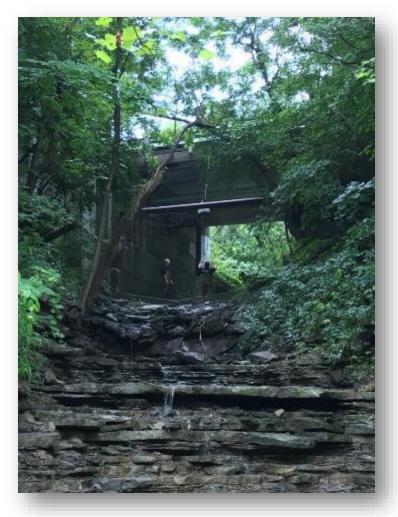
- Over 96 kilometers of stream sampled and 400 hours spent on site
- 60 hours of filtering and 30 hours of decontamination
- 117 species of fish identified and 20+ thousand individuals processed
- The fish data were retained and entered into our database

NRSA Data Availability

	• 7				
Environmental Topics	Laws & Regulations	About EPA		Search EPA gov 🦳 🤤	
National Aqua	tic Resource	e Surveys	CONTACT	us share 🕧 💌 🖲 🞯	
National Aquatic Resource Surveys Home	Data fr	rom the	e Nationa	al Aquatic	
Background Indicators	Resour	rce Sur	veys	-	
Manuals Map of Sampled Sites	download as comm	na separated values		More Information	
NARS Data	easily locate the da	ata for a specific sur-	is you managed stype.	Erequent questions about the data	
Journal Articles Applying the Data Related Studies and Tools	the file to your con companion metada Users of the data a	Right click on the file name and select SaveLink As to save data the file to your computer. Make sure to also download the companion metadata file (1xt) for the list of field labels. Summary of available data Users of the data are encouraged to review the Technical Fight click on the file to your computer. Make sure to also download the thous to clic the NASS data			
National Coastal Condition Assessment National Lakes Assessment	collected or measured. Click here to view a summary of the available data for each of the surveys. T Recently added: NLA 2007 and NLA 2012 Water isotope Variables				
National Rivers and Streams Assessment					
National Wetland Condition Assessment	Filter data by surv		Filter data by indicate All Indicators	vr:	
Outreach Materials	6	National /	Aquatic Resource Surv	asse Data	
	* Survey	Indicator	+ Data	± Metadata	
		ы	NLA 2007 All Data (ZIP) (3 pp. 5 MB)		

https://www.epa.gov/national-aquatic-resource-surveys/data-national-aquatic-resource-surveys


Banklick Creek

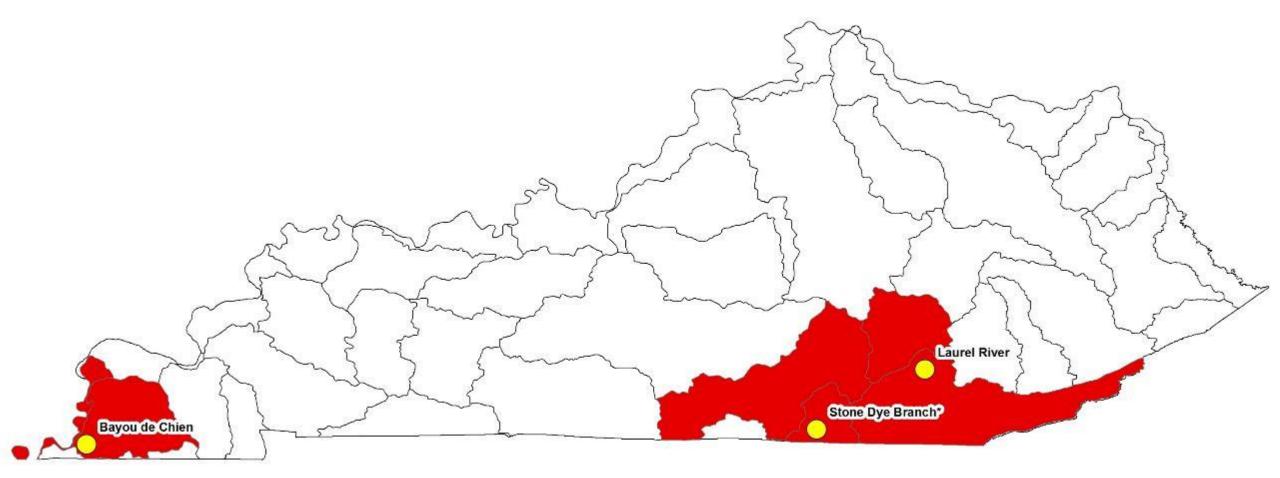

36 Species Collected!

Bigeye Chub	Freshwater Drum	Quillback
Blackstripe Topminnow	Gizzard Shad	Rainbow Darter
Bluegill	Golden Redhorse	Redear Sunfish
Bluntnose Minnow	Green Sunfish	River Shiner
Brook Silverside	Greenside Darter	Sauger
Central Stoneroller	Johnny Darter	Saugeye
Channel Catfish	Logperch	Smallmouth Bass
Channel Shiner	Longear Sunfish	Spotfin Shiner
Creek Chub	Longnose Gar	Spotted Bass
Emerald Shiner	Nothern Hog Sucker	Stonecat
Fantail Darter	Orangespotted Sunfish	Striped Shiner
Flathead Catfish	Orangethroat Darter	Western Mosquitofish

SD1 Report On Banklick Creek Combined Sewage Overflow

Manhole ID	Common Name	Direct Discharge to Waterbody	Typical Year Spill Frequency (# spills) ^a	Typical Year Volume (Million gallons) ^a
1870194 (outfall 79)	47th Street	Banklick Cr.	4	0.13
1850158 (outfall 76)	Church Street	Banklick Cr.	74	56.26
1870193 (outfall 78)	Decoursey Ave.	Banklick Cr.	24	1.29
1840130 ^b	Latonia	Banklick Cr. trib.	25	1.12
1510245 ^b	Henry Clay	Banklick Cr. trib.	0	0

Round Goby: A Relatively New Invasive to the Ohio River Basin



Confirmed in French Creek as of 2016.

Banded Darter	Least Brook Lamprey	Smallmouth Redhorse
Bigeye Chub	Logperch	Spotfin Shiner
Blackside Darter	Longhead Darter	Spotted Bass
Bluebreast Darter	Mimic Shiner	Spotted Darter
Bluegill	Nothern Hog Sucker	Streamline Chub
Bluntnose Minnow	Pumpkinseed	Striped Shiner
Brindled Madtom	Redfin Pickerel	Tippecanoe Darter
Central Stoneroller	Rock Bass	Variegate Darter
Creek Chub	Rosyface Shiner	White Sucker
Eastern Sand Darter	Round Goby	Yellow Bullhead
Golden Redhorse	Sand Shiner	
Greenside Darter	Smallmouth Bass	

2019 ORSANCO NRSA Sites Requiring Federal Scientific Collecting Permits

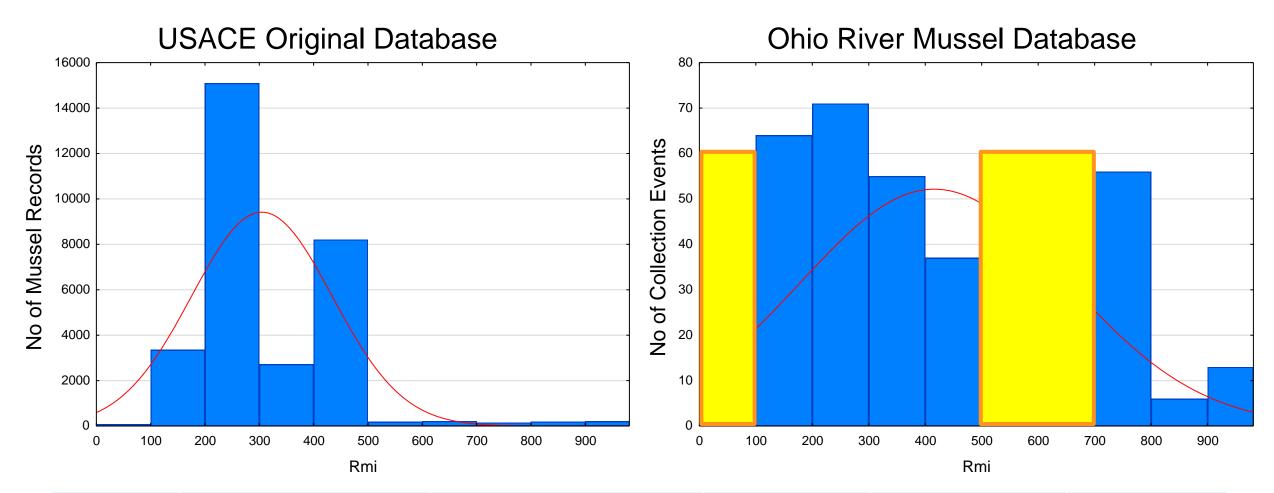
8-Digit HUCs With Federally Protected Fish

- Obtain new and effective equipment
- Offset ORSANCO staff salary costs
- Improves the skills and credentials of our staff and seasonals
- Gain important knowledge on the landscape and inhabitants of the ORB
- Spreads our network with other agencies and people within the ORB

Summary of BWQSC Recommendations

- 1. Accept the biological results of the 2017 Probabilistic Surveys
 - New Cumberland, Meldahl, and Newburgh (fish only)
- 2. Accept the fish results of the 2018 Probabilistic Surveys
 - Emsworth and Pike Island
- 3. Conduct two Probabilistic Surveys in 2019 Probabilistic Surveys
 - Robert C. Byrd and Smithland
- 4. Sample the 38 Remaining NRSA events in 2019
 - in lieu of a 3rd Probabilistic Survey
- 5. As resources allow, complete the following sampling efforts in 2019
 - a) Maintain current Fixed Station effort (18 sites)
 - b) Incorporate Paired Water Quality Samples with Probabilistic Sites
 - c) Conduct targeted sampling within the two probabilistic pools as directed by state and federal agencies.
- 6. Continue investigating the effects of abiotic/biotic factors on biological indices (mORFIn and ORMIn)

Item 5e: Ohio River Mussel Database



ELECTRIC POWER RESEARCH INSTITUTE

- Augment an existing Ohio River mussel database to accept new data
 - Generated by Tom Watters (Ohio State Univ.) for the USACE
 - Data from 1800 2000
 - Required updating species information
 - Incorporation of new metadata
- Populate the new Ohio River Mussel Database with recent surveys
 - Solicitation of data from multiple agencies and professional entities
 - Goal of 50 surveys
- Fund a new Ohio River pool mussel survey
 - Comparison to prior survey and inclusion in database

Distribution of Surveys

Data	Years	River Miles	Events	Mussel Records	Species
USACE	1800 - 2000	13.4 - 974.0	TBD	55,000	76
New	2001 - 2017	161.8 - 969.2	308	44,000	47

Mussel Data Availability / Requests

- The database will be housed on ORSANCO servers
 - Maintained by ORSANCO biologists
 - Intend to append new data annual or as available
 - Publicly available upon request
- Data requests can be submitted to <u>info@orsanco.org</u>
- Any entity wishing to contribute data, contact <u>rargo@orsanco.org</u>
- Technical brief detailing the database available via <u>www.epri.com</u> (Product ID: 3002013900)

Emerging Per- and Polyfluoroalkyl Substances (PFAS)

Andrew B. Lindstrom¹, Jason E. Galloway², Mark J. Strynar¹, Detlef Knappe³, Mei Sun⁴, Seth Newton¹, Linda K. Weavers²

¹U.S. Environmental Protection Agency, ²The Ohio State University, ³North Carolina State University, ⁴University of North Carolina Charlotte

Northeastern University Social Science Environmental Health Research Institute

Highly Fluorinated Compounds Social and Scientific Discovery Northeastern University Social Science Environmental Health Research Institute June 14 – 15, 2017

Overview

- Sources and exposure pathways of legacy PFAS (PFOS & PFOA) somewhat known

- USEPA's Stewardship Program has reduced legacy PFAS but has also resulted in the development of many new "emerging" PFAS

- New analytical capabilities (high resolution mass spectrometry) allow detection of many new PFAS

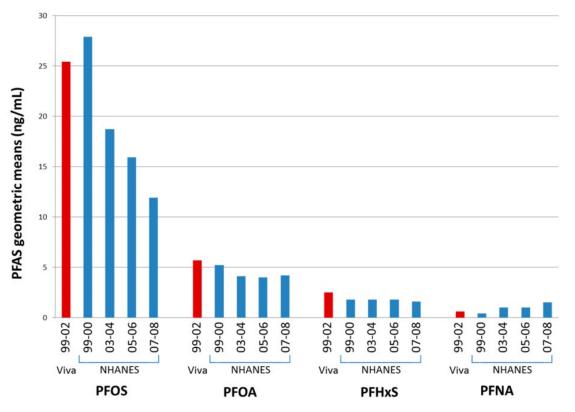
- Emerging PFAS almost completely uncharacterized with regard to sources, environmental fate, human exposure implications

- Discussion of some recent research on sources of emerging PFAS, human exposure pathways, overall implications

US Environmental Protection Agency PFOA Stewardship Program

- In January 2006, USEPA started this program to help minimize impact of PFOA in the environment

- Eight major international companies have agreed to participate (including 3M, DuPont, Asahi Glass, Daikin)

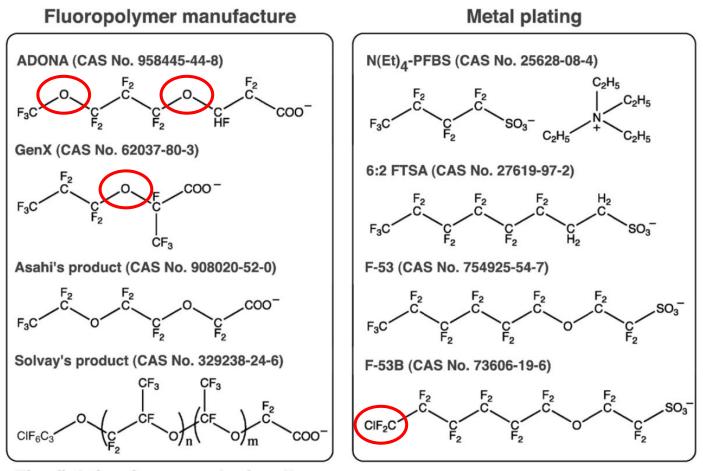

- Agreement to voluntarily reduce factory emissions and product content of PFOA and related compounds* on a global basis by 95% no later than 2010

- Agreement to work toward total elimination of emissions and product content of these compounds by 2015

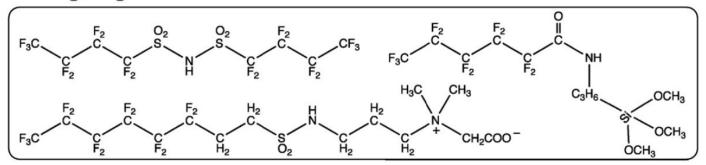
- Based on emissions and content determinations made for 2006

* Includes PFOA, precursor chemicals that can break down to PFOA, higher homologues (C9 and larger)

Trends in PFAS Serum Levels in US



Sagiv et al. Environmental Science & Technology 2015, 49, 11849-11858

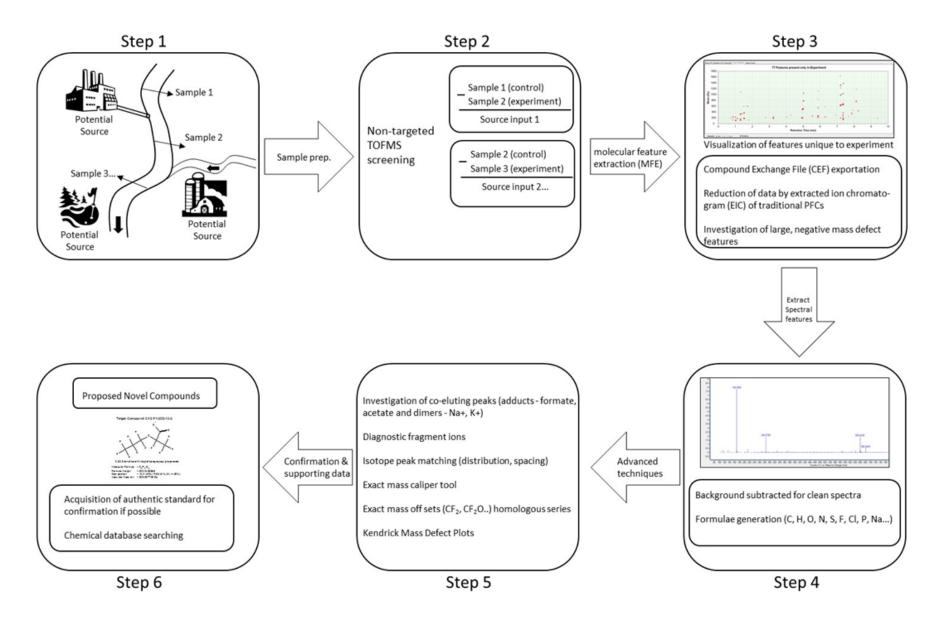

Table 2. Geometric mean and 95% confidence interval and selected percentiles of PFOS, PFOA, PFHxS, and PFNA serum concentrations (ng/mL) for the U.S. population 12 years of age and older: Data from NHANES 2011-2012 ^a

	Geometric Mean		Selected Percentiles			
		Confidence nterval)	50 th	75 th	90 th	95 th
PFHxS	1.28	1.15-1.43	1.27	2.26	3.81	5.43
PFOS	6.31	5.83-6.82	6.51	10.48	15.62	21.68
PFOA	2.08	1.95-2.22	2.08	3.02	4.35	5.67
PFNA	0.88	0.80-0.97	0.86	1.30	1.95	2.54

^a CDC (2015)

Fire fighting foams and miscellaneous

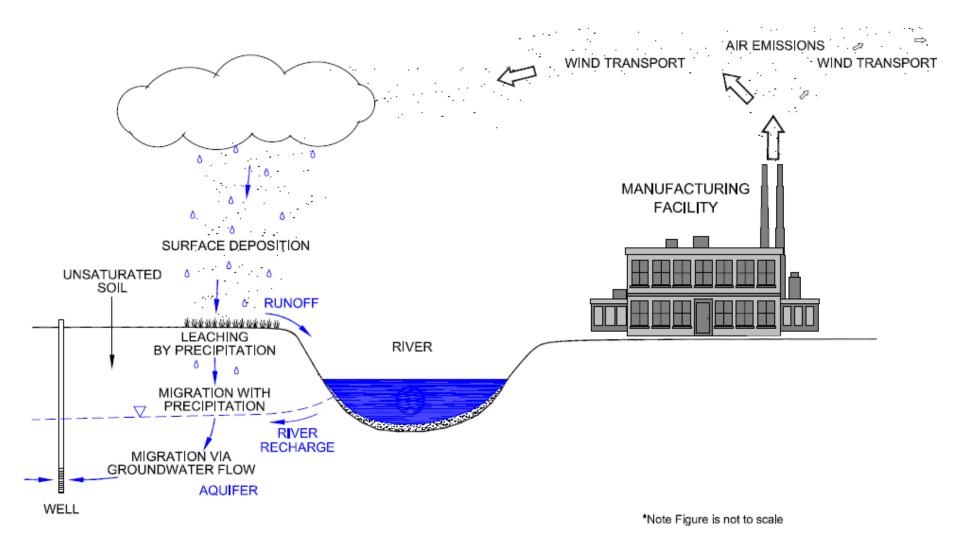
Unknown Characteristics of "Emerging" Fluorinated Compounds

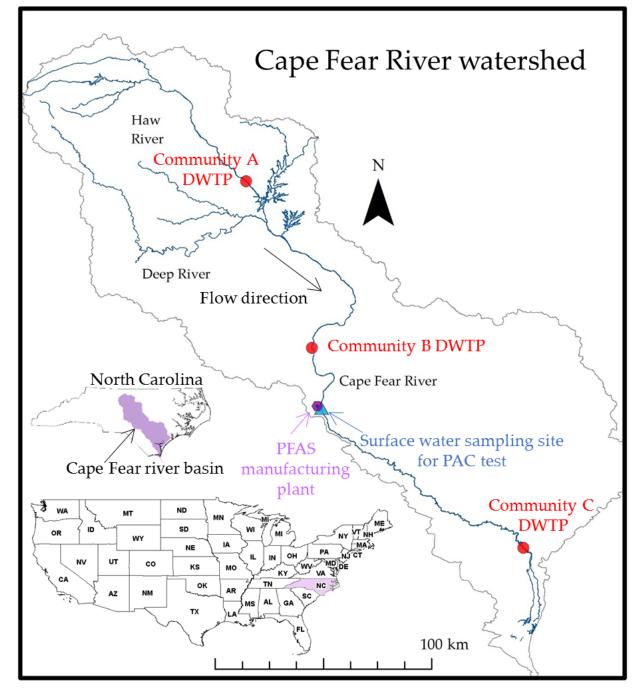

- Actual identities of alternatives unknown in industrial sectors and geographical regions that are not well regulated

- Data on environmental and human health effects are incomplete (at best) and more often nonexistent

- Data on degradability, bioaccumulation, and toxicity (environmental and human) are incomplete (at best) or completely lacking

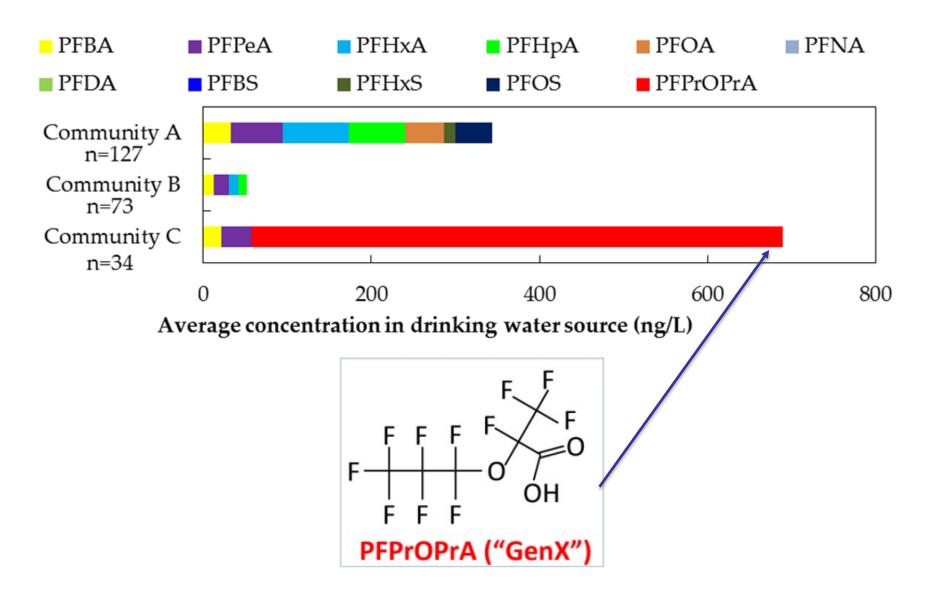
- Information on production volume and environmental emissions not available


High Resolution Mass Spectrometry to Find "Emerging" PFAS

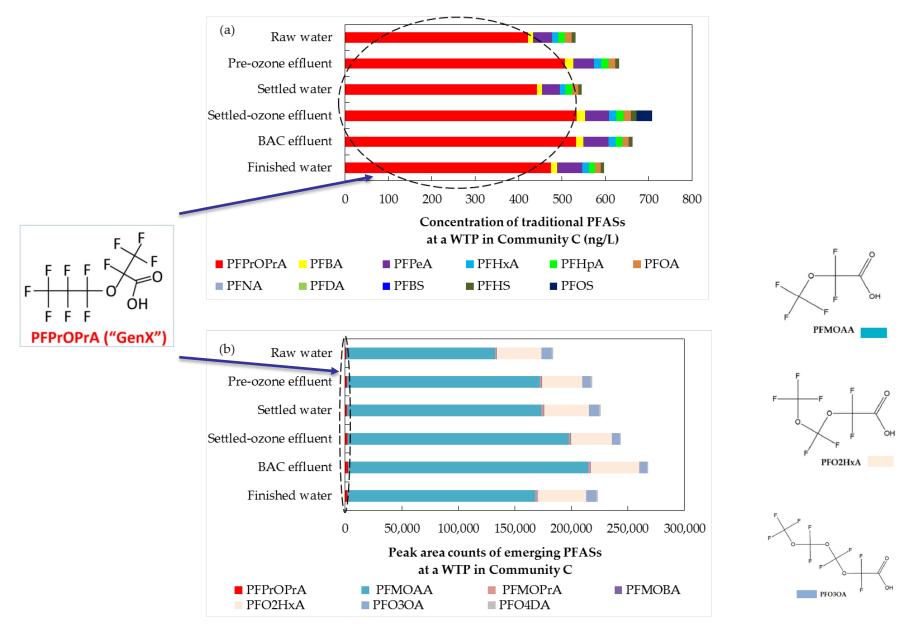

Strynar et al. *Environmental Science & Technology* 2015, 49, 11622–11630

WELL FIELD

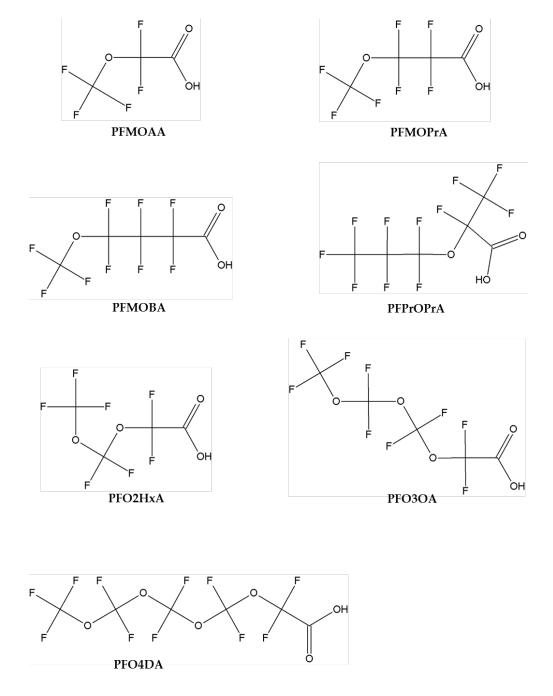
SITE



Davis et al. Chemosphere 2007, 67, 2011-2019


Sun et al. Environmental Science & Technology Letters 2016, 3, 415–419

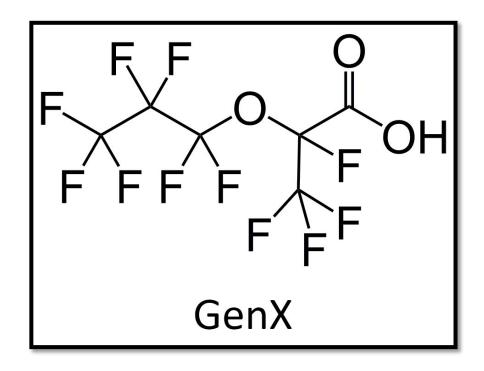
Legacy PFAS with GenX in Cape Fear River Basin



Sun et al. *Environmental Science & Technology Letters* 2016, 3, 415–419

Emerging PFAS in Cape Fear River Basin

Sun et al. Environmental Science & Technology Letters 2016, 3, 415-419

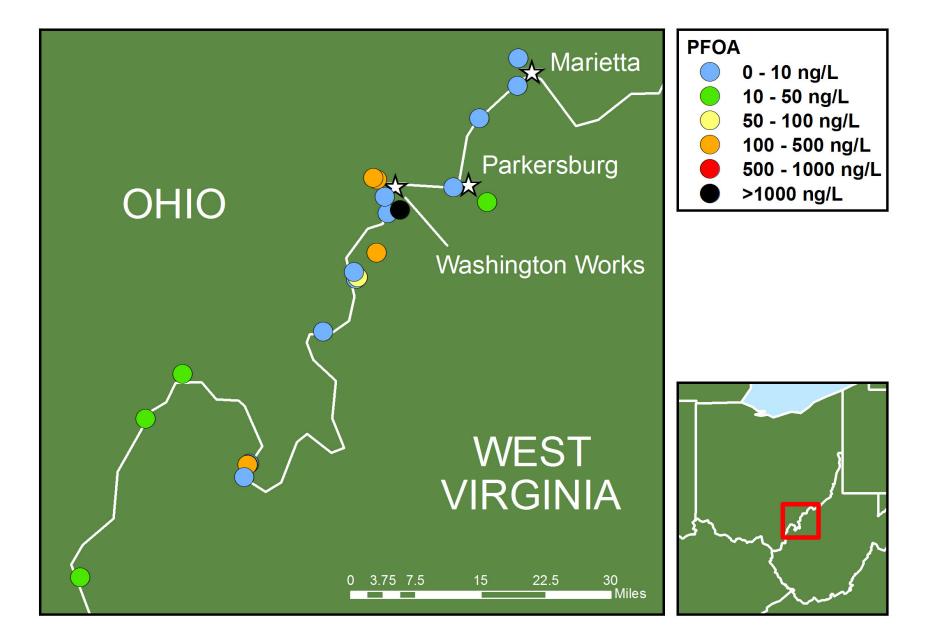

Sun et al. Environmental Science & Technology Letters 2016, 3, 415-419

GenX

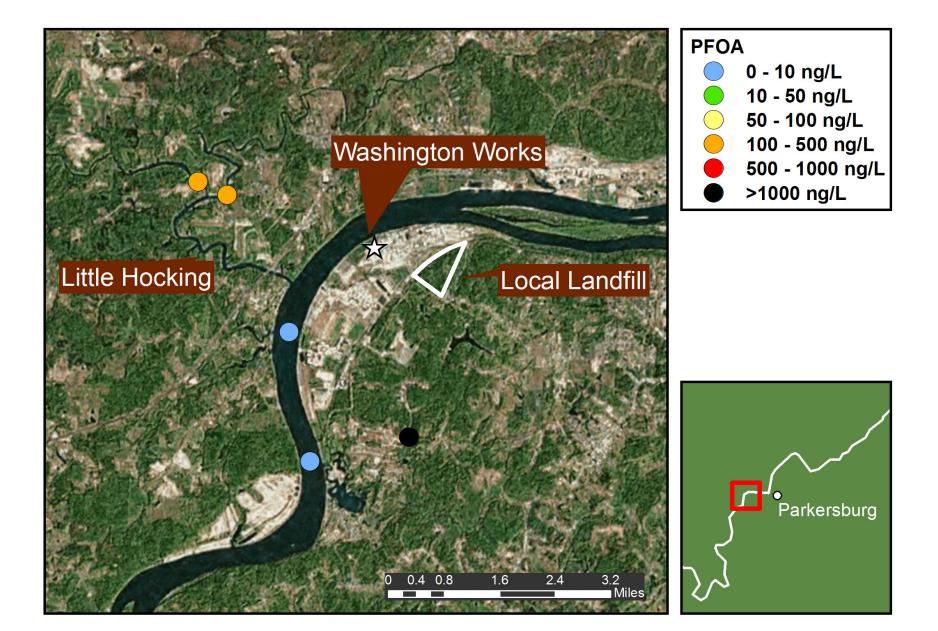
- Identity originally protected as Confidential Business Information (CBI)

- Still persistent, still toxic, but less bioaccumulative than C8

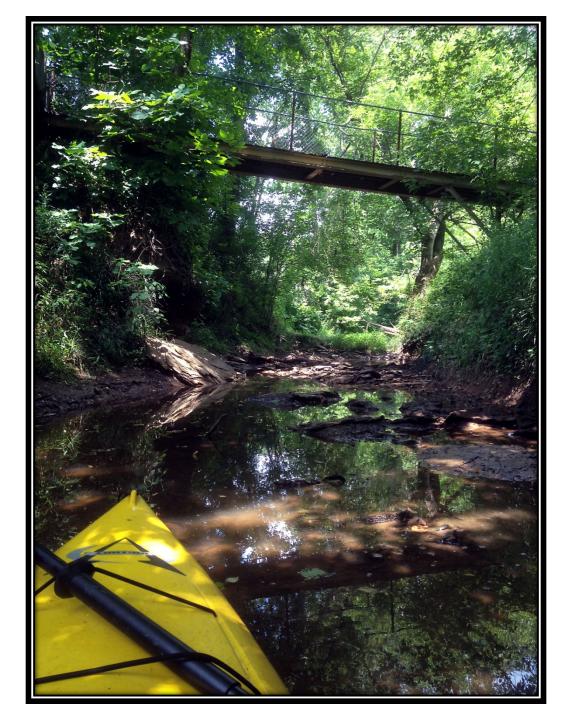
- DuPont studies found effects on rats similar to C8, including possible endocrine/immune disruption, enlarged livers and kidneys, and cancer



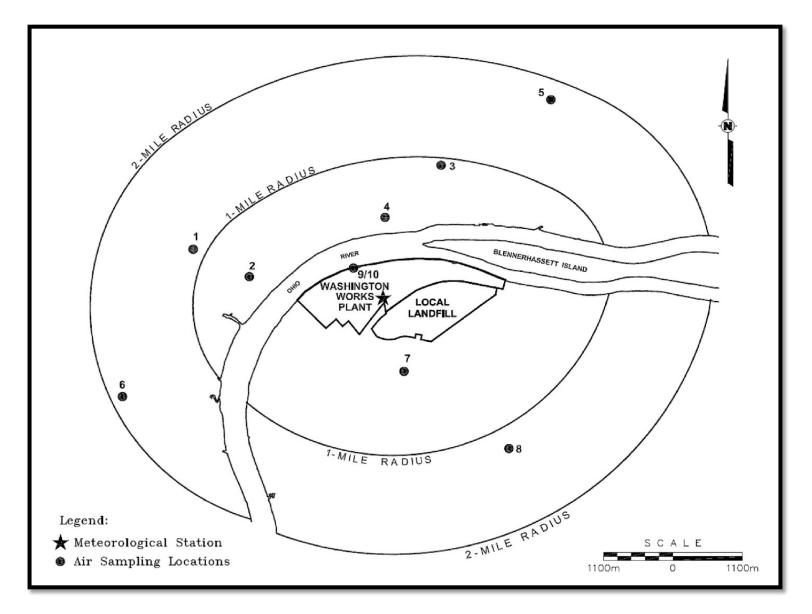
- Approved by the EPA, no further testing required


Trip #1 – Ohio River

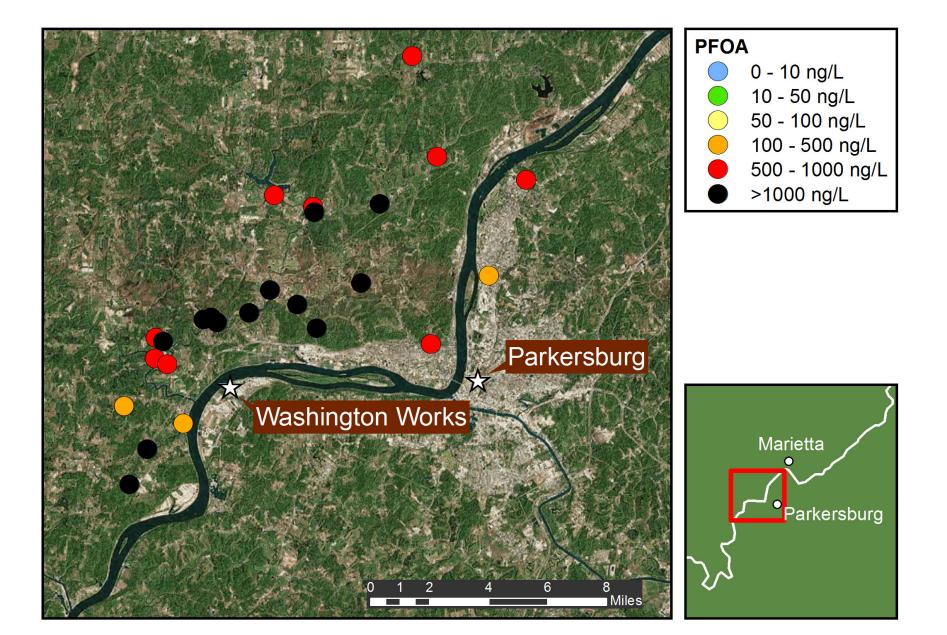
Ohio River Results



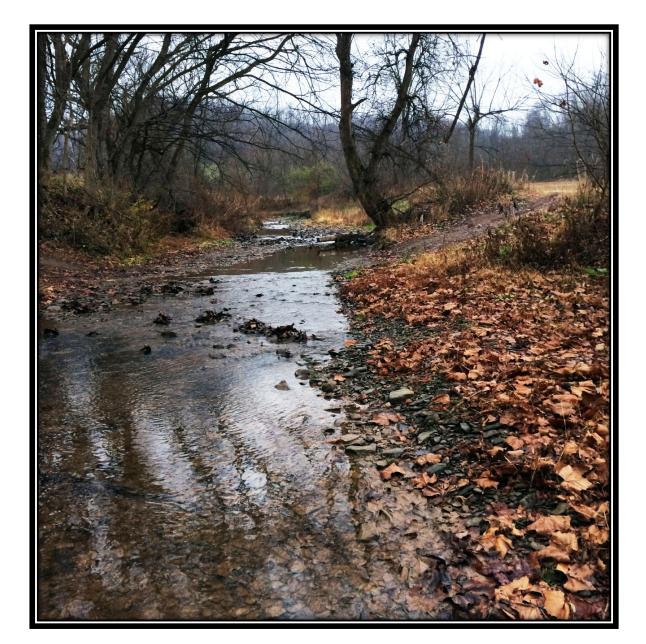
Ohio River Results (Detail)



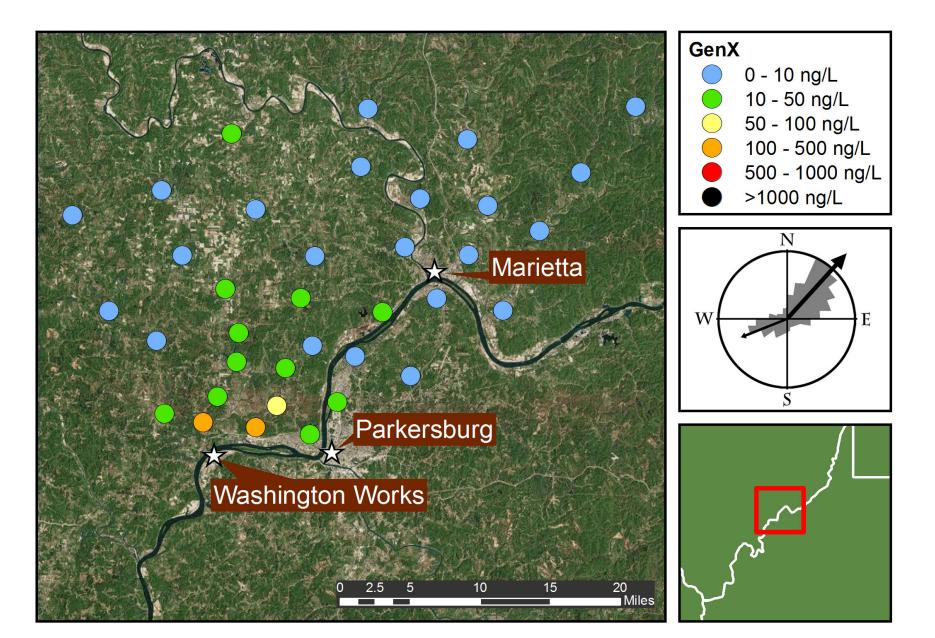
Trip #2 – Little Hocking River



Air Monitoring Around Washington Works



Barton et al. Journal of the Air & Waste Management Association 2010, 60, 402-411


Little Hocking Results

Trip #3 – Little Hocking and Beyond

Extended Sampling Results

Conclusions


- The presence of significant levels of PFOA (>100 ng/L) in surface water more than 15 miles from the facility and quantifiable levels (>10 ng/L) more than 25 miles away suggest local contamination may be more extensive than originally thought

- The discovery of GenX at many of the collection sites suggests the replacement PFAS is contaminating the local environment via air deposition as well

 More testing is needed – especially private well water between the boundaries of the Little Hocking Public Water district and the Muskingum River

Questions?

Email: lindstrom.andrew@epa.gov galloway.18@osu.edu

Ohio River PFAS Study

SURVEY DESIGN

- Characterize present ambient concentrations of PFASs in Ohio River at multiple locations (approx. 20 sites).
- 2 separate events attempt to get 1 higher flow & 1 lower flow condition.
- Results may inform states, EPA, utilities & other interested parties on Ohio River ambient water quality conditions.

- USEPA research lab will analyze water samples for PFASs.
- They have indicated 20 samples would be doable, but possibly more.
- ORSANCO will collect samples.
- Begin survey in Fall 2019.

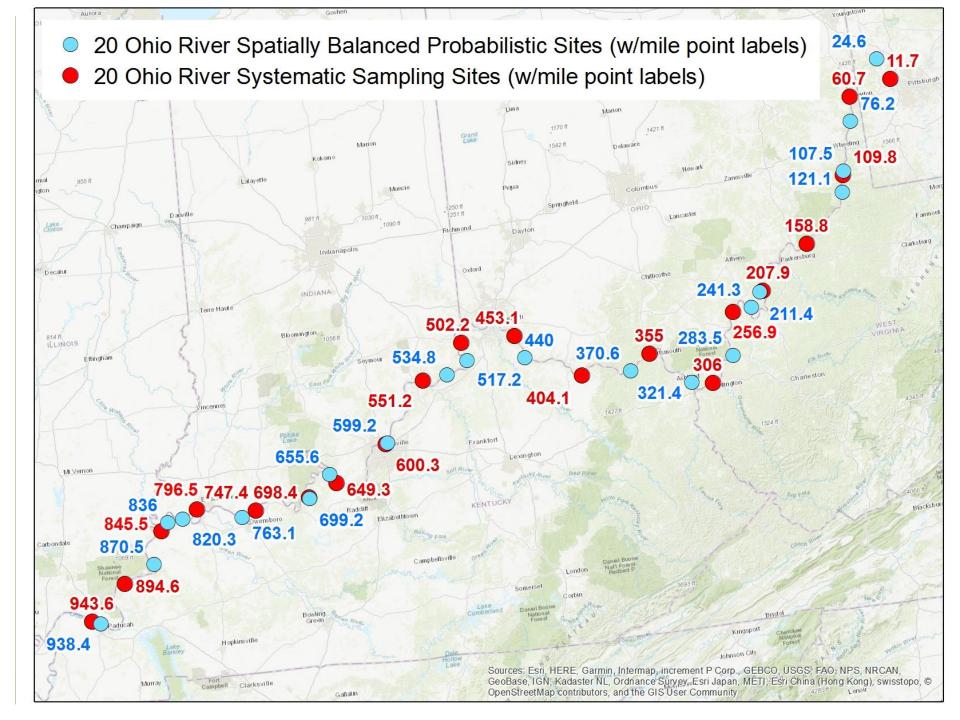
General Workplan

- 1) Establish Work Group to develop work plan specifics.
 - Ask TEC members to appoint representative.
 - Workgroup will propose:
 - × Monitoring locations.
 - × Sample collect methodology and all that goes with it.
 - × Suite of PFAS compounds to be analyzed for (GenX).
- 2) Selection of Sampling Sites
 - Good spatial coverage.
 - Look at probabilistic approach.
 - Reflect ambient conditions.
 - Represent range of flows.

General Workplan (cont.)

- 3) Establish Sample collection protocol
 - Grab sample versus USGS "IDE" method.
 - Minimization of sample contamination potential.
 - Determination of field QA samples.
- 4) Analyte selction ie. GenX? Other PFASs.

PFAS Workgroup Met January 15


- Bruno Pigott Commissioner/TEC Chairman
- Ron Potesta Commissioner/Commission Chairman
- Eileen Hack, Ally Miles IDEM
- Erich Emery USACE
- Bruce Whitteberry WUAC
- Katie McKone KYDOW
- Kevin Halloran PADEP
- Mike Profitt, Jeff Lewis, Erin Sherer, Audrey Rush OEPA
- Amy Kramer NKY Water
- Chris Tavenor OH Environmental Coalition
- John Wirts WVDEP

Outcomes from Workgroup Call

- Where to Sample
- What to Sample
- How to Sample
- When to Sample

Where to Sample

- 2 Options for Probabalistic Site Selection Based on Sample Size of 20
 - Spatially Balanced 20 equal length segments; random selection in each segment.
 - Systematic 20 equal length sements; random selection of most upstream segment; then equally-spaced.
 - Workgroup had no strong preference.
- Add 2 sites to bracket Parkersburg area after review of EPA study results.
- Ambient = Fully Mixed.
 - Every site reviewed
 - Consider discharges, tribs inflows, dams (gate openings).

- EPA has a couple of analytical methods both include 24 PFAS compounds.
- Workgroup asked to see detection levels on both methods.
- Rely heavily on EPA expertise for method selection.
- Workgroup recommends including Gen-X compounds EPA can do this.
- Flow measurements at every site with ADCP (Acoustic Doppler Current Profiler) instrumentation considers full X-sectional flows.

How to Sample

- USGS Equal Discharge Increment Method
 - Width & depth integrated sample 5 verticals across river.
 - Collects a flow-weighted sample.
 - This is the most comprehensive method.
 - Need to determine if sampling equipment contributes and PFAS to samples EPA bench study.
 - Need to consider exposure to potential atmospheric contamination by this method.
- Simple grab sample benefits are reduced potential for contamination, time & staff resources.
- Multiple options for hybrid of these 2 methods.
- Question is still under consideration.
- Compiling multiple sample collection QC protocols.
- Work in progress.

When to Sample

- Sample collection to begin approx. Sept. 2019; Spring 2020 second event.
- Proposed 2 sampling events higher and lower flow events.
 - Workgroup suggested establishing flow conditions.
 - Problems associated with this:
 - × Entire survey will span a month; flows change.
 - If we don't get specific flow conditions could delay the project 6 months or more.
- Suggest work plan specifies 2 separate sampling events accounting for seasonal differences with an attempt to collect under higher & lower flows.

Other Issues/Next Steps

- Use and communication of results.
- All Ohio River PFAS data has been compiled and provided to the work group.
- Next Steps:
 - Determine if preferred EDI method can be used.
 - Refine site selection & confirm "Ambient" location or move site several miles to a fully mixed location.
 - Add detection levels to EPA analytical methods and re-review by work group.
 - Propose sample collection QA protocols.
 - Prepare QAPP.

Office of Research and Development

SAFE and SUSTAINABLE WATER RESOURCES RESEARCH PROGRAM

EPA Method Development: Per- and Polyfluorinated Alkyl

Substances 2019 ORSANCO Meeting

February 12, 2019 Covington, KY

Christopher A. Impellitteri-EPA-Office of Research and Development Schatzi Fitz-James-EPA-Office of Land and Emergency Management Cynthia Caporale-EPA-Region 3

Drinking Water Method 537

- Six per- and polyfluorinated alkyl substances (PFAS) under the 3rd Unregulated Contaminants monitoring rule (UCMR3)
- Eight additional PFAS not listed on UCMR3
- Finished (treated) drinking water samples

Sepa

Drinking Water Method 537

- Update: External lab validation for additional analytes by 537
 - Perfluoro-2-propoxypropanoic acid (GenX, CAS 13252-13-6)
 - Potassium 9-chlorohexadecafluoro-3-oxanone-1-sulfonate (9CI-PF3ONS, CAS 73606-19-6)
 - Potassium 11-chloroeicosafluoro-3-oxaundecane-1-sulfonate (11CI-PF3OUdS, CAS 83329-89-9)
 - Sodium dodecafluoro-3H-4,8-dioxanonate (ADONA, CAS 958445-44-8)
- Recruit external labs, ship samples, run multi-lab validation (end of September, 2018)
- Draft method revision for peer review (end of October, 2018)
- Final published method (end of November, 2019)

Set EPA

Drinking Water-New Method

- Solid phase extraction/internal standard method targeting C4 compounds
 - Method 537 generally performs poorly for C4 compounds (e.g. PFBA, PFBS)
 - New method is under development
 - Office of Water targeting June 2019 for draft method for public comment

Set EPA

Non-DW Sample Methods-Direct Injection

- SW-846 Draft Method 8327

- Focuses on:
 - Simplicity
 - Robustness
 - Maximizing throughput for production lab use
 - Minimizing sample transfers, extractions, filter steps, chemical additions (e.g. pH adjustments)
- Find a balance among sensitivity, ease of implementation, and monitoring requirements

Non-DW Sample Methods-Direct Injection

- 24 PFAS (including all target analytes in EPA Method 537)
 - Commercially available standards ("neat" and isotopically labeled)
- Direct injection based on EPA Region 5/Chicago Regional Laboratory Method
 - Similar to draft American Society for Testing and Materials (ASTM) Method D7979
 - Phase 1: 6 internal (EPA) lab validation
 - Completed December 2017
 - Phase 2: 10 external lab validation (ongoing)
 - Initial demonstration of capability complete
 - » 8 labs "in"
 - » 2 labs "out"
 - Shipped samples (60 unknowns: surface, ground, and waste waters) August 2018
 - March 2019 for draft method for public comment
- Target Quantitation Limits: 10 nanogram/L

SEPA

Non-DW Sample Methods-Isotope Dilution

- SW-846 Draft Method 8328

- More complex method relative to direct injection, however 8328 will
 - Likely be more robust for complex matrices (e.g. wastewater, biosolids)
 - Account for matrix effects (e.g. sorption) through isotopically marked standard recoveries
 - Afford options to meet DoD requirements
 - Allow users to perform a deeper dive based on screening (e.g. 8327) results

€PA

Non-DW Sample Methods-Isotope Dilution

- SW-846 Draft Method 8328

- Same 24 PFAS analytes plus GenX chemical HFPO-DA
- Based on existing SOP that meets DoD Quality Systems Manual (QSM) 5.1 Table B-15 requirements
 - Many DoD requirements are optional for users that wish to use isotope dilution at non-DoD affiliated sites
- Surface, ground, and waste water plus solids (soils, sediments, biosolids)
- Target Quantitation Limits: 10 nanogram/L
- Build in flexibility
 - Columns
 - Elution schemes
- 2 lab internal validation started, 10 lab external validation study planned but...
 - Process is too slow. Exploring collaborative effort with DoD to jump start external laboratory validation. Target Summer 2019 for draft method.

Development of a CyanoHAB Risk Model for the Ohio River: EPA RARE Grant

Prepared by Chris Nietch and Leslie Gains-Germain

Disclaimer: This slide deck documents updates and discussion points for active research effort to better characterize and manage the risk from HABs on the Ohio River. All data presented shall be considered preliminary. The information in this presentation does not necessarily reflect the views or policies of the U.S. EPA or other Agencies who may have representatives that contributed to its content.

Project Overview

- <u>Main objective:</u> Develop a risk characterization model for CyanoHABs on the Ohio River based on the conditions that produced the record-setting bloom in 2015
- **Research Approach**
 - Determine data availability (variables and time and spatial characteristics) – Ended with a focus on flow and temperature
 - Prepare Ohio River water level/flow and water temperature data for analysis
 - Attempt a binary logistic regression model to describe the uniqueness of the 2015 conditions
 - Conduct EDA to determine and derive appropriate predictors
 - Assign "begin" and "end" dates to the bloom at each site
 - Model Development

Difficulty in defining conditions probabilistically with only one year of data for widespread bloom conditions

- Attempt statistical distance method (e.g., Mahalanobis Distance)
- Develop visualization application using R Shiny for demonstration
 - A simple tool for a river stakeholder to visualize relative risk
 - Establish a strategy for making this tool real-time

QAPP Approved - Experimental Design/Hypothesis

Experiment Design:

 Use historical time series data for flow on the Ohio River to characterize the unique hydrologic conditions that coincided with the record-setting HAB in the late summer of 2015

Hypothesis:

- Flow conditions in the summer of 2015 will prove unique enough to parameterize a significant statistical model that can be used to characterize the relative difference between the flow conditions in real-time at a site and the conditions that existed in 2015 when the HAB occurred
- Hypothesis supported if a significant statistical model can be developed
- Important: We are NOT predicting the probability of a HAB, rather characterizing river flows in terms of their similarity to the conditions that coincided with the past HAB and presenting it as a probability!

Historic Ohio River Data 1995 – 2016 Abram DeSilva and Brian Astifan

Data Source

http://www.lrd-wc.usace.army.mil/OhioRiver/OhioRiverNavData.html

• Ohio River mile to location name

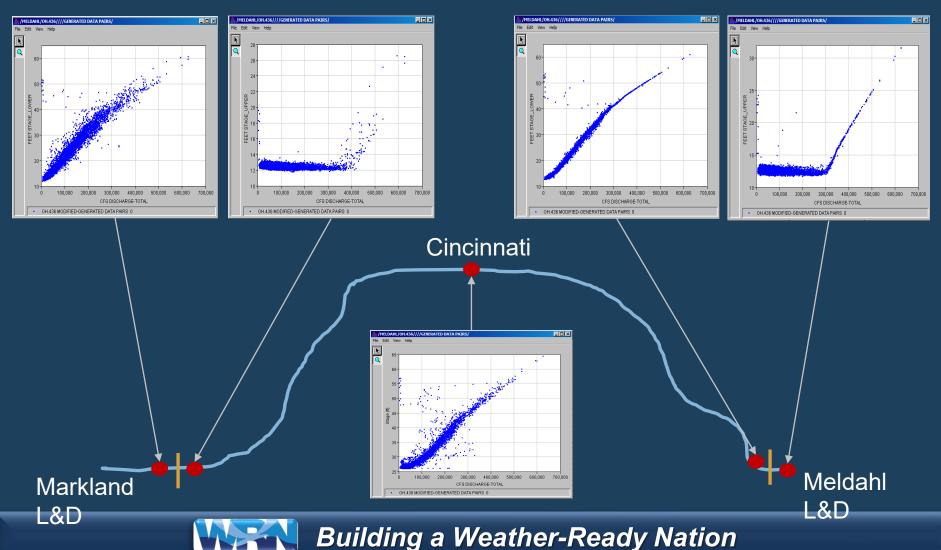
OH.471 = Cincinnati

River Mile	Location (on Ohio R.)						
OH.000	Pittsburgh						
OH.006	Emsworth						
OH.013	DaShields						
OH.032	Montomery Island						
OH.054	New Cumberland						
OH.084	Pike Island						
OH.091	Wheeling						
OH.126	Hannibal						
OH.162	Willow Island						
OH.172	Marietta						
OH.185	Parkersburg						
OH.204	Belleville						
OH.238	Racine						
OH.265	Pt. Pleasant						
OH.279	R.C. Byrd						
OH.312	Huntington						
OH.322	Ashland						
OH.341	Greenup						
OH.436	Meldahl						
OH.471	Cincinnati						
OH.532	Markland						
OH.607	McAlpine						
OH.721	Cannelton						
OH.776	Newburgh						
OH.792	Evansville						
OH.846	Dam 49						
OH.919	Smithland						
OH.935	Paducah						
OH.939	Dam 52						
OH.963	Grand Chain						
OH.964	Dam 53						
OH.980	Cairo						



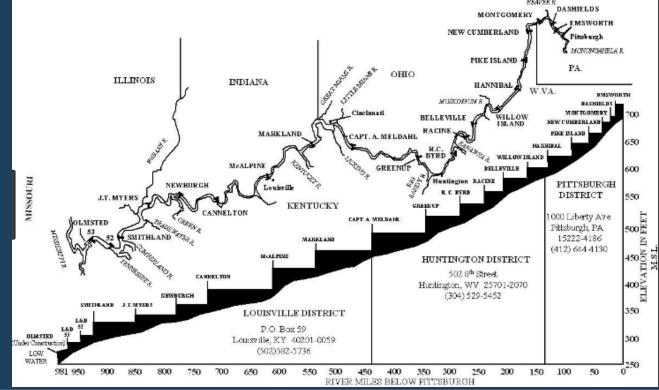
EXAMPLE – which stage best represents Q?

- Discharge calculated at Meldahl L&D
- 5 potential sources for real-time stage data
- 1995-2016: How do measured stage data compare to calculated discharge?


Ruilding a Weather-Ready Nation

Real-time Data Which hydrologic data to evaluate?

Markland L&D tailwater (lower)



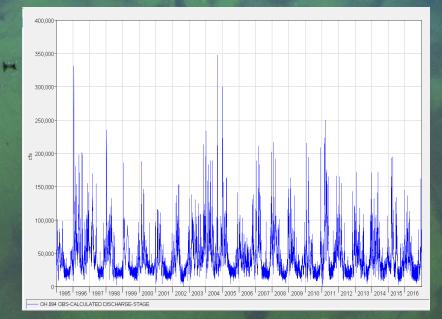
Real-time Data Which hydrologic data to evaluate?

Tailwater (lower) stage

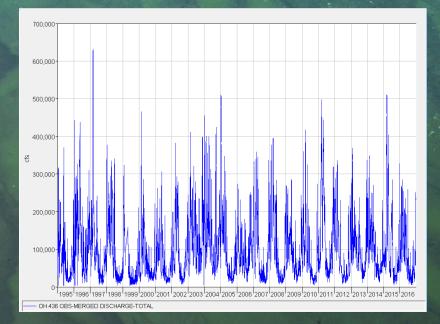
- Readily accessible
- Best approximation of Q for downstream reach (until next L&D)

Building a Weather-Ready Nation

FINAL DATA OVERVIEW – What we started with for modeling


Number					River Miles		DCCV/ue		2015 HAB						
in DSSVue					Below	DSSVue -	DSSVue- Stage		ZUIS HAB Timeline (1st	2015 HAB Timeline	Other Bloom	Other Bloom	Other Bloom	Other Bloom	Other Bloom
File	Gage Name	Lattitdue	Longitude	Туре		Disharge File	File	DSSVue-Temp File	reported)	(Bloom "Off")	Report 1	Report 2	Report 3	Report 4	Report 5
1	Pittsburgh	40.43944	-80.01083	Not L&D	0	82	84	ND 2015 bloom		(1.00.000 0.00)					
2	Emsworth	40.50500	-80.08972	L&D	6.2	23	24	ND 2015 bloom			8/19/1999				
3	Dashields	40.54972	-80.20694	L&D	13.3	19	20	ND 2015 bloom							
4	Montgomery	40.64722	-80.38889	L&D	31.7	63	64	ND 2015 bloom							
5	New Cumberland	40.52806	-80.62583	L&D	54.4	70	71	Complete Series 1995 thru 2016			7/7/2003				
6	Pike Island	40.14972	-80.70167	L&D	84.2	78	79	Complete Series 1995 thru 2016	8/19/2015	10/20/2015					
7	Hannibal	39.66722	-80.86611	L&D	126.4	35	36	ND 2015 bloom	8/21/2015	10/20/2015					
8	Willow Island	39.35900	-81.32400	L&D	161.7	103	104	Not a complete series, 2015 is covered	8/24/2015	10/20/2015					
9	Marietta	39.40944	-81.45778	Not L&D	172	41/42	43/44	ND 2015 bloom	8/24/2015	10/20/2015					
10	Parkersburg	39.26806	-81.56389	Not L&D	185	73	75	Not a complete series, some data in 2	8/24/2015	10/20/2015					
11	Belleville	39.11800	-81.74200	L&D	203.9	6	7	Complete Series 1995 thru 2016	8/24/2015	10/20/2015					
12	Racine	38.91800	-81.91100	L&D	237.5	90	91	Complete Series 1995 thru 2016	8/25/2015	10/20/2015					
13	Point Pleasant	38.84389	-82.13972	Not L&D	265	86/87	88/89	ND 2015 bloom	8/26/2015	10/20/2015					
14	RC Byrd	38.68000	-82.18500	L&D	279.2	95	96	Complete Series 1995 thru 2016	8/27/2015	10/20/2015					
15	Huntington	38.41333	-82.50056	Not L&D	312	37	39	Some data in 2015	8/27/2015	10/20/2015					
16	Ashland	38.48111	-82.63667	Not L&D	322	2	ND	Some data in 2015	8/27/2015	10/20/2015					
17	Greenup	38.64667	-82.86056	L&D	341	31	32	Complete Series 1995 thru 2016	8/27/2015	10/20/2015					
18	Mayesville	38.68389	-83.78389	Not L&D	409	49/50	51/52	ND	8/28/2015	10/20/2015					
19	Meldahl	38.79722	-84.16667	L&D	436.2	59	60	Complete Series 1995 thru 2016	9/1/2015	10/20/2015					
20	Cincinnati	39.09444	-84.51056	Not L&D	471	13/14	15/16	ND	9/9/2015	10/20/2015	8/26/2008				
21	Markland	38.77472	-84.96444	L&D	531.5	47	48	Complete Series 1995 thru 2016	9/9/2015	10/20/2015					
22	McAlpine	38.28028	-85.79917	L&D	606.8	55	56	ND	9/11/2015	10/16/2015					
23	Cannelton	37.89944	-86.70556	L&D	720.7	11	12	Complete Series 1995 thru 2016	9/15/2015	10/16/2015	7/15/1999				
24	Newburgh	37.92833	-87.37500	L&D	776.1	67	68	ND 2015 bloom	9/16/2015	10/22/2015					
25	Evansville	37.97222	-87.57639	Not L&D	792	25	27	ND	9/17/2015	10/22/2015					
26	John T. Meyers	37.78333	-87.97944	L&D	846	ND	ND	ND	9/18/2015	10/22/2015	8/7/2012				
27	Smithland	37.15833	-88.42611	L&D	918.5	97	98	Not a complete series, 2015 is covered	9/19/2015	10/22/2015	5/18/2009	6/26/2009	9/17/2012	10/30/2012	7/29/2014
	Charles and the second second	CONTRACTOR OF THE	COLUMN TO A COLUMN	The second second			10.000		A DESIGNATION OF THE OWNER.	CONTRACTOR OF A		Contract of the second			The second s

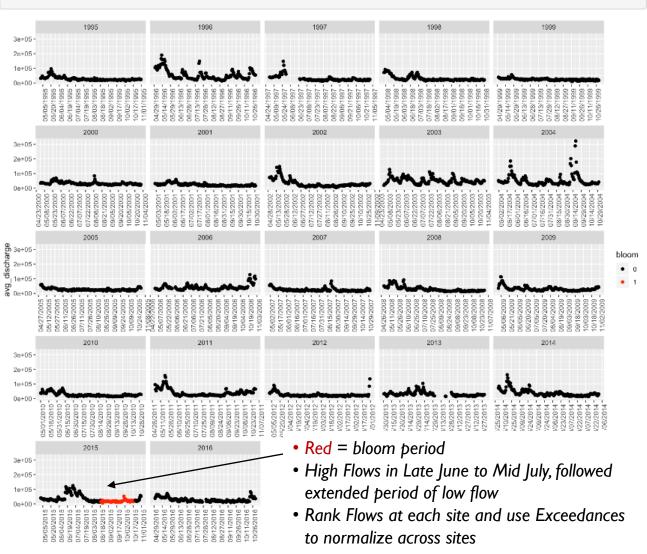
FINAL SITE SELECTION



EDA – Raw Data Examples

Pike Island

Meldahl

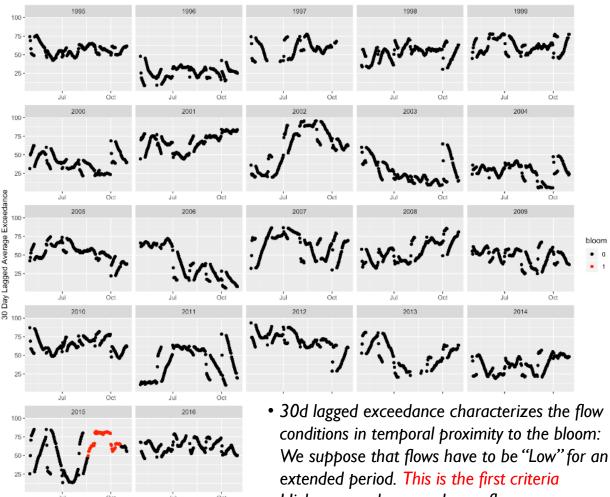


EDA- Daily Average flows: e.g., @ Pike Island

Pike Island

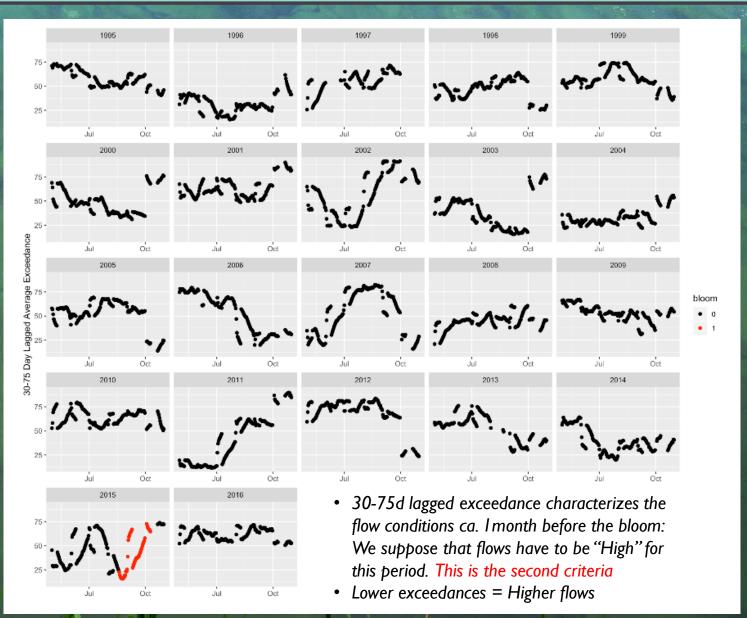
River Mile 84.2. Bloom start date 8/19/15.

myplot %+% subset(summer_avgs, location == "pike_island")

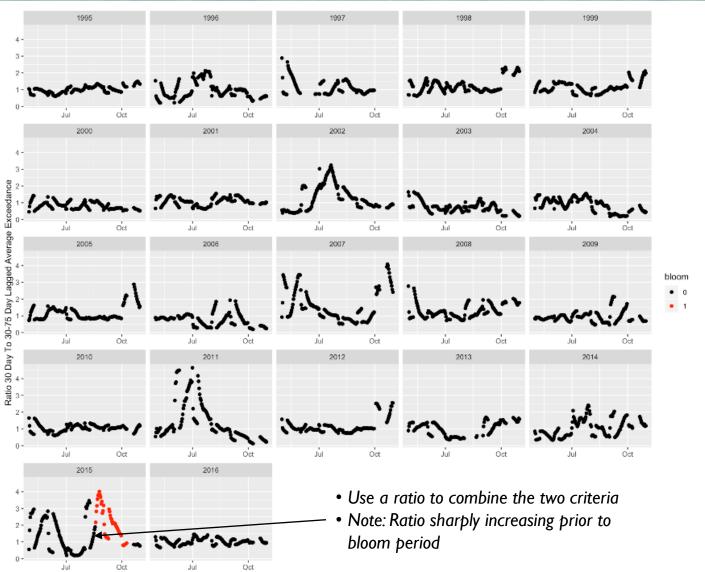

Develop Predictor Variables – 30d Lagged Average <u>Exceedance</u>

Pike Island

-


River Mile 84.2. Bloom start date 8/19/15.

plot30 %+% subset(summer_avgs, location == "pike_island")


• Higher exceedances = Lower flows

Develop Predictor Variables – 30-75D Lagged Average <u>Exceedance</u>

-

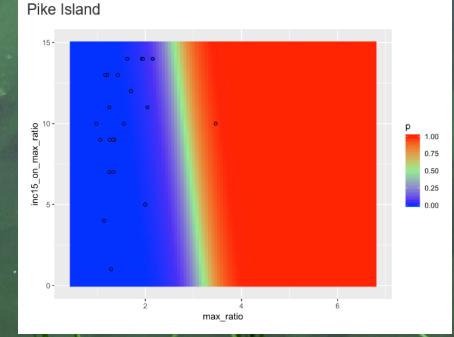
Develop Predictor Variables – Ratio 30D to 30-75D Lagged Average <u>Exceedance</u>

**

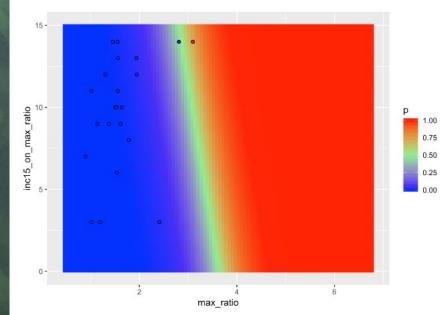
Date

PREDICTORS

"Maximum Ratio"

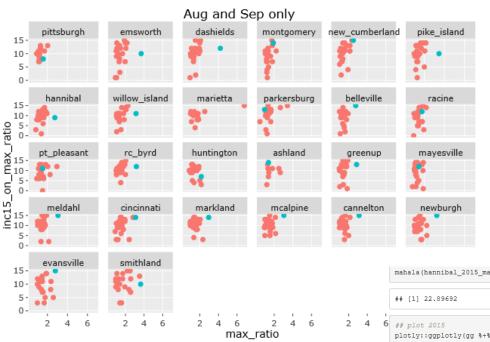

- The maximum 30 to 30-75 Lagged Average Exceedance Ratio that occurred prior to the bloom start date
- On other years (other than 2015), the maximum ratio is defined as the maximum ratio that occurred at any time during which a HAB is possible
 - Use water temperature and/or time of year to set boundary conditions

"Number of Increasing Ratio Days"


- The number of days in the 15 days prior to the day the maximum ratio occurred in which the ratio increased
 - Found to be a better predictor than average slope of the ratio over the 15day period
- predictors are summarized yearly, but probabilities will be estimated on a daily basis by using <u>daily ratio</u> and <u>number of increasing ratio days</u>
- Only a probability based on similarities of flow conditions can be calculated for a given day!

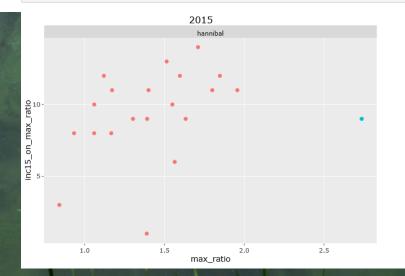
Fit Model – Mixed Effects Binary Logistic Regression Model – Preliminary!

Information is shared across sites in a mixed effects model, allowing for probabilistic inference



Cincinnati

These results are based on a boundary condition that blooms can only occur in Aug or Sept.

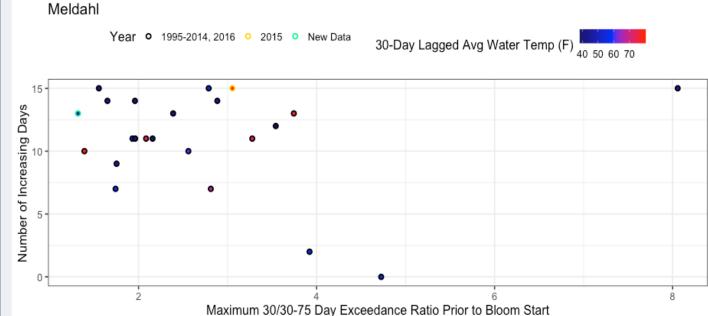

Model – Mahalanobis Distance- Preliminary!

Mahalanobis Distance (Hannibal, 2015) = 22.9 indicating strong evidence that 2015 conditions differed from previous years.

mahala(hannibal_2015_mat, m, s) ## distances for 2015 should be very large
[1] 22.89692
plot 2015
plotly::ggplotly(gg %+% subset(daily avgs withmax, location == "hannibal" & year != "2016") + ggtitle("2015"))

Mahalanobis Distance can identify dissimilarity from flow conditions but can't identify similarity in a probabilistic manner without additional data.

Shiny App – Rough Cut


Ohio River

≡

Lul Exploratory Data Analysis <

🍰 Data Input

- 🔲 Data Summary
- 🛃 Comparison Plots
- » 2D Plots
- » 3D Plots
- 🞓 Results
- Q Check Model
- Application Info

• Mahalanobis Distance Plot with all months included. Water temperature captured by color gradient inside each data points

Conclusions

- We have used historical time series data for flow on the Ohio River and developed a theoretically rational means of characterizing the unique hydrologic conditions that coincided with the record-setting HAB in 2015
- We have used two statistical techniques to derive significant models characterizing the uniqueness of the 2015 flow conditions and express flows at different times in relative terms.

-

- One expresses this similarity in terms of a probability and the other a distance
- If useful to stakeholders, we could derive these similarity measures in the present time, and maybe even forecast them
- It seems likely that the real-time similarity measures could be served to river stakeholders through a password protected Shiny-App or similar
- Important: These measures can convey <u>risk</u> in terms of the similarity of flow conditions in the present to those that produced a CyanoHAB in the past. However, caution must be taken to not misinterpret them as directly predicting the likelihood of a HAB

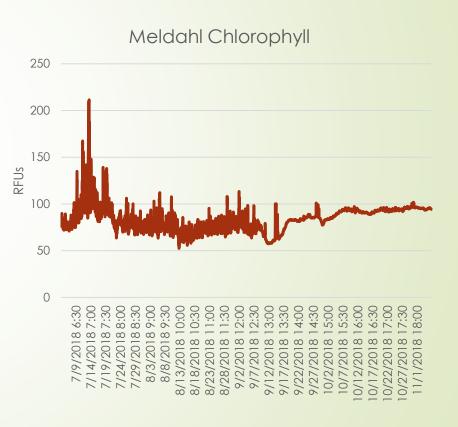
HAB Update

Agenda Item 7b

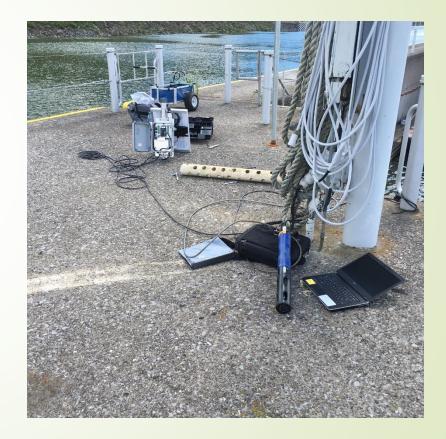
2018 HAB Investigations

- Paint Lick Creek, KY
 - Identified by Texas A&M as Euglena rubra. Not a toxin producer.
- Little Beaver Creek, OH
 - Dinoflagellate Peridineum sp.
- I Positive toxin test at Portsmouth Water. Determined to be from settling basin discharge.
 - Datasonde at Greenup L&D showed no evidence of unusual algal activity.




HAB Stations

- ORSANCO stations at Pike Island L&D and Meldahl L&D
- Access to data from Marshall University RC Byrd L&D and Greenup L&D
- YSI EXO2 datasondes
 - Temperature, pH, conductivity, turbidity, dissolved oxygen, chlorophyll a, phycocyanin
- Samples collected 2/month
 - TKN, N/N, TP, BOD, TSS, algal community
- Data downloaded daily


Example Data

Additional Funding for HAB Projects

- West Virginia 604(b) for analysis of 2015 HAB data.
 - Ongoing data collection
 - Supports EPA RARE Grant
- Indiana 604(b) for 2 datasondes on the Indiana section of the Ohio River.
 - Locations to be determined in consultation with IN DEP.
 - Installed in spring 2019

Algal Toxin Recreation Standards

- US EPA proposed Ambient Water Quality Criteria in December 2016
 - Microcystin 4 ug/L
 - Cylindrospermopsin 8 ug/L
- Additional studies reviewed during comment procedure
- Reportedly the concentrations will double in the next proposed AWQC. Also add a cell count of 100,000 cells/ml.

HAB Research Workgroup

- Met by conference call 10-25-18
- Presentation by OSU on STAR Grant
 - Watershed classification system modeling HAB risk (similar to RARE Grant)
 - 7 watersheds total. 3 Ohio, 2 Kentucky, 2 Indiana
 - Explore linking RARE Grant output
- NKU HAB app
 - Camera identifies HABs by color
 - Exploring including cameras at ORSANCO HAB stations
- Research web page
- Conference calls in spring and fall

Questions?

Preliminary Results of Mercury Ohio River Basin Mass Balance Project

Report to TEC Committee February 12-13, 2019

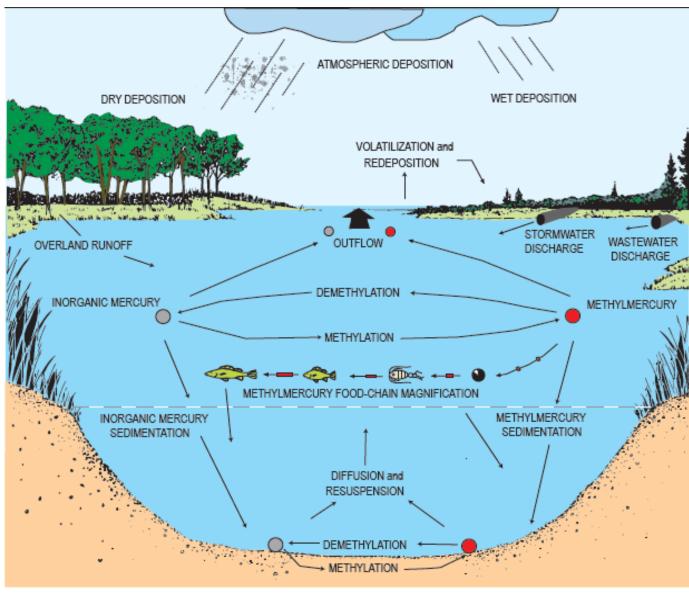
Ad Hoc Mercury Committee Background

- Ad Hoc Established June, 2015.
- Held 5 conference calls & meeting Aug. '16.
- Charge:
 - Identify what is known and unknown about mercury.
 - Determine the value and costs of addressing the unknowns.
 - Make recommendations for studies to the Commission.
- Work completed by Mercury Ad Hoc:
 - Identified available outside data.
 - Completed literature review & background report.
 - Identified and prioritized information needs.
 - Identified a project and schedule to fill in information gaps.

Committee Membership

	-	
Stuart Bruny	OH Commissioner	
Doug Conroe	NY Commissioner	
Jessica Dexter	Environmental Law & Policy Center	
George Elmaraghy	Federal Commissioner	
Erich Emery	US Army Corps of Engineers	
Tom FitzGerald	Federal Commissioner	
Madeline Fleisher	Environmental Law & Policy Center	
Toby Frevert	IL Commissioner	
Eileen Hack	IDEM	
Tim Henry		
John Kupke (Chair)	IN Commissioner	
Ron Lovan	Commission Chairman (Kentucky)	
Paul Novak	IDEM/TEC NPDES Chair	
Eric Nygaard	OEPA	
Ron Potesta	WV Commissioner	
Rob ReashPower Industry Advisory Con		
Martin Risch	h USGS	
Mike Wilson	NY Commissioner	

Ad Hoc Committee Identified Information Needs


- Priority #1:
 - Mass Balance to quantify and apportion sources of mercury in Ohio River.
 - Are point sources having an impact and what is the magnitude of the impact?
 - These questions could lead towards development of management scenarios.

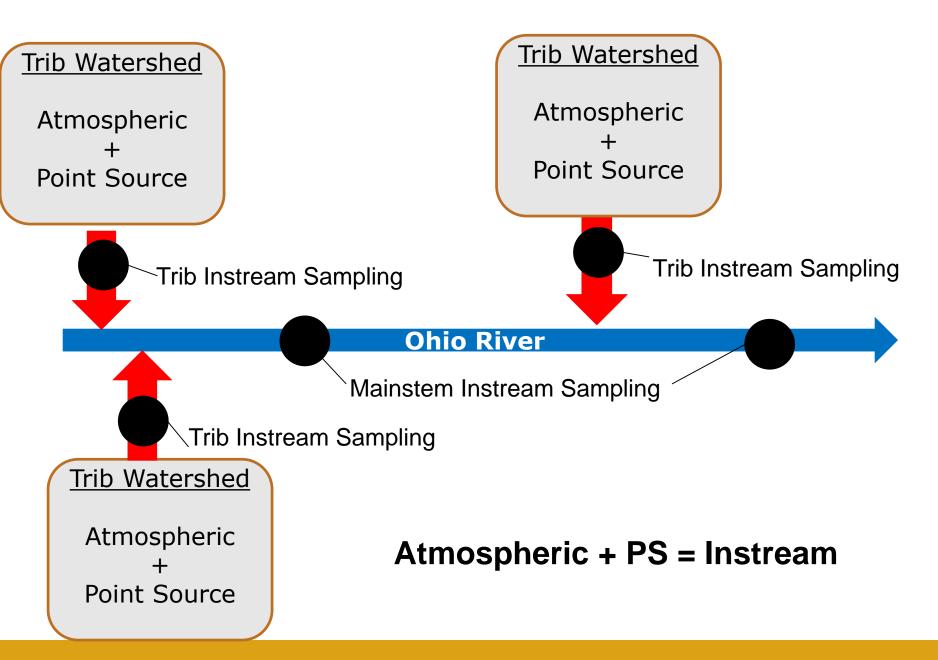
Ad Hoc Committee Recommended Study to Complete a Mercury Mass Balance for the Ohio River.

- Considered various approaches.
- Decided on a point source focus.
- Relies heavily on existing studies and information.
- Very low cost project. Completed with existing staff. No special studies/surveys/projects needed to complete the effort.
- Project recommended Oct. 2016

- Hg is a natural, trace element found everywhere
- Global Pollutant Atmospheric emissions.
- Has toxicological risks to humans & wildlife
 - Main exposure to humans is fish-consumption
- Hg is responsible for Fish Consumption Advisories in all 50 states

Fate and Transport within Aquatic Systems

*from Risch et al. 2010


Methylationtemperature

- •L DO
- organic matter
- sulfates
- sulfides

• etc

Thresholds USEPA – 0.3ppm FDA – 1.0ppm 1 ml/wk FCA – 0.02ppm

Mass Balance Diagram

Mass Balance/Source Apportionment

1) Calculate mass loads in Ohio River.

- Based on existing studies.
- Adjust data to trib timeframe Nov. '15-Oct. '16.

2) Calculate mass loads from 15 largest tribs.

- Accounts for approx. 85% of watershed.
- Based on sampling effort Nov `15 to Oct. `16.

Mass Balance/Source Apportionment (cont.)

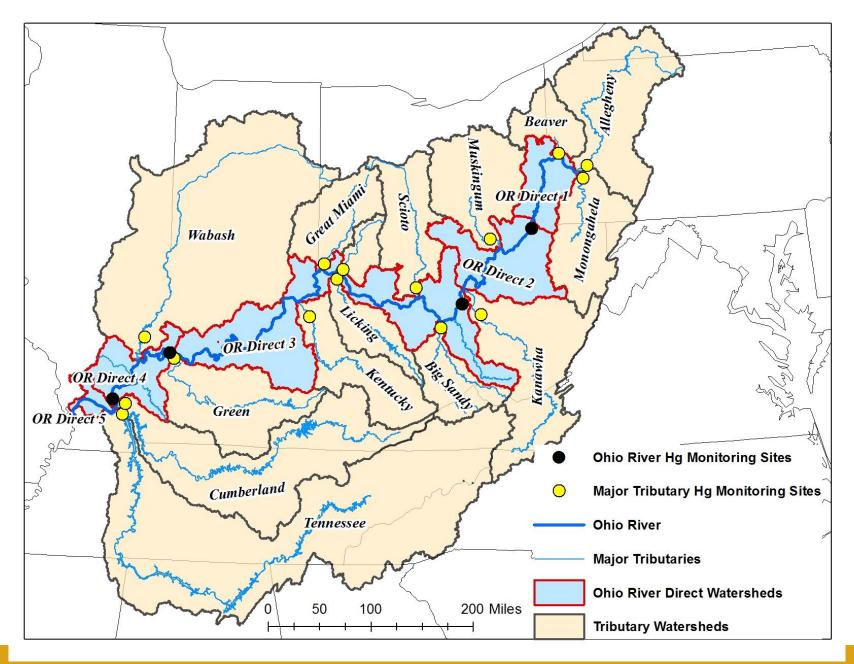
3) Calc. Point Source Loads.

- Use USEPA ECHO data base.
- Align with trib sampling Nov `15-Oct `16

4) Putting It All Together.

- Instream = PS + Atmospheric
- Percent source contributions to instream.
- Nov '15-Oct `16.

Study Limitations Identified & Accepted from Project Inception

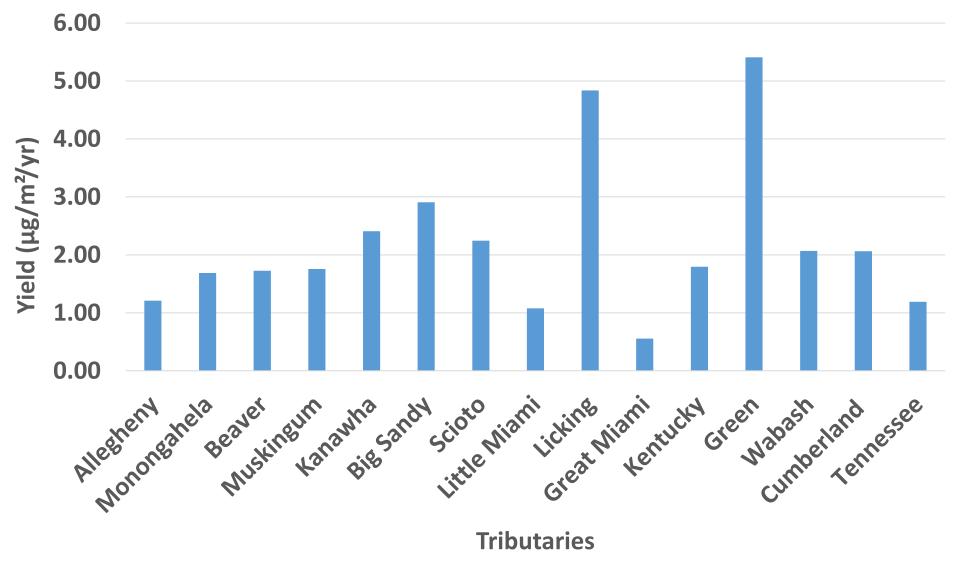

- Atmospheric deposition study does not account for the amount entering the waterways from the landscape. NADP (Nat'l Atmos Dep Program) & precip data.
- Point source loads rely on ECHO data base does not include data for all mercury discharges. Uses discharge monitoring report data.
- **3. Instream loads** used existing stream data from different periods of record (mainstem data adjusted to a common timeframe. LOADEST to calc. loads.

Project Components

- 1. Instream Loads 4 mainstem; 15 tribs.
- 2. Point Source Loads.
- 3. Atmospheric Loads.
- 4. Mass Balance Accounting.

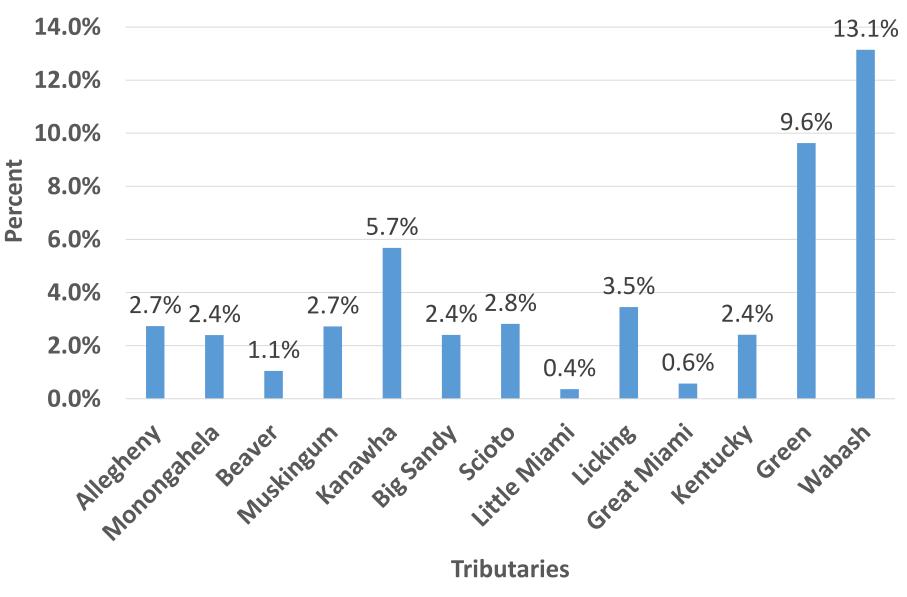
These are the 4 main components of the project. Either one large report with a Chapter for each component, or 4 individual reports.

Geographic Scope of Project


Tributary Mass Balance

	Instream Hg Annual Load	% Atmospheric Hg Contribution (loads in		% Point Source Hg Contribution	Number of Outfalls with Hg	
Watershed	(lbs)	pounds	;)	(loads in pounds)	data	
Allegheny	81.1	17x	(1,357)	0.3 % (0.2)	5	
Monongahela	71.0	13x	(901)	2.1 % (1.5)	46	
Beaver	31.1	10x	(322)	~0 % ~0)	31	
Muskingum	80.7	10x	(814)	~0 % (~0)	78	
Kanawha	168.4	9x	(1,530)	7.5 % (13)	41	
Big Sandy	71.3	8x	(557)	0.1 % (0.1)	19	
Scioto	83.5	8x	(687)	~0 % (~0)	57	
Little Miami	10.8	18x	(190)	~0 % (~0)	22	
Licking	102.4	4x	(423)	~0 % (0.04)	3	
Great Miami	17.1	33x	(560)	0.5% (0.1)	53	
Kentucky	71.5	13x	(894)	12.9% (9.2)	8	
Green	285.1	4x	(1,197)	0.4% (1.1)	13	
Wabash	389.2	11x	(4,088)	4.2% (16)	83	
Cumberland	211.1	11x	(2,299)	3.3% (7)	20	
Tennessee	278.4	20x	(5 <i>,</i> 482)	3.6% (10)	42	

Mainstem Mass Balance


Ohio River Stations	Instream Hg Annual Load (Ibs)	% Atmospheric Hg Contribution (loads in pounds)	% Point Source Hg Contribution data provided (loads in pounds)	# of Outfalls w/ Hg Data Upstream of Station (including tributaries and direct watersheds)
	222		1.00/ //)	140
ORM 126	223	25x (5,552)	1.9% (4)	148
ORM 282	593	24x (14,025)	6.7% (40)	330
ORM 782	2,153	13x (28,723)	2.8% (61)	579
ORM 912	2,961	17x (51,252)	2.7% (79)	690

Tributary Mercury Instream Yield

Annual Instream Hg Yield (µg/m²/yr)

Tributary Instream Mercury Contribution

% Tributary Instream Hg Contribution

Mercury Project Timeline		2017				2018	
Task #	Task Description	Q1	Q2	Q3	Q4	Q1	Q2
1A	Calc Hg Mass Load at Mainstem BAF Sites						
1B	Calc Hg Mass Load at Mainstem Clean Meals Sites						
10	Calc Hg Mass Load for Tributaries						
2	Calc Point Source Hg Mass Load for Trib Watersheds						
3	Calc Mainstem Point Source Loads						
4	Report Development						

Completion Schedule

- At Feb TEC Meeting Ask TEC for additions to Ad Hoc Mercury Committee membership.
- March Convene Ad Hoc Committee. Review project results and 4 draft reports/chapters. Concurrent TEC review.
- June TEC Meeting -- Bring drafts back to TEC.
- Oct. TEC/Commission Meeting -- Finalize project/approve reports.

Source Water Protection & Emergency Response Update

Informational Item

Technical Committee February 12–13, 2019

Program Elements

- Harmful Algal Blooms
 - Grant project updates
- Emergency Response
 - Role in Spill Response
- Source Water Protection Planning
 - Contaminant Source Inventory Project

Organic Detection System (ODS)

ODS Next Generation Update

Emergency Response

1. Communication

- Initial Notifications (24/7)
- Facilitate/coordinate communication and actions
- Active pattern of late, though no major impacts
- Emergency Response Directory updated

2. Time-of-Travel Modeling

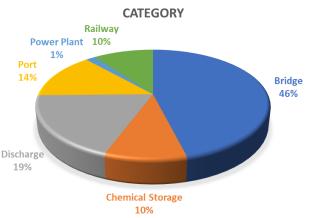
• US EPA funding fixes to model

3. Water Quality Monitoring

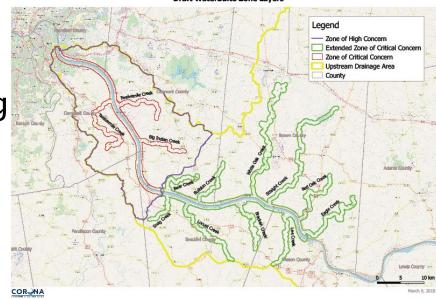
No recent incidents required additional monitoring

4. Analytical Support

Utilize ODS sites to run samples to track spill



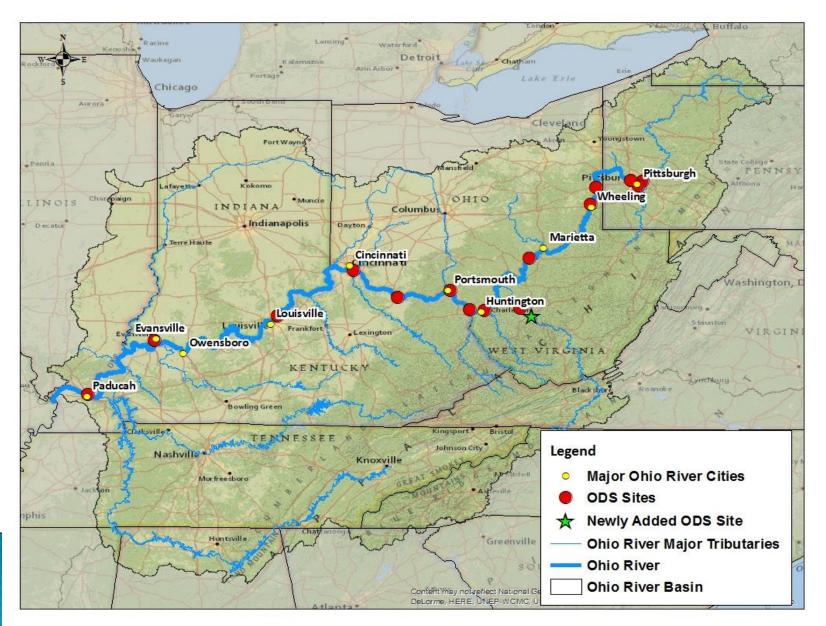
Contaminant Source Inventory Pilot Project


Contaminant Source Inventory Project

- Objective: Develop GIS database tool to assist water utilities in assessing potential water quality risks.
- Utilizes WaterSuite software to map contaminant threats and associated information
- US EPA, Greater Cincinnati Water Works, & Northern Kentucky Water District

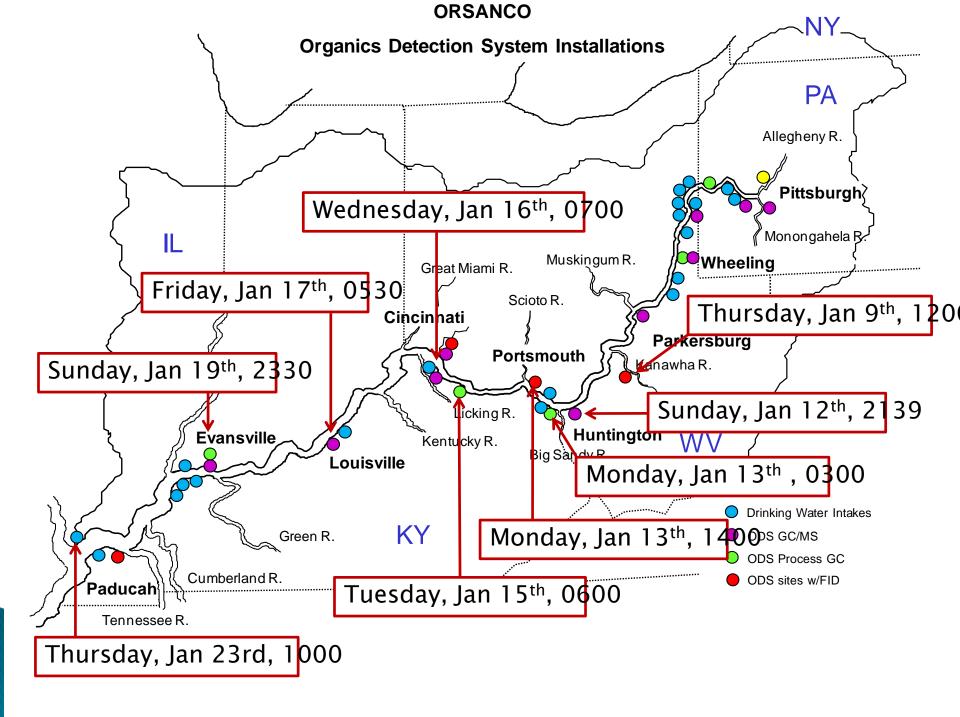
Contaminant Source Inventory Project

- Phase 1 Maysville to Cincinnati
 - Initial mapping completed Fall 2018
- Phase 2 -
 - 1. Extend study area to upstream of Portsmouth, OH
 - 2. Evaluate source water protection and emergency response priorities
 - 3. Update Tier II data
- Maysville and Portsmouth water utilities participating
- Time-of-travel model comparison
- Runs thru July 2019


ODS Next Generation

ODS Background

- 1978 Monitoring system developed in response to major carbon tetrachloride spill on Kanawha River
- Two key functions:
 - 1. Spill detection
 - 2. Spill tracking
- 17 stations
- Three system types
 - 1. GC/MS
 - 2. GC/FID
 - 3. Process GC
- Quantify 30 VOC analytes
- Detect thousands of VOCs



Volatile Organics Monitoring Network

Value of System

- Serves as a sentinel to alert water utilities
- Examples
- 1. 1994 EDB from Shell Chemical fire
- 2. 2009 Unreported methylene chloride release
- 3. 2014 MCHM release in Charleston, WV
- 4. 2017 Parkersburg warehouse fire
- Quick turn-around screening provides water utilities with key information to make informed management decisions to protect consumers

ODS Next Generation

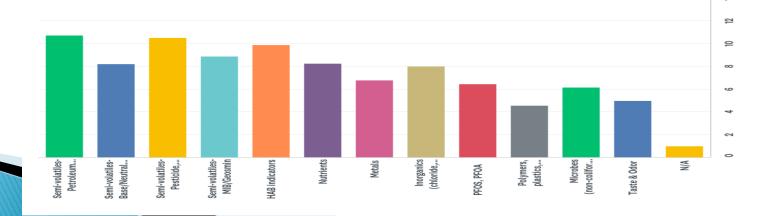
- Previous renovation initiated in 2009
- Work Group Participants
 - American Water Company
 - Greater Cincinnati Water Works
 - Louisville Water Company
 - Northern Kentucky Water District
 - US EPA
 - ORSANCO
- Work Group Charge -
 - 1. Evaluate potential contaminants of concern.
 - 2. Evaluate available technologies
 - 3. Identify at least 3 monitoring designs
 - 4. Recommend preferred option

Process

- Online Surveys:
 - Polled Ohio River water utilities to determine system needs and areas for improvement

• Researched:

- Contaminants of concern
- New instrument/sensor technologies
- System Configuration Options
 - Developed list of system design options
- Scoring Matrix
 - Developed matrix to score sites for GC/MS placement


Online Survey Results

- Great participation
 - Responses from 27 utilities
- Key Findings
 - Significant variability among utilities
 - Size, expertise, monitoring resources
 - Most desired system enhancements
 - 1. Host water quality data web portal
 - 2. Broaden analytical capabilities

Key Contaminants

- VOCs (expand list?)
- SVOCs, HAB indicators, Inorganic anion/cations, nutrients
- SVOCs most beneficial; however, costly and labor intensive
- Utilities routinely collect basic water quality parameters

8

ODS System Configuration Scenarios

				Annualized Cost			
			Total	Maintenance	Capital	Maintenance	Total Annual
#	Description	Instrumentation	Capital	Labor Hours	Cost*	Cost**	Cost
1	Current system + SVOC at 4 sites	9 GC/MS 3 GC/FID 4 CMS 4 GC/FID (SVOC) 1 Backup CMS	\$2,441,000	550	\$276,100	\$271,500	\$547,600
2	Current system	9 GC/MS 3 GC/FID 4 CMS 1 Backup CMS	\$2,121,000	438	\$212,100	\$207,500	\$419,600
3	Replace 3 GC/MS with GC/FID	6 GC/MS 6 GC/FID 4 CMS 1 Backup CMS	\$2,013,000	390	\$201,300	\$187,000	\$388,300
4	Replace 5 GC/MS with 3 GC/FID & 2 CMS	4 GC/MS 6 GC/FID 6 CMS 1 Backup CMS	\$1,803,000	394	\$180,300	\$169,400	\$349,700

* Annualized capital cost assumes 10-year replacement schedule.

** Annualized maintenance cost excludes staff labor and travel expenses.

Scoring Matrix

- Developed matrix to score ODS sites for possible GC/MS placement
- Scoring factors
- 1. Facility ODS performance metrics
- 2. Potential for spill occurrences
- 3. Enhanced monitoring capacity during spills
- 4. Population served
- Wild Card Geographic distribution

Matrix Results

Prioritization of GC/MS Sites

Rank	Site	Composite Score
1	Huntington	1.4
2 (tied)	Louisville Wheeling	1.5
4 (tied)	Evansville Hays Mine	1.8

 Cincinnati owns their GC/MS; therefore, was excluded from scoring

Summary of Recommendations

- 1. Maintain VOCs as primary focus for routine monitoring. Expand VOC analyte list
- 2. Trial SVOC analysis at 2–3 sites with existing equipment to evaluate cost and time implications
- Evaluate possible web-portal for utilities to share routinely-collected water quality results

Summary of Recommendations

- 4. The three GC instrument system types currently employed remain the preferred instrument choices.
- 5. Four configuration options presented provides decision tool to optimize system to available resources.
- 6. Network with 5 GC/MS units considered minimum required to meet monitoring needs.
- 7. Scoring matrix established to prioritize placement of GC/MS instruments.

Questions?

2018 Review of Pollution Control Standards for Discharges to the Ohio River

Background

- The current review began with the appointment of a Commission Ad-Hoc Committee to review its role in water quality standards implementation on June 30, 2015.
- The Ad-Hoc Committee developed 5 alternatives for consideration.
- The 5 alternatives were distributed for comment to the Commission's advisory committees & TEC.
- The Ad Hoc Committee recommended a preferred alternative #2.
- An expanded version of Alternative #2 was developed.
- A minority report was developed along with the expanded preferred alternative.

Background (cont.)

- At October 2017 Commission meeting, the Commission authorized PCS Committee to initiate a public review of the alternatives.
- 1st Public review held Jan. 10 thru Feb. 24 to solicit input on the 5 alternatives:
 - 783 -- "Third-Party" emails not in favor of Alternative#2.
 - 14 -- Detailed comments from entities not in favor of Alternative #2.
 - 17 Detailed comments from entities in favor of Alternative #2.

Background (cont.)

 At June 2018 Commission meeting, the Commission authorized PCS Committee to initiate a second public review of specific revisions to the standards based on Expanded Alternative #2.

- 2nd Public review held June 26 thru Aug 20, 2018 and hearing on July 26.
 - 10 detailed comments in favor of Alternative #2.
 - 38 detailed comments from entities not in favor of Alternative #2.
 - 5,728 comments from the general public not in favor of Alternative#2.
 - Hearing results 92 attendees; 48 commenters all opposed to proposed revisions.

October 2018 Commission Mtg

- Commission deferred action on proposed revised standards to allow the PCS Committee additional time to consider public input.
- PCS Committee met Oct. 20 and designated subcommittee to continue review.
- PCS Subcommittee held calls on Nov 2, Nov 8, Nov 15.
- PCS Subcommittee met in-person on Nov 30.

Key Tenants of PCS Committee Proposal

- 1) Any proposal should be consistent with the Compact;
- 2) Any proposal should provide for a cost effective use of ORSANCO and State resources;
- 3) Any proposal should provide for the PCS to be available for States to use if desired;
- 4) Any proposal should not be mandated to the States;
- 5) Any proposal should preserve the PCS to be available for specific mainstem Ohio River problems that may arise in the future;
- 6) Any proposal should ensure that the uses identified in the Compact are maintained.